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OPTICAL PROPERTIES OF OF ZnS:Fe NANOCHRYSTALLS OBTAINED BY 
COLLOIDAL METHOD

Iron doped zinc sulfide nanocrystals were obtained by colloidal synthesis using gelatin, lactose or polyvinyl 
alcohol as a stabilizing matrix. The structure of the nanocrystals was determined using X-ray diffraction (XRD). The 
influence of the concentration effect on the size and properties of ZnS nanocrystals, the optical absorption spectra and 
photoluminescence spectra were studied, and the types of optical transitions in these nanocrystals were determined. 

I. Introduction
In recent years, researchers’ interest 

in colloidal methods for the synthesis of 
semiconductor nanoparticles has been growing. 
These particles have a number of unique 
characteristics determined by their shape and 
size. In this regard, the widespread practical use 
of nanoparticles is constrained by the possibility 
of obtaining nanoparticles with a controlled 
shape and size.

Among II-VI semiconductor compounds, 
zinc sulfide has the largest band gap. Another 
more important advantage of ZnS is non-toxicity, 
which makes the use of ZnS nanocrystals as 
luminescent markers in medicine promising 
[1,2]. The radiation of such markers should be 
localized in the area of maximum transparency 
of living tissues (0.65-1.5 µm). Our studies 
on semiconductor ZnS:Fe single crystals [3] 
indicate the presence of broad absorption bands 
and photoluminescence (0.5-0.8 µm) that are 
effectively excited by light from the impurity 
absorption region.

The purpose of this work is to develop a 
technique for obtaining ZnS:Fe nanocrystals 
in which the spectra of optical absorption and 
photoluminescence are in the near infrared 
region. To determine the nature of the optical 
and radiation transitions, the results of the 
study of the optical properties of ZnS: Fe single 
crystals are given.

II. Experimental
ZnS, ZnS: Fe nanocrystals were obtained 

by chemical synthesis in a matrix of polyvinyl 
alcohol, gelatin or lactose. Pure zinc sulphide 
nanocrystals were obtained by reaction of:
                 ZnCl2+Na2S→ZnS+2NaCl.         (1)
Fe doped ZnS nanocrystals were obtained by 
reaction of: 

ZnCl2+Na2S+Fe2Cl3→ZnS:Fe:Cl+
                                 +2NaCl+Cl2↑.                (2)

Commercial reagents from Beijing were 
used for the synthesis. 

After synthesis, the solution was dried on a 
quartz or glass substrate. As a result, ZnS, ZnS:Fe 
nanocrystals were obtained in a transparent solid 
polymer matrix. The structure analysis of the 
obtained ZnS nanoparticles was carried out by 
X-ray diffraction (Fig. 1). The diffraction peaks 
2θ correspond to the plane (111) in zinc sulfide.

III. Experiment and results

The optical absorption spectra of undoped 
nanocrystals are shown in Fig. 2, curve 1. The 
band gap of zinc sulfide single crystals is 3.6 eV. 
The nanocrystals obtained are characterized by 
bandgap values Eg of 5.07 eV at Na2S and ZnCl2 
concentrations of 10%, respectively. 

The optical absorption spectra of ZnS:Fe 
nanocrystals show an offset of the absorption 
edge towards lower energies compared to 
undoped samples (Fig. 2, curves 2-4). The 
magnitude of the shift is 0.2 eV with increasing 
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Fe2Cl3 concentration from 0.1 to 0.5%, this 
may be due to an increase in the Fe content in 
the samples, or an increase in the size of the 
nanocrystals.

The size of nanocrystals was estimated by 
the difference of their bandgap and bulk single 
crystals using the ratio [4]:

                     8ì g

hR
E

=
D

,                         (3)

h - Planck constant, µ=((me)-1+(mh)-1)-1 – reduced 
mass, me=0.27m0, mh=0.58m0, respectively, 
the effective masses of electrons and holes in 
zinc sulfide, m0 – mass of free electron, ∆Eg 
- the difference between the bandgap of the 
nanocrystals (3.63eV). As shown in the Table 1, 
the size of the nanocrystallites does not change 
significantly. 

