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THEORETICAL STUDYING SPECTRAL CHARACTERISTICS
OF TM ATOM WITHIN OPTIMIZED RELATIVISTIC MANY-

BODY THEORY

Theoretical studying Rydberg spectrum of complex lanthanide atom of Tm has been performed within
the relativistic many-body perturbation theory and generalized relativistic energy approach. The
zeroth approximation of the relativistic perturbation theory is provided by the optimized Dirac-Kohn-
Sham-Breit ones. Optimization has been fulfilled by means of introduction of the special gauge
parameter to the Fock and Kohn-Sham exchange potentials and further minimization of the gauge-
non-invariant contributions into radiation width of atomic levels with using relativistic orbital sets,
generated by the corresponding zeroth approximation Hamiltonian. The calculated energies and
widths of autoionization resonant states 4f™; 6s(J12)nsnp[J] of the Tm atom with n=25-35 are
presented and compared with known theoretical results, received within other approaches. Two main
types of the Rydberg autoionization resonances decay, namely, the classic Beutler-Fano decay channel
and a new Ivanov et al reorientation-type decay channel arde studied. It is noted that, for example, for

autoionization resonant states 4 f 52 651,2(3) ns; [J ] with the considered values of n, the decay of
resonances occurs along both channels, and it is extremely difficult to understand a priori which of

them is dominant.

1. Introduction

The development of new directions in the
field of optics and spectroscopy, laser physics
and quantum electronics, such as precision
spectroscopy of heavy and superheavy atoms
and ions, the latest astrospectroscopic re-
search, pulse heating methods in controlled
thermonuclear fusion research, the creation of
fundamentally new schemes of lasers in the
VHF, X-ray regions of the spectrum, etc., de-
termines the need to solve the urgent and im-
portant tasks of atomic optics and laser spec-
troscopy at a fundamentally new level of the-
oretical consistency and accuracy. In the last
decade, the spectroscopy of multi-charged
ions, covering the UV and X-ray D-ranges of
the spectrum, has also been intensively de-
veloped. Significant progress in the develop-
ment of experimental methods of research, in
particular, a significant increase in the intens-
ity and quality of laser radiation, the use of ac-
celerators, heavy ion colliders, sources of syn-
chrotron radiation and, as a result, the possibil-

ity of a precise study of increasingly energetic
processes, stimulates the development of new
in the theory of heavy atoms theoretical meth-
ods of calculating their characteristics, in par-
ticular, radiation and autoionization. It is
known that autoionization states (AS) play a
significant role in various elementary atomic
processes such as autoionization, selective
photoionization, scattering of electrons on
atoms, atom - and ion - atom collisions, etc.
The presence of AS in ions significantly af-
fects the characteristics of the radiation spec-
trum of high-temperature astrophysical and
laboratory plasma. Their radiative decay is ac-
companied by the formation of the most com-
plex spectra of dielectron satellites to the res-
onance lines of ions of the next ionization mul-
tiplicity, which contain information about the
state of the plasma used for its diagnosis, as
well as when studying the physical conditions
in the solar corona, etc. astrophysical objects
[1-28]).

In many papers the standard Hartree-Fock
(HF), Dirac-Fock (DF) methods, model poten-
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tial (MP) approach, quantum defect approxim-
ation etc in the different realizations have been
used for calculating energies and oscillator
strengths. However, it should be stated that for
the heavy alkali atoms (for example, such as
lanthanides and actinides atoms) and particu-
larly for their high-excited (Rydberg) states,
there is not enough precise information avail-
able in literature. The multi-configuration
Dirac-Fock method is the most reliable version
of calculation for multielectron systems with a
large nuclear charge. However, one should re-
member about very complicated structure of
spectra of the lanthanides atoms and necessity
of correct accounting for different correlation
effects such as polarization interaction of the
valent quasiparticles and their mutual screen-
ing, iterations of a mass operator etc.).

