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ON SOME NUMERICAL MODEL TO SOLVING DYNAMICAL
EQUATIONS OF NONRELATIVISTIC AND RELATIVISTIC
BACKWARD-WAVE TUBE

It is developed an effective computational approach to solution the master corresponding system
of differential equations, which describe the nonlinear stationary and non-stationary electromagnetic
processes in the nonrelativistic and relativistic backward-wave tubes (carcinotrons) with maximal
accounting for the different physical factors such as the relativistic effects, effects of dissipation, the
presence of a space charge, wave reflections at the ends of the slowing system, stochastic factors by
means including the special elements in a whole system etc as well as the detailed investigation of
characteristics (dynamical and topological invariants) of dynamics of a carcinotron in automodulation
and chaotic regimes with construction the corresponding bi-furcation diagrams. Below in order to
further solve the master system of dynamical equations for carcinotron it is presented in brief the
realizing numerical scheme, based on the use of the conservative finite-difference schemes of the

"predictor-corrector” type and the sweep algorithm.

1. Introduction

One of the most quickly developing
directions of the modern physical, quantum,
sensor and phototo-electronics is theoretical
and experimental study of physical processes
in systems and devices of relativistic
microwave range electronics, including the
backward-wave tubes (lamps, oscillators)
their chains and others under different regimes
of their functionating (for example, look [1-
12]).

It is known that the backward-wave tubes
or carcinotrons are an electronic devices for
generating electromagnetic oscillations in the
microwave range, in which a beam of
electrons interacts with an electromagnetic
wave in a retarding system in situations where
the phase speed of the wave is close to the
speed of electrons, and the group speed is
opposite in direction [1-8]. Thanks to the first
condition, the electrons are exposed to the
effective action of the wave field: clumps are
formed in the beam, and a high-frequency
component of the current appears. Surely, at
the present time there are developed a great
number of different simple and quite

complicates stationary and nonstationary
models  to describe  the  nonlinear
electromagnetic processes in the

nonrelativistic and relativistic backward-wave
tubes (for example, look [1-8] and refs
therein).

There have been presented quite much
numerical approaches to find numerical
solutions of the stationary and nonstationary
systems of differential equations which are
describe the nonlinear electromagnetic
processes in the nonrelativistic and relativistic
backward-wave tubes [3-8].

It should be stated that the implementation
of mathematical models on computers takes
place using the methods of applied
mathematics, which, of course, are constantly
being improved along with progress in the
field of computer technology. The solution of
the mathematical model of the problem, which
should provide the criterion of efficiency and
optimality, can be obtained faster with the help
of a suitable efficient algorithm.  Any
reduction of the problem of relativistic
microwave range (little and large power)
electronics, including the backward-wave
tubes, is usually reduced to the solution of
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algebraic equations of one or another structure
(for example, look details in [9-16]).

As a result, most methods of applied
mathematics are related to reducing the
problem to a system of algebraic equations and
their subsequent solution. One of the fairly
widespread methods of solving problems in
mathematical physics and applied mathematics
is the finite difference method [15] (see also
[16-20]).

In recent years, the problem of wide
application of various methods of constructing
difference schemes in the problems of
mathematical physics, physics of systems,
elements and devices, including physical and
quantum electronics [3-12].

The main aim of our work is develop
effective computational approach to solution

the master corresponding system of
differential equations, which describe the
nonlinear  stationary and non-stationary
electromagnetic processes in the

nonrelativistic and relativistic backward-wave
tubes with maximal accounting for the
different physical factors such as the
relativistic effects, effects of dissipation, the
presence of a space charge, wave reflections at
the ends of the slowing system, stochastic
factors by means including the special
elements in a whole system etc as well as the
detailed investigation of characteristics
(dynamical and topological invariants) of
dynamics of the backward-wave tube in
regular, automodulation and chaotic regimes
with construction the corresponding bi-
furcation diagrams. Below in order to further
solve the system of differential equations for
the backward-wave tube it is in brief described
the realizing numerical scheme, based on the
use of the conservative finite-difference
schemes of the "predictor-corrector" type and
the method of the sweep method.

2. Standard system of differential
equations for a backward-wave tube

In the ref. [1-8] it has presented the
detailed explanation of the master systems of
equations  describing the  fundamental
processes in the system, so we should only
present the corresponding system in the
suitable form. According to ref. [3-6], the

component of the wave field that interacts with
the electron beam can be represented as

E(x,t):R[E(x,t)ei“’“_iB”x],

where El(x,t) is a slowly varying complex
function.

The high-frequency current arising in the
electron beam as a result of the action of the
wave field on it is represented in the following
form [5]:

I(x,t) = Re [ll(x, t)ei“"’(t‘%) +

L (x, t)e2iwolt=x/vo) 4 ],
(1)

where I,(x,t), I,(x,t)... — slow amplitudes of
the first, second and subsequent harmonics
First master equation can be written in the
standard form (see details in Refs. [3-5]):

10E 0E_-

1,0,
== BK, T
v, 0t 0x 2 PoKoL, 2)

where K, — the coupling resistance of the

retarder system for the working spatial
harmonic at the frequency .
The second component of the self-

consistent theory is the formulation of the
electron motion equation which has the
standard form [7,8]:

dzx e I iwgt-iBox
W?Zm—ORe[E(x,t)e el :'

3)

Further  usually could  define

.t )=t +x/ v, +1(x1,)

one

as a time of

arrival at the point * of the electron that flew
into the interaction space at the moment #,.