The optical absorption spectra of ZnS:Fe 
nanocrystals in the region of 1.6 - 4.0 eV are 
characterized by the presence of a considerable 

number of absorption lines (Fig. 3). Increasing 
the concentration of Fe leads to an increase in 
the absorption in this region with the unchanged 
arrangement of the maxima of the absorption 
lines. This indicates the intracenter nature of the 
absorption lines in ZnS:Fe nanocrystals. Similar 
absorption lines were observed previously in 
bulk ZnS:Fe crystals [3]. 

Table 2 summarizes the energies and 
interpretation of optical transitions in bulk and 
ZnS:Fe nanocrystals. The middle column shows 
the calculations of the energy states of Fe2+ ions 
in the approximation of the nearest tetrahedral 
environment at the crystal field parameters Δ = 
3500 cm-1 and B = 600 cm-1. In this case, light 
absorption occurs through optical transitions 
from the ground 5E (D) to the excited states of the 
Fe2+ ion. As shown in Table 2, the calculations 
are equally good for 
both bulk and nanocrystals, which testifies to 
the validity of the crystal field theory, according 
to which the ions of transition elements are 
affected by the closest tetrahedral environment 
whose size is smaller than the size of the 
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Fig.1. XRD-pattern of ZnS:Fe nanocrystals. 
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Fig.2 Optical absorption spectra of ZnS (1), ZnS:Fe(2-
4) nanocrystals, T=300 К. 
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band gap of zinc sulfide single crystals is 3.6 eV. 
The nanocrystals obtained are characterized by 
bandgap values Eg of 5.07 eV at Na2S and ZnCl2 
concentrations of 10%, respectively.  

The optical absorption spectra of ZnS:Fe 

nanocrystals show an offset of the absorption edge 
towards lower energies compared to undoped 
samples (Fig. 2, curves 2-4). The magnitude of the 
shift is 0.2 eV with increasing Fe2Cl3 

concentration from 0.1 to 0.5%, this may be due 
to an increase in the Fe content in the samples, or 
an increase in the size of the nanocrystals. 

The size of nanocrystals was estimated by the 
difference of their bandgap and bulk single 
crystals using the ratio [4]: 

8μ g

hR
E




,  (3) 

h - Planck constant, µ=((me)-1+(mh)-1)-1 – reduced 
mass, me=0.27m0, mh=0.58m0, respectively, the 
effective masses of electrons and holes in zinc 
sulfide, m0 – mass of free electron, ∆Eg - the 
difference between the bandgap of the 
nanocrystals (3.63eV). As shown in the Table 1, 
the size of the nanocrystallites does not change 
significantly.  

The optical absorption spectra of ZnS:Fe 
nanocrystals in the region of 1.6 - 4.0 eV are 
characterized by the presence of a 
considerable number of absorption lines (Fig. 
3). Increasing the concentration of Fe leads to 
an increase in the absorption in this region 
with the unchanged arrangement of the 
maxima of the absorption lines. This indicates 
the intracenter nature of the absorption lines 
in ZnS:Fe nanocrystals. Similar absorption 
lines were observed previously in bulk 
ZnS:Fe crystals [3].  

Table 2 summarizes the energies and 
interpretation of optical transitions in bulk 
and ZnS:Fe nanocrystals. The middle column 
shows the calculations of the energy states of 
Fe2+ ions in the approximation of the nearest 
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Fig.2 Optical absorption spectra of ZnS (1), 
ZnS:Fe(2-4) nanocrystals, T=300 К. 
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Table 1. The results of calculations of the sizes of ZnS, 
ZnS: Fe nanocrystals at different concentrations of Fe 

precursor 

Concentration, 
Fe2Cl3% 

Eg,eV ∆Eg,eV R, nm 

0z 5.1 1.5 3.4 

0.1 4.75 1.5 3.9 

0.3 4.65 1.3 4.1 

0.5 4.58 1.06 4.2 
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nanocrystallites (lattice period) ZnS is 5.6 Ǻ and 
nanocrystallite size is 3-5 nm).