In this paper we present the results of
studying the spectral characteristics of various
autoionization states (AS) (including narrow
and abnormally narrow) in a spectrum of the
Tm atom. The method of study is an accurate,
ab initio method of relativistic many-body per-
turbation theory for three-quasi-particle atomic
systems with a gauge-invariant zeroth approx-
imation [25-30] and an energy approach,
which is based on S-matrix formalism of Gell-
Mann and Low [31-38]. Optimization has been
fulfilled by means of introduction of the spe-
cial gauge parameter to the Fock and Kohn-
Sham exchange potentials and further mini-
mization of the gauge-non-invariant contribu-
tions into radiation width of atomic levels with
using relativistic orbital sets, generated by the
corresponding zeroth approximation Hamil-
tonian [35-38]. The calculated energies and
widths of autoionization resonant states 4f;
6s(J12)nsnp[J] of the Tm atom with n=25-35
are presented and compared with known theo-
retical results, received within other ap-
proaches (e.g. [2,3,18,32-34]).

2. Theoretical method

As the method of computing is earlier
presented in detail, here we are limited only by
the key topics [25-30]. Generally speaking, the
majority of complex atomic systems possess a
dense energy spectrum of interacting states
with essentially relativistic properties. In the
theory of the non-relativistic atom a conveni-

ent field procedure is known for calculating
the energy shifts AE of degenerate states. This
procedure is connected with the secular matrix
M diagonalization [10-22]. In constructing M,
the Gell-Mann and Low adiabatic formula for
AE is used. In contrast to the non-relativistic
case, the secular matrix elements are already
complex in the second order of the electro-
dynamical PT (first order of the interelectron
interaction). Their imaginary part of AE is
connected with the radiation decay (radiation)
possibility. In this approach, the whole calcu-
lation of the energies and decay probabilities
of a non-degenerate excited state is reduced to
the calculation and diagonalization of the com-
plex matrix M. The complex secular matrix M
is represented in the form [31-38]:

M=M"" M+ ),
)

0 . . .
where M ©) is the contribution of the vacuum

diagrams of all order of PT, and M , M" ,

3)
M! those of the one-, two- and three-

quasiparticle diagrams respectively. M s a

real matrix, proportional to the unit matrix. For
simple systems (such as alkali atoms and ions)
the one-quasiparticle energies can be taken
from the experiment. Substituting these
quantities into (1) one could have summarized
all the contributions of the one -quasiparticle
diagrams of all orders of the formally exact
QED PT. However, the necessary
experimental quantities are not often available.

The first two order corrections to ReM'” have
been analyzed previously using Feynman
diagrams (look Ref. in [1,2]). The
contributions of the first-order diagrams have
been completely calculated.

In the second order, there are two kinds of
diagrams: polarization and ladder ones. The
polarization diagrams take into account the
quasiparticle  interaction  through  the
polarizable core, and the ladder diagrams take
into account the immediate quasiparticle
interaction [28-31,35-38]. Some of the ladder
diagram contributions as well as some of the
three-quasiparticle diagram contributions in all
PT orders have the same angular symmetry as
the two-quasiparticle diagram contributions of
the first order. These contributions have been

133



summarized by a modification of the central
potential, which must now include the
screening (anti-screening) of the core potential
of each particle by the two others.

Interelectron interaction operator with
accounting for the Breit interaction has been
taken as follows:

l1-a,a;

V(rr;)=expior,) - (—ﬁ’), )
where, as usually, ¢; are the Dirac matrices.
The total probability of a A -pole transition is
the sum of the electrical P} (electric multipole
decomposition) and magnetic py
(corresponding decomposition) parts and is
calculated within the relativistic energy
formalism [31-42]. In the energy approach
with respect to the complex multielectron
atomic system the energy shift in the complex
form is: 8E = RedE + i ImdE, Im OE = -P/ 2,
where P- probability of decay (transition). For
a single quasiparticle atomic system ImJE and,
accordingly, P in the 2nd perturbation theory
order (the perturbation operatorUMp(ri V b)-

