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NON-LINEAR ANALYSIS OF CHAOTIC SELF-OSCILLATIONS 
IN BACKWARD-WAVE TUBE

The paper presents the results of the analysis and modelling of topological and dynamic
invariants for the regimes of chaotic self-oscillations in the backward-wave oscillator,  in
particular, the analysis of chaotic time series for the amplitude of the output signal, which is
the solution of the equations of the non-stationary nonlinear theory for the O-type backward-
wave oscillator (without taking into account space charge, relativistic effects, energy losses,
etc.). The main attention is paid to the calculation and analysis of the spectrum of Lyapunov
exponents  based on the Sano-Savada algorithm. Numerical data of the Lyapunov backward-
wave oscillator calculated for the time series of the amplitudes of the output signal are given,
which definitely indicate the presence of elements of advanced chaos in the dynamics of the
system.

1.  At  present  time  study  the  powerful
generators  of  chaotic  oscillations  of
microwave  range  are  of  a  great  interest  for
radar,  plasma  heating  in  fusion  devices,
modern  systems  of  information  transmission
using  dynamic  chaos  and  many  other
applications.  Among  the  most  studied  of
vacuum  electronic  devices  with  complex
dynamics  are  backward-wave  oscillators,  for
which  the  possibility  of  generating  chaotic
oscillations  has  been  theoretically  and
experimentally  found  [1-12].  The  backward-
wave  oscillator  is  an  electronic  device  for
generating  electromagnetic  vibrations  of  the
superhigh  frequencies  range.  Above  nost
interesting for our study papers one should pay
the attention on the following works. 

Firstly,  the  papers  [4,5]  contain  very
important results. The  authors of these works
have  solved  the  equations  of  nonstationary
nonlinear  theory  for  the  O-type  backward-
wave oscillator without account of the spatial
charge, relativistic effects, energy losses etc. It
has  been  shown  that  the  finite-dimension
strange  attractor  is  responsible  for  chaotic
regimes in the backward-wave oscillator. The
authors have in details presented the numerical
data on the different dynamical characteristics
of  the  non-relativistic  backward-wave
oscillator,  namely,  phase  portraits,  statistical

quantifiers for a weak chaos arising via period-
doubling  cascade  of  self-modulation  and the
same  characteristics  of  two  non-relativistic
backward-wave oscillator. It is shown that the
chaos formed in the dynamics of the oscillator
is  characterized  by  more  than  one  positive
Lyapunov  exponent  (developed  chaos  or
hyperchaos).  the  Lyapunov  correlation
dimensions as well as in general a whole set of
the  dynamical  and topological  characteristics
of the strange attractor are also calculated.  

Naturally  the  quantitative  study  of  the
dynamical  and  topological  characteristics  of
the  strange  attractors  in  dynamics  of  the
nonrelativistic and relativistic backward-wave
oscillators  have  been  performed  in  many
papers  (e.g.  [1-12]  and  refs.  therein)
Depending  on the  key  control  parameters  of
the system, many researchers have discovered
a  rather  complex  scheme  of  alternating
regular,  auto-modulation,  and  chaotic
(hyperchaotic)  generation  modes,  and  in  the
end, the processes ended with a transition to
highly  irregular  broadband  chaotic
(hyperchaotic)  oscillations  with  a  sufficient
spectrum.

In  the  last  decade,  a  large  number  of
numerical studies have been carried out using
ideas  derived  from  the  science  of  chaos  to
characterize, model and predict the regular and
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chaotic  dynamics  of  various  electronics
systems, including the studies of the dynamics
of backward wave oscillators listed above (see
[1-6,24]). The results of such studies are very
encouraging, since they not only showed that
the  dynamics  of  complex  and  regular  and
chaotic phenomena can be understood with a
sufficiently  high  accuracy  from  the
quantitative  point  of  view,  but  also  proved
sufficiently efficient models for predicting the
dynamics  (time  series)  of  complex  chaotic
systems,  at  least  in  the  first  approximation
(e.g.[7-22]). 