Photoluminescence of the undoped ZnS 
nanocrystals  wasn’t observed in the region of 1.6-
3.5 eV. The doping of ZnS nanocrystals leads to the 
formation of a broad structured photoluminescence 

band in the 1.6-2.8 eV region (Fig. 4). The same 
structured photoluminescence bands were observed 
previously in bulk ZnS:Fe crystals. With increasing 
Fe concentrations, the luminescence spectrum 
expands toward lower energies.

tetrahedral environment at the crystal field 
parameters Δ = 3500 cm-1 and B = 600 cm-1. 
In this case, light absorption occurs through 
optical transitions from the ground 5E (D) to 
the excited states of the Fe2+ ion. As shown in 
Table 2, the calculations are equally good for  
both bulk and nanocrystals, which testifies to 

the validity of the crystal field theory, 
according to which the ions of transition 
elements are affected by the closest 
tetrahedral environment whose size is smaller 
than the size of the nanocrystallites (lattice 
period) ZnS is 5.6 Ǻ and nanocrystallite size 
is 3-5 nm). 

Table 2. Optical transitions involving Fe2 + ions 

№ Type of crystal ZnS:Fe bulk Culc ZnS:Fe nano 
Transition Eexp. abs., eV EPL, eV Eculc.abs., eV Eexp. abs., eV EPL, eV 

1 5E(D) 1T2(F) --- --- --- 3.87  --- 

2 5E(D) 1T2(F) --- --- --- 3.84 --- 

3 5E(D) 1A2(F) --- --- --- 3.72 --- 

4 5E(D) 1A1(S) --- --- --- 3.66 --- 

5 5E(D) 1T2(D) --- --- --- 3.48 --- 

6 5E(D) 1T1(G) --- --- 3.34 3.37 --- 

7 5E(D) 1E(D) --- --- 3.22 3.21 --- 

8 5E(D) 1A1(G) 3.18 --- 3.19 3.14 --- 

9 5E(D) 1E(G) 3.06 --- 3.06 3.05 --- 

10 
5
E(D)

1
T2(G) 2.94 --- 2.97 2.97 --- 

11 5E(D) 3T2(D) 2.84 --- 2.82 2.84 --- 

12 
5
E(D)

3
E(D) 2.78 --- 2.75 2.78 --- 

13 
5
E(D)

1
T1(I)

 
2.72 2.7 2.72 2.7 --- 

14 
5
E(D)

1
T

2
(I) --- --- 2.65 2.65 --- 

15 5E(D) 1А1(I)
 

--- 2.58 2.64 2.62 --- 

16 5E(D) 3Т1(P)
 

2.60 --- 2.60 2.58 2.55 

17 
5
E(D)

3
T

2
(G) --- 2.48 2.52 2.50 2.47 

18 
5
E(D)

1
A

2
(I)

 
2.50 2.36 2.51 2.45 --- 

19 
5
E(D)

3
T1(G) 2.39 2.28 2.38 2.41 --- 

20 5E(D)
1
T

2
(I)

 
2.30 2.25 2.34 2.38 2.31 

21 
5
E(D)

1
E(I) --- --- 2.33 2.33 --- 

22 
5
E(D)

3
T

2
(F) --- 2.20 2.24 2.26 2.25 

23 
5
E(D)

3
E(G)

 
2.22 2.09 2.23 2.18 2.17 

24 
5
E(D)

3
T1(F)

 
2.11 1.99 2.08 2.07 2.05 

25 
5
E(D)

3
A

1
(G) 2.03 1.88 2.03 2.0 --- 

26 
5
E(D)

3
A

2
(F) 1.94 --- 1.97 1.91 1.91 

27 
5
E(D)

3
Т

2
(H) 1.85 --- 1.84 1.84 1.83 

28 
5
E(D)

3
Т

1
(H) 1.82 --- 1.82 1.77 1.75 

29 
5
E(D)

3
E(H)

 
1.75 --- 1.73 1.71 --- 

30 5E(D) 3T1(H) 1.35 1.30 1.37 --- --- 

31 5E(D) 5T2(D) 0.45 0.68 0.45 -- --- 
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Conclusions
Iron-doped zinc sulfide nanocrystals were 

obtained. A comparative analysis of the optical 
absorption and photoluminescence spectra of 
iron-doped zinc sulfide nano- and single crystals 
was performed.