Ju(x)A%(x), where A is the vector of the
electromagnetic field potential, J is the current
operator, Uyr is a mean-field potential ) is
proportional to the matrix element with Dirac
bispinors ¢;" " (ab initio RMP HaGnmxeHHs):

Vijki = ”dSrld}rz?”iEFMP* (r, )¢_fFMP* (c)(1-ay)

(r, )(01E = ()

~ EFMP
sin |@ |1, /n,] ¢

€)

which are decomposed into a series of Bessel
functions of the 1st kind (analog of multipole
decomposition). In general, the results of all
approximate calculations depended on the
gauge. Naturally the correct result must be
gauge-invariant. The gauge dependence of the
amplitudes of the photo processes in the
approximate calculations is a well known fact
and is in details investigated by Grant,
Armstrong, Aymar and  Luc-Koenig,
Glushkov-Ivanov et al (e.g., see reviews in
[2,3,18,29,30] and Refs. therein). For
simplicity, it is worth to remind that an
autoionization decay in the one-quaiparticle

approximation can be represented as (i=l-
3B p.— Bk, where B; (i=1-3) described a set of
quantum numbers of bound states, k -a state of
free electron. Decay is possible only into the
state of the continuous spectrum, which
coincides in terms of parity and total moment J
with the original AS. The width of the state
associated with AC decay is determined by the
connection with the continuum states and

actually Too|V(BiB., PBsk)|>. 1ie., s
proportional to matrix element of the
interaction operator (2). The latter is
determined by the known sum

Q=Q;"+Q (3)

where respectively QX'and Q' correspond to
the Coulomb and Breit parts of the potential
(2). These parts are expressed through the
known atomic radial integrals R and known
angular coefficients S. All details can be found
in [2,28-38]. All calculations are performed
with using the PC code Super atom [2,25-
30,35].

3. The results and conclusions

The Tm spectrum is particularly complex.
It is characterized by the position of the
closely lying 4f'6snl Tm ionization limits and
quite complex scheme of the autoionization
decay of the 4f"*6snl Tm Rydberg states. The
presence of 2 pairs of closely lying ionization
limits (with vacancy states in the 4f™ core: : 4
f,y4fsy) causes 2 main types of
autoionization decay [2,34]:

1). the classic Beutler-Fano decay (BFD)
channel —

4f15/2681/2 (le)n1-4f17/2681/2 [le'] Tm++leje,
n>7, J12=2;3, J12'=3;4

i1). A new reorientation-type decay channel
(ROD) for AS spectroscopy -

A1} 6515(J12)nl-4£1j681,,[T12']Tm +leje)
n>25, 112=3, J12'=2:4 j=5/2,7/2,

Here, ROD denotes the decay of AC of the
reorientation type, (BFD) is the channel of the
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Beutler-Fano decay known in theory. The 4f
's» 6s1onl  states are subject to both BFD and
ROD decay. In contrast to BFD decay, ROD
decay is a low-energy process that preserves
one-electron quantum numbers of the atomic
core: 4fj" ,6s;n. ROD decay can be either
monopole or quadrupole.

Below we present the calculated energies
and widths of AS 4f"'; 6s(J12)nsnp[J] of the
Tm atom with n=25-35. The obtained results
are presented in tables 1-4. Table 1 shows the
calculated values of the widths I'2 (in ¢m™)
and energies E2 (10 cm') of the AS
af %/32 551/2(3) nsl/z[J ] of the Tm atom, for which

ROD decay 1is the only channel of
autoionization  decay. For  comparison,
calculation data obtained by Ivanov et al.
(E1,G1) [32-34] and Glushkov et al (E,G3)
[2,18].