A variety  of  different  techniques  for
characterizing  chaotic  dynamics  of  the
nonlinear systems identifying the presence of
chaotic  elements  is  used  [1,2].  Usually  a
mutual  information  approach,  correlation
integral  analysis,  false  nearest  neighbour
algorithm, Lyapunov exponent's analysis, and
surrogate data method and others are used for
comprehensive  characterization.  The
fundamental quantities to characterize chaotic
behaviour of the complex dynamical systems
are the exponential divergence of nearby orbits
(computing  positive  Lyapunov  exponents'),
positive  finite  Kolmogorov  entropy,  and  a
noninteger  dimension  of  the  attractor  [7-26].
These  characteristics  are  usually  invariant
under  the  corresponding  smooth
transformation  of  coordinates.  There  are
several  determination  schemes  among  these
quantities, and if the Lyapunov spectrum can
be  determined,  the  rest  can  be  estimated  as
equalities or upper or lower bounds. So,  the
definition of the highest Lyapunov exponents,
as well as the full spectrum of the Lyapunov
exponents is an important task in the nonlinear
analysis of the complex dynamical distributed.
It is well known that the Lyapunov exponents
are  a  quantitative  measure  sensitivity  to  the
values  of  the  initial  conditions.   Since  the
Lyapunov exponents are defined as asymptotic
average  rates,  they  are  independent  of  the
initial  conditions,  and  therefore  they  do
comprise  an  invariant  measure  of  attractor
There  are  several  different  methods  for
computing  the  Lyapunov  exponents
[e.g.2,3,13-25]).  One  of  the  most  spread
algorithms to compute  the leading Lyapunov
exponents is Benettin algorithm [21] (see also
[4,5].  The  generalized  algorithm  allows  to

compute the full spectrum of Lyapunov. The
disadvantage  of  the  algorithm  is  that  its
applicability is only in those cases where when
the  corresponding  evolutionary  equations  of
the studied dynamical system known; besides,
it  is  possible  to  measure  all  of  it  phase
coordinates, which is not always possible.

Another  approach  is  in  computing  the
senior  indicator  for  a  sample  from  a  single
coordinate.  The  algorithm named  after  Wolf
et  al  [20]  calculates  the  leading  Lyapunov
exponent  from  sampled  from  a  single
coordinate, and is used when the equations are
unknown  evolution  of  the  system.  This
algorithm gives quite satisfactory results, but
requires  very  large  samples,  which  is
problematic for real data sets. In the last years
it has become very popular computing the full
Lyapunov  spectrum  using  neural  networks
algorithms  (e.g.  [3,7-11,23-26]  and  reds
therein).  The  use  and optimization  of  neural
networks is one of the directions in improving
the  performance  and  accuracy  of  algorithms
for calculating Lyapunov exponents. Besides,
it should be noted that in the latter it could be
possible  to  organize  a  training  a  neural
network  on samples,  which  allows  use  short
samples  or  noisy data.  This  gives  significant
advantages over classical methods. At last , it
is necessary to add that in order to increase an
accuracy  of  computing  the  Lyapunov
exponents,  one  should  use  various
orthogonalization methods ,  for example,  the
classical  Gram-Schmidt  method  and  the
modified Gram-Schmidt method.

This paper is devoted to numerical studying
the  chaotic  self-oscillations  regimes  in  the
backward-wave tube, namely, to application of
the  some  numerical  analysis  techniques   to
analysis of the chaotic time series as solutions
of  the  equations  of  nonstationary  nonlinear
theory  for  the  O-type  backward-wave
oscillator.  The  main  attention  is  paid  to
computing  and  analysing  a  spectrum  of  the
Lyapunov  exponent’s  within  the  Sano-
Sawada method [23] ( see other details in refs.
[2,9,10]). The advanced numerical data on the
Lyapunov exponents of computed for the time
series of output signal amplitudes,  which are
the solutions of nonstationary nonlinear theory
for  the  O-type  backward-wave  oscillator
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without  account  of  the  spatial  charge,
relativistic effects, energy losses etc.

 2.  The  main  mathematical  object  of  the
numerical  investigation  is  the  time   or  other
series  of  the  amplitude  of  the  dynamic
parameter of the system, which is to be carried
out, we introduce it formally:              

           x(t0 + nt) = x(n),                     (1)

where t0 –  some initial point in time, Δt is the
time interval during which further members of
the time series are selected, t0 + nt – “i” point
in time. 