The nature of intracenter optical transitions 
that determine the optical properties of ZnS: 
Fe nanocrystals is established. The crystal field 
theory that the splitting of the energy states of 
Fe2+ ions occurs under the action of the closest 
tetrahedral environment is confirmed.

ZnS: Fe nanocrystals have a photo-
luminescence spectrum corresponding to the 
transparency of living tissues. This allows the 
use of ZnS: Fe nanocrystals as fluorescent 
markers in medical diagnostics
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OPTICAL PROPERTIES OF OF ZnS:Fe NANOCHRYSTALLS OBTAINED BY 
COLLOIDAL METHOD

Abstract – iron doped zinc sulfide nanocrystals were obtained by colloidal synthesis using 
gelatin, lactose or polyvinyl alcohol as a stabilizing matrix. The structure of the nanocrystals was 
determined using X-ray diffraction (XRD). The influence of the concentration effect on the size and 
properties of ZnS nanocrystals, the optical absorption spectra and photoluminescence spectra were 
studied, and the types of optical transitions in these nanocrystals were determined.

Key words – Zinc Sulfide, Nanocrystals, Absorption Edge, Photoluminescence.
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ОПТИЧНІ ВЛАСТИВОСТІ НАНОКРИСТАЛІВ ZnS:Fe ОТРИМАНИХ КОЛОЇДНИМ 
МЕТОДОМ

Анотація– Нанокристали сульфіду цинку легованого залізом були отримані шляхом ко-
лоїдного синтезу з використанням желатину, лактози або полівінілового спирту в якості ста-
білізуючої матриці. Структура нанокристалів визначена за допомогою рентгенівської диф-
ракції (XRD). Вивчено вплив концентраційного ефекту на розмір і властивості нанокрис-
талів ZnS, спектри оптичного поглинання і фотолюмінесценції, визначено типи оптичних 
переходів в даних нанокристалах.

Ключові слова – Сульфід цинку, нанокристали, край поглинання, фотолюмінесценція.
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ОПТИЧЕСКИЕ СВОЙСТВА НАНОКРИСТАЛЛОВ ZnS:Fe ПОЛУЧЕННЫХ 
КОЛЛОИДНЫМ МЕТОДОМ

Аннотация – Нанокристаллы сульфида цинка легированного железом были получены путем 
коллоидного синтеза с использованием желатина, лактозы или поливинилового спирта в каче-
стве стабилизирующей матрицы. Структура нанокристаллов определена при помощи рентге-
новской дифракции (XRD). Изучены влияние концентрационного эффекта на размер и свойства 
нанокристаллов ZnS,  спектры оптического поглощения и фотолюминесценции, определены 
типы оптических переходов в данных нанокристаллах. 

Ключевые слова – Сульфид цинка, нанокристаллы, край поглощения, фотолюминесценция.
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ELECTROPHYSICAL PROPERTIES OF ZINC OXIDE THIN FILMS OBTAINED BY 
CHEMICAL METHODS

The electrophysical characteristics comparative studies were carried out for ZnO films obtained by chemical 
precipitation from zinc acetate solutions and thermal oxidation of zinc films. The ZnO films showed optical absorption 
and band gap (2.9 to 3.2 eV) specific for this material, which indicates the presence of crystalline structure in them. 
The use of polyvinyl alcohol made it possible to obtain samples with the highest values of Eg and electrical resistance, 
which is caused by the nanosize crystallites of the films. The investigated electrophysical characteristics of the ZnO 
films made it possible to establish the contribution of their own defects and surface states to the conductivity.