Table 1
Widths and energies of the AS 4 f12 6s,,(3)ns,,[J ]|
of the Tm atom

J=5/2
n I'l I3 2
25 | 1.18(-5) 1.29(-5) 1.25(-5)
26 | - - 1.13(-5)
30 | 5.77(-6) 6.72(-6) 6.12(-6)
33| - - 3.79(-6)
35| - - 3.21(-6)

J=5/2
n El E3 E2
25 4985 4981 4983
26 - - 4975
30 4995 4993 4994
33 - - 4996
35 - - 4998

J=7/2
n 12 E2
25 1.58(-2) 4986
26 1.34(-2) 4988
30 | 3.98(-3) 4995
33 1.58(-2) 4998
35 3.18(-3) 5000

Table 2 shows our values of widths and
energies of the AS 4, 651/2(3)npj[1] and AS
4féz,’2651,2(2)nsl,2[1], for which the ROD is a
single decay channel for AS studied.

Table 2.

Widths and energies of the AS 4 f ;?2 6s, /2(3) np; [] ]

of the Tm atom (our data)

26 | 1.75(-1) 48979
30 |1.07(-1) 49941
33| 8.20(-2) 49972
35 16.59(02) 49993

QD (312.3/2) (1/2,5/2)

n| I2 E2 2 E2
25 |4.68(-5) 49862 | 1.40(-1) 49858
26 | 422(-5) 49877 | 133(-1) 49874
30 | 2.42(-5) 49939 | 1.03(-1) 49937
33| 1.80(-5) 49971 | 7.54(-2) 49968
35| 1.39(-5) 49992 | 5.72(-2) 49990
i) (32,52) (1/2,7/2)

n| 12 E2 2 E2
25[1.92(-1) 49865 | 3.72(-2) 49848

3.45(-2) 49863
2.38(-2) 49938
2/12(-2) 49961
1.76(-2) 49982

(3/2,9/2)

QD (32,72)
n

12 E2

2 E2
25| 3.46(-1) 49867
26 | 3.24(-1) 49884
30 | 2.38(-1) 49952
33| 2.05(-1) 49977
35| 1.56(-1) 49992

3.98(-1) 49869
3.71(-1) 49886
2.62(-1) 49953
2.26(-1) 49978
1.729(-1) 49993

Table 3

shows our values of widths and

energies (in cm™) of the 4fL,6s,,(2)ns,,J]

AS.

Table 3.

Widths and energies of the AS 4 1, 651/2(2) ns,, [J]

of the Tm atom (our data)

J=3/2 J=3/2
n 2 E2
25 2.64(-5) 5836
30 1.27(-5) 5845
35 8.89(-6) 5850

J=5/2 J=5/2
n 2 E2
25 5.32(-5) 5838
30 | 2.78(-5) 5846
35 1.54(-5) 5852

Analysis of the data shows that the
computational method used provides a
physically reasonable agreement between the
theoretical and experimental data. However,
comparison of the corresponding results for widths
demonstrates again sufficiently large discrepancy.
In our opinion, this fact is explained by
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insufficiently exact estimates of the radial
integrals, using the non-optimized basises and
some other additional calculation approximations.
Table 4 shows the calculated widths and energies

of the 4fé?2651/2(3)nsl,2[l] , states, for which

autoionization decay can pass through both

channels: ROD and BFD.

Table 4. Widths and energies of the AS
4L 65s,,(3)n8,,]J ] of the Tm atom (our data)

2 J=572 =12

n | [(ROD) I'(BFD)| T(ROD) I'(BFD)
25 [1.39(-2) 2.85(-5) | 1.36(-5) 5.41(-5)
30 |3.32(-3) 1.52(-5) | 6.81(-6) 2.78(-5)
35|1.01(-3) 8.68(-6)|3.53(-6) 1.56(-5)

It is important to note that for AS
AfE,6s,,(3)ns,,,[J] (table 4) with the
considered values of n, the decay of

resonances occurs along both channels, and it
is extremely difficult to understand a priori
which of them is dominant.
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means of introduction of the special gauge parameter to the Fock and Kohn-Sham exchange
potentials and further minimization of the gauge-non-invariant contributions into radiation width
of atomic levels with using relativistic orbital sets, generated by the corresponding zeroth
approximation Hamiltonian. The calculated energies and widths of autoionization resonant states
41" 6s(J12)nsnp[J] of the Tm atom with n=25-35 are presented and compared with known
theoretical results, received within other approaches. Two main types of the Rydberg
autoionization resonances decay, namely, the classic Beutler-Fano decay channel and a new
Ivanov et al reorientation-type decay channel ar4e studied. It is underlined that, for example, for

autoionization resonant states 4 f 2 6sy,(3)ns, ,Z[J | with the considered values of n, the decay
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of resonances occurs along both channels, and it is extremely difficult to understand a priori
which of them is dominant.