By definition, the procedure of construction
(restoration) from a scalar time series { si } to
a series of state vectors { yi } is called phase
trajectory  reconstruction.  It  should  be  noted
that  depending  on  the  class  of  the  problem,
more  precisely,  the  system  or  device  under
investigation, any dynamic parameters can act
as y(n),

Further it is usually necessary to reconstruct
phase  space  using  as  well  as  possible
information  contained  in  the  dynamical
parameter  s(n),  where  n  the  number  of  the
measurements. Such a reconstruction results in
a  certain  set  of  d-dimensional  vectors  y(n)
replacing the scalar measurements. Packard et
al.  [7]  introduced the  method of  using  time-
delay  coordinates  to  reconstruct  the  phase
space of an observed dynamical  system. The
direct  use  of  the  lagged  variables  x(n + ),
where   is  some  integer  to  be  determined,
results  in  a  coordinate  system  in  which  the
structure  of  orbits  in  phase  space  can  be
captured. Then using a collection of time lags
to create a vector x in d dimensions,

            x(n) = [x(n), x(n + τ), x(n + 2τ), …,      

                      x(n + (d1))],                    (2)

the required coordinates are provided. 
In a nonlinear system, the x(n + j) are some

unknown nonlinear combination of the actual
physical variables that comprise the source of
the measurements. The dimension d is called
the embedding dimension, dE. If   is chosen
too small,  then  the  coordinates  x(n + j)  and
x(n + (j + 1))  are  so  close  to  each  other  in
numerical  value  that  they  cannot  be

distinguished from each other. Similarly, if  is
too large, then x(n + j) and x(n + (j + 1)) are
completely  independent  of  each  other  in  a
statistical sense. Also, if   is too small or too
large,  then  the  correlation  dimension  of
attractor  can  be  under-  or  overestimated
respectively  [8,18].  The  autocorrelation
function and average mutual  information can
be applied here. 

Usually  the  main  aim  of  the  embedding
dimension  determination  is  to  reconstruct  a
Euclidean space Rd large enough so that the set
of  points  dA  can  be  unfolded  without
ambiguity.  There  are  several  standard
approaches  to  reconstruct  the  attractor
dimension  (see,  e.g.,  [2,3,11-17]).  The
correlation  integral  analysis  is  one  of  the
widely  used  techniques  to  investigate  the
signatures  of  chaos  in  a  time  series.  The
analysis uses the correlation integral, C(r), to
distinguish  between  chaotic  and  stochastic
systems.  To compute the correlation integral,
the  algorithm  of  Grassberger  and  Procaccia
[16] is the most commonly used approach. 

The Lyapunov exponents are the dynamical
invariants of the nonlinear system. In a general
case,  the  orbits  of  chaotic  attractors  are
unpredictable,  but  there  is  the  limited
predictability  of  chaotic  physical  system,
which  is  defined  by  the  global  and  local
Lyapunov  exponents.  A  negative  exponent
indicates  a  local  average  rate  of  contraction
while a positive value indicates a local average
rate of expansion. 

In our case the quantity If {xn) (n=1,2, . . .)
denote a time series of some physical quantity
measured at the discrete time interval (0 in fact
this is an  output signal amplitudes, which are
the solutions of nonstationary nonlinear theory
for the O-type backward-wave oscillator).  

Further,  according to the the Sana-Sawada
algorithm [23], one should consider   a small
ball of radius ε centered at the orbital point x,,
and find any set of points {xi) (i =1,2, . . . , N)
included in this ball, i.e.: 

    {yi)= {|xki—xi| || xk —xi || < ε,},         (3)

where yi is the displacement vector between
xk and  xi.   After  the  evolution  of  a   time
interval  =mt  t,  the  orbital  point  xj  will
proceed to xj+m and neighboring points {xk}to
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{xk+m}.  The  displacement  vector  y'=x„—x is
thereby mapped to   

    {zi)= {|xki—xi| || xk —xi || < ε,},         (4)

According to Ref. [23], if the radius ε is small
enough for the displacement  vectors {y} and
{z}to  be  regarded as  good approximation  of
tangent vectors in the tangent space, evolution
of y' to z' can be represented by some matrix
A, as:  zi=Aj  yi .

Further one should proceed proceed to the
optimal estimation of the linearized flow map
A; from the data sets {y} and {z}. According
to Ref. [23], a plausible procedure for optimal
estimation is the least-square-error algorithm,
which  minimizes  the  average  of  the  squared
error norm between z and Ay with respect to
all components of the matrix A is as follows:

The Lyapunov exponents can be  computed  in
a standard way as the corresponding limit of a

sum  Other details can be found in
Refs. [23,24]. In fact, if one manages to derive
the  whole  spectrum of  Lyapunov  exponents,
other  invariants  of  the  system,  i.e.
Kolmogorov entropy and attractor's dimension
can  be  found.  The  Kolmogorov  entropy,  K,
measures  the  average  rate  at  which
information about the state is  lost  with time.
An estimate of this measure is the sum of the
positive Lyapunov exponents.  The inverse of
the  Kolmogorov  entropy  is  equal  to  the
average predictability.