Due to the slowness of the change of the
complex amplitude in time and the smallness
of the change in the speed of electrons in the
process of interaction, one has the right to

replace in the right part E(x,t(x,to)) Ha
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E(x,t0+x/00) i(ot/o x)f'D on v,°, and further
it can be written as:

e

(02t/0x%)¢, = —— Re[E(x,t +x/
Uo)eiwo(to+f(x,to))] . 4)

After reduction to dimensionless variables and
parameters, the equations and boundary
conditions take the following form [4-7]:

0°0/07*=~ R|Fexp|if)),

OF/0t—-0F/0¢=1,
N _1271 )
iI=—[e"do, (5)
T 5

00,_,=0,, 06/071,_,=0,

FDZZL:05 (6)

where {(=B,Cx ,

(7)
T:ooOC(t - x/vo)( 1+UO/Uep)_1 -
are the dimensionless independent variables
are coordinate and "local time". Due to the
introduction of "local time", which is counted
at each point of the space of interaction with
the displacement x/vo, there is no derivative in
the equation of motion by 7 which facilitates
the construction of a difference scheme for the
numerical solution of the system of equations.
This is also convenient in the sense that in the
dimensionless form of the equations, the
parameter of the ratio of the group velocity to
the beam velocity is excluded, which now
appears only in the coefficient connecting
dimensional and dimensionless time. As
usually, the value 6({, 7, 8, )characterizes the
phase relative to the wave for an electron that
has flown into the space of interaction with the
phase 6, , and

Flg,7)=E/(2B,UC?

is the dimensionless complex amplitude of the
high-frequency wave field. Pierce's parameter

c=y1,K,/(4U),

where is [, the constant component of the

beam current, U is the accelerating voltage,
assumed to be small.

3. Numerical differences scheme

In order to further solve the system of
differential equations for the backward-wave
tube it has been developed a numerical
scheme, which is based on the use of finite-
difference schemes of the "predictor-corrector"
type and the method of the sweep method (see
details in refs. [3-7]). The finite-difference
scheme has been constructed and analogous
the scheme [5,6]. Namely, the following
substitutions have been applied:

[Q = exp(i®)],
X=(1/L)d8)/dq, (8)
the corresponding master system:
026/3(? = —Re[F exp(if)],
dF /ot — OF /3¢ =1,

~_ l 2T _.9
I'=——["e*dby,

9)
has the following form:
9Q _ iLXQ
0
(10)
GTX =-LRe(FQ)
Further the initial filed distribution 1is

determined in the points of the net on the
coordinate. The known method of largest
particles is used. As wusually the initial
distribution of a field is determined by the
distribution of the main amplitude mode. For
each particle (index j) and each time moment
(index 1) it is solving the equation of motion
according to the standard predictor—corrector
scheme:

X’ 1:X{+L1{?’§:X{+D1{.f

i+

(11)
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Q’,=Q/+iLx/Q/S=q/+DLX/Q]

2
where

D=L%,
P = —Re[FQ]

is a particle acceleration

Then it has been calculating (at the next step):

P! . = —Re{[(F; + F;11)/21x. 1},

l+2

x/

i+1

—_ v/ Jj
- Xi + LPi+1/2

d¢=X] +2DP!

i+1/2°

b ) Lrvi Jj
i1 =0 + lLXi+1_/z i+1/24¢

Jwepeen Lo
= Qi + ZlDLXi+1/2Qi+1/2’

(12)

The values of the first harmonic of the current
in each node are determined by the standard
expression:

J
I i:(2/ J ) Z Q{

j=1
After determining the current values at each
point of the grid, the induced field is then
determined. To solve the excitation equation, a
second-order scheme is used; accordingly, the
iterative procedure for calculating the next
time value of the field at each node along the
coordinate has the form:

F*'Y = aiFlyy + apF} + azFl
— D[byl{ by I{ +bsl{_;] (13)

Other details can be found in the refs. [3-10].
In conclusions let us note that it is supposed
the further generalization and development
more advanced approach with maximal
accounting for the different physical factors
(such as the relativistic effects, effects of
dissipation, the presence of a space charge,
wave reflections at the ends of the slowing
system, stochastic factors by means including
the special elements in a whole system etc) as
well as the further detailed numerical
investigation of characteristics (dynamical and
topological invariants) of dynamics of
nonrelativistic and relativistic backward-wave
tubes (carcinotrons) in different regular,
automodulation and chaotic (hyperchaotic)
regimes with construction the corresponding

bi-furcation diagrams and understanding the
features of so called (generally speaking) self-
oscillating distributed dynamical systems,
which are characterized by the absence of rigid
scenarios of the transition to chaos, in contrast
to common known scenarios in more simple
systems.
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Tkach T.B., Kvasikova A.S., Shpinareva [.M.