Keywords: Relativistic perturbation theory, optimized zeroth approximation, spectroscopy,
Tm atom
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TEOPETUYHE BUBUEHHSI CHEKTPAJIBHUX XAPAKTEPUCTHUK Tm-ATOMA HA
OCHOBI OIITUMI3OBAHOI PEJSITUBICTCHKOI TEOPII

Pe3iome. Teopetnune mOCHIKEHHS PiIOEpTiBCBKOTO CIEKTPY CKJIAIHOTO aroma (3
JaHTaHOIZiB) Tm BUKOHAaHO B paMKax ONTHUMI30BaHOI PENATUBICTCHKOI 0araToO4acTMHKOBOI
Teopii 30ypeHb 1 Y3arajJlbHEHOTO PEISATHUBICTCHKOTO EHEepPreTHYHOro miaxonay. Hymeose
HaOMIDKEHHST PeNSTUBICTCHKOI Teopii 30ypeHb BH3HAYAETHCS ONTHMI30BAHUM HAOIMKEHHSIM
Hipaka-Kona-lllam-bpeiira. OnTumizaiito BHKOHAHO IIIJISXOM BBEJIEHHS CHELIabHOTO
KaiOpyBalbHOrO mapaMerpa 10 oOMiHHMX noreHmianiB @oka ta Kona-lllema Ta momambinoi
MiHIMI3alii KaniOpyBajJbHO-HEIHBApIaHTHUX BHECKIB B pajialliifHy IIMPUHY aTOMHHUX PIBHIB 3
BUKOPUCTAHHSAM  DPEJSATUBICTCBKUX  OpOITaJbHUX  HAOOpIB, TOPOKEHUX  BIAMNOBIIHUM
raMuIbTOHIAaHOM HYJbOBOro HaOmwkeHHs. HaBegeHo po3paxoBaHi eHeprii Ta IIMPUHU
aBroioHizauiiinux cranis 4f™'; 6s(J12)nsnp[J] aroma Tm 3 TOJOBHUM KBaHTOBUM YHCIIOM N=25-
35 Ta TOpPIBHSIHO 3 BIIOMHUMH TEOPETHUYHUMH pPE3yJIbTaTaMH, OTPUMAHWMHU B paMKax I1HIINX
migxomiB. JIOCHiPKEHO JBa OCHOBHUX THIIM PO3Maay piaOEpriBCbKUX aBTOIOHI3AIIMHUX
pe30HaHCIB, a caMe, KJIaCMYHWUW KaHan posnaay beitnepa-®ano Ta HOBUU KaHAI pPO3Maay
peopieHTaliiHOTO TUITY, BIIKpUTHUN [BaHOBUM-JIeTOXOBUM Ta iHII. 3a3Ha4YeHO, 1110, HAIIPUKIIAJ,
JUISL  aBTOIOHI3ALIMHUX PpE30HAHCIB 3 PO3IJISHYTUMH 3HAYEHHSAMH N poO3MajJ pPE30HAHCIB
BiZIOyBa€eThCs M0 000X KaHaNax, 1 anpiopi 3pO3yMITH, SIKHH 3 HUX € JJOMIHYIOUUM, HaJI3BUYAHO
BaXKO.

KirouoBi cioBa: penstuBicTChKa Teopist 30ypeHb, ONTHMI30BaHE HYJIbOBE HAOIMKEHHS,
CIIEKTPOCKOTIs, aToM Tm
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