Let  us  present  some  obtained  results.  All
input data have been taken from ref. [4,5,24].
 In  Table  1  we  present  our  data  on  the
correlation  dimension  d2,  the  embedding
dimension determined based on the algorithm
of false  nearest  neighboring  points  (dN)  with
percentage  of  false  neighbors  (%)  calculated
for  different  values  of  time  lag   for  two
regimes  of  of  chaotic  self-oscillations  in  the
backward-wave  oscillator,   in  particular,  for
the amplitude of the output signal for L=4.1 (I)
and  L=6.1  (II).  Here  L  is  normalized
backward-wave oscillator length , which plays
a  role  of  the  main  control  (governing)
parameter  of  the  backward-wave  oscillator
(e.g.[4,5]). The corresponding amplitude of the

output signal is the solution of the equations of
the non-stationary nonlinear theory for the O-
type backward-wave oscillator (without taking
into account space charge, energy losses, etc.)
(e.g.[4,24]). 

Table 1. Correlation dimension d2, the dimension of the
attachment determined based on the algorithm of false
nearest neighboring points (dN) with percentage of false
neighbors (%) calculated for different values of time lag
τ

Chaos (I) Hyperchaos (II)

τ d2 (dN) τ d2 (dN)
60 3.6 5

(5.5)
67 7.2 10

(12)
6 3.1 4

(1.1)
10 6.4 8

(2.1)
8 3.1 4

(1.1)
12 6.4 8

(2.1)

In Table 2 we list the results of computing the
Lyapunov’s  exponents  and  Kolmogorov
entropy Kentr.   

Table  2.  Numerical  parameters  of  the  chaotic  self-
oscillations in  the backward-wave tube:  14 are  the
Lyapunov  exponents  in  descending  order,  K is
Kolmogorov entropy

Regime 1 2 K
Chaos

(L=4.2)
0.261 0.0001 0.26

Hyperchao
s (L=6.1)

0.514 0.228 0.74

Regime 3 4 K
Chaos

(L=4.2)
0.0004 0.528 0.26

Hyperchao
s (L=6.1)

0.0000 0.0002 0.74

One  could  see  the  that  the  Lyapunov
exponents have as positive as negative values.
So,  the  main  conclusion  is  that  the  chaos
formed  in  the  dynamics  of  the  oscillator  is
characterized  by  more  than  one  positive
Lyapunov  exponent  (developed  chaos  or
hyperchaos).  The  received  data  are  quite
satisfactory  agreed  with  the  corresponding
results of [4,24]. However, some difference in
values  of  the  Lyapunov  exponents  is
connected with using another algorithm. 
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Summary.  The paper presents the results of the analysis and modelling of topological and
dynamic invariants for the regime of chaotic self-oscillations in the backward-wave oscillator,  in
particular, the analysis of chaotic time series for the amplitude of the output signal, which is the
solution of the equations of the non-stationary nonlinear theory for the O-type backward-wave
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Тюрін О.В., Шевчук В.Г., Білан І.І.

НЕЛІНІЙНИЙ АНАЛІЗ ХАОТИЧНИХ АВТОКОЛИВАЛЬНИХ РЕЖИМІВ У
ЛАМПІ ЗВЕРНЕНОЇ ХВИЛІ

Резюме.  В  роботі  представлені  результати  аналізу  та  моделювання  топологічних  і
динамічних  інваріантів  для  режиму  хаотичних  автоколивань  в  лампі  зворотної  хвилі,
зокрема, виконаний аналіз хаотичних часових  рядів для амплітуди вихідного сигналу, яка
є розв’язком рівнянь нестаціонарної нелінійної теорії для лампи зворотної хвилі О-типу
(без  урахування  просторового  заряду,  релятивістських  ефектів,  втрат  енергії  тощо).
Основна увага приділена обчисленню та аналізу спектра показників Ляпунова на основі
алгоритму Сано-Савади. Наведено чисельні дані показників Ляпунова розрахованих для
часового ряду амплітуд вихідного сигналу, які безумовно вказують на наявність елементів
розвиненого хаосу в динаміці системи.

Ключові  слова:  нерелятивістська  та  релятивістська  лампа  зворотної  хвилі,  спектр  і
динаміка, нелінійні методи, оптичний хаос, показники Ляпунова
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