ON SOME NUMERICAL MODEL TO SOLVING DYNAMICAL EQUATIONS OF
NONRELATIVISTIC AND RELATIVISTIC BACKWARD-WAVE TUBE

Summary. It is developed an effective computational approach to solution the master
corresponding system of differential equations, which describe the nonlinear stationary and non-
stationary electromagnetic processes in the nonrelativistic and relativistic backward-wave tubes
(carcinotrons) with maximal accounting for the different physical factors such as the relativistic
effects, effects of dissipation, the presence of a space charge, wave reflections at the ends of the
slowing system, stochastic factors by means including the special elements in a whole system etc
as well as the detailed investigation of characteristics (dynamical and topological invariants) of
dynamics of a carcinotron in automodulation and chaotic regimes with construction the
corresponding bi-furcation diagrams. Below in order to further solve the master system of
dynamical equations for carcinotron it is presented in brief the realizing numerical scheme, based
on the use of the conservative finite-difference schemes of the "predictor-corrector”" type and the
sweep algorithm.

Key words: nonrelativistic and relativistic backward-wave tubes, carcinotrons, computational
approach, chaotic dynamics, difference scheme and sweep algorithm
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Tkau T.b., KBacukosa A.C., [lIninapesa [.M.

PO AESAKYIO YNCJIOBY MOJIEJIb 10 PO3B’SI3YBAHHSA IUMHAMIYHUX
PIBHSIHb HEPEJISITUBICTCBKOI TA PEJISITUBICTCBHKOI JIAMITIA 3BOPOTHOI
XBHUJII

Pe3tome. Po3pobinieThes edekTHBHUN OOYHMCIIOBATBLHUN MIAXIJ 10 PO3B’sA3aHHS BiAMOBIAHOL
MacTepHOi CHUCTEMH [WHAMIYHUX pIBHSAHb, $KI ONUCYIOTh HEJIHIMHI CTalliOHapHI Ta
HECTalllOHApHI E€JEeKTPOMAarHiTHI MPOIECH B HEPEISATHBICTCHKUX Ta PENIATUBICTCHKHUX JIaMIlax
3BOPOTHOT XBMJI (KapCHMHOTPOHAX) 3 MOJANBIIMM MaKCUMAJIbHUM YPaxyBaHHSAM PIi3HHUX
¢13uyHUX (QaKTOpiB, TAaKUX SK PEIATHBICTCHKI edekTH. , edexTu aucumnaiii, HasBHICTb
IIPOCTOPOBOTO 3apsily, BIJOWUTTS XBWJII Ha KIHIAX CIOBUIBHIOBAHOI CHUCTEMH, CTOXACTHUYHI
(daxTopH 3a JOTIOMOTOI0 BKITIOUCHHS CIICI[IAIGHUX €JIEMEHTIB y BCIO CHCTEMY TOIIO, a TaKOX
JOCTIDKEHHSIM ~ XapaKTepUCTUK (AMHAMIYHUX 1 TOIOJIOTIYHMX 1HBApiaHTIB) JMHaMiKa
KapCUHOTPOHA B aBTOMOJYJISAIIIHHOMY Ta XaOTHYHOMY PEKHMax 3 IMOOYIOBOIO BiJIMOBIIHUX
Oipypkauiinux giarpam. [l po3B’si3yBaHHSA TOJIOBHOI CHCTEMM JMHAMIYHUX pPIiBHSIHb
KapCHHOTPOHA HABEJCHO pealli3yeMy YHCEIIbHY CXeMy, SKa 3acHOBaHa Ha BUKOPUCTaHHI
KOHCEPBATHUBHOI PI3HUIIEBOI CXEMH TUITY «IIPEAUKTOP-KOPEKTOP» Ta aJrOPUTMY PO3TOPTKH.

KuarouoBi cioBa: HepensITUBICTCbKI Ta PENSITUBICTCHKI JIaMIIM  3BOPOTHOI  XBWIII,
KapCUHOTPOH, OOYMCITIOBAJIbHUM MiJIXiJ, XaOTHMYHA JWHAMiKa, PI3HUIEBA CXeMa Ta alTOpPUTM
PO3TOPTKH

This article has been received in October 26, 2021
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	Резюме. Розроблється ефективний обчислювальний підхід до розв’язання відповідної мастерної системи динамічних рівнянь, які описують нелінійні стаціонарні та нестаціонарні електромагнітні процеси в нерелятивістських та релятивістських лампах зворотної хвилі (карсинотронах) з подальшим максимальним урахуванням різних фізичних факторів, таких як релятивістські ефекти. , ефекти дисипації, наявність просторового заряду, відбиття хвилі на кінцях сповільнюваної системи, стохастичні фактори за допомогою включення спеціальних елементів у всю систему тощо, а також дослідженням характеристик (динамічних і топологічних інваріантів) динаміка карсинотрона в автомодуляційному та хаотичному режимах з побудовою відповідних біфуркаційних діаграм. Для розв’язування головної системи динамічних рівнянь карсинотрона наведено реалізуєму чисельну схему, яка заснована на використанні консервативної різницевої схеми типу «предиктор-коректор» та алгоритму розгортки.
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