Introduction
Recently, interest in zinc oxide has increased 

due to the possibility of using this material to 
create cathodoluminophores, electrolumines-
cent screens, acoustoelectronic amplifiers, gas 
detectors, various types of photo- and optoelec-
tronic devices [1,2], as well as in the composi-
tion of electronic materials [3]. Often this is pos-
sible due to the special properties of the surface 
and grain boundaries of the material, which can 
be further modified by targeted alloying, as well 
as by change in the synthesis conditions. [4-6]. 
High values of transparency and refractive in-
dex of ZnO films in the visible spectrum region 
makes it possible to use them as illuminating 
coatings for interference optical elements, as 
well as to create a transparent conductive elec-
trode in solar cells. [7,8]. Currently, interest to 
ZnO films has increased due to their possible 
application to photoelectronic devices such as 
LEDs with ultraviolet radiation, blue fluores-
cent ultraviolet emitters and lasers [9]. The need 
to reduce the costs and to improve the quality of 
optoelectronic devices necessitates the develop-
ment of new methods in the manufacturing of 
ZnO films.

Known from the literature methods for pro-
ducing thin films of zinc oxide are: atomic layer 
deposition technique [10,11], and magnetron 
sputtering in many of its modifications [12,13]. 
However, these methods require quite energy-
intensive technical support. Another used meth-

od is sol-gel technology, which, unfortunately, 
involves the application of relatively expensive 
and at the same time harmful reagents, such as 
α-terpineol, 2-methoxyethanol, 2-aminoethanol, 
etc.

In this paper zinc oxide films were obtained 
by relatively simple methods, in particular, 
chemical precipitation from zinc acetate solu-
tions, thermal oxidation of zinc films, and sub-
sequent comparative studies of their electro-
physical characteristics.

Samples preparation 
The studied zinc oxide films were obtained in 

three different ways, which are hereinafter arbi-
trarily designated as groups A, B and C. To ob-
tain samples of group A, an aqueous solution of 
zinc acetate (Zn (O2CCH3)2) with a concentra-
tion of 0.25 mol was used. Glass substrates were 
immersed in an aqueous solution of zinc acetate, 
dried at room temperature in air, and again im-
mersed in the solution. After that, the obtained 
films were annealed in an air atmosphere at a 
temperature of 310 °C for 20-60 min.

Samples of group B were also obtained from 
an aqueous solution of zinc acetate, but with the 
addition of an aqueous 1% solution of polyvinyl 
alcohol (C2H4O - PVA) for the purpose of ad-
ditional structuring of the films, in equal propor-
tions of 2 ml each. Then, the substrates were im-
mersed several times in the solution according 
to the procedure described above and annealed 
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in air at a temperature of 310 °C for 60 min.
To obtain group C samples, thin films of zinc 

metal were deposited on a cleaned glass sub-
strate by thermal spraying in high vacuum. Fur-
ther, zinc films were annealed in a muffle fur-
nace in air at 570 °C for 10-30 min. As a result, 
the oxidation process occurred and translucent 
whitish zinc oxide films were created.

For conducting electrophysical measure-
ments, samples of each of the groups of zinc 
oxide films were provided with ohmic contacts. 
For this, indium in the form of parallel strips 
was deposited on the samples by thermal spray-
ing in high vacuum.

Results and Discussion
A typical edge of the optical absorption spec-

tra of ZnO films (group A) is shown on Fig.1. The 
satisfactory straightening in the coordinates of D2-
hυ (here D is the optical density) is evident. This 
fact indicates direct allowed optical transitions in 
the films. The extrapolation of the linear section 
of the dependences to the energy axis gives the 
band gap for various samples ranging from 3.02 
to 3.06 eV, which satisfactorily coincides with the 
band gap data for zinc oxide films either calcu-
lated [14] or obtained from optical measurements 
[15,16] by other authors. Extrapolation was car-
ried out taking into account the subtraction of the 
apparent absorption, which is due to scattering 
and reflection of the incident light from the film 
surface. The plateau near the absorption edge at 
low energies is due to the presence of an amor-
phous phase in the studied ZnO films.

Fig. 1. Typical spectra of the optical absorption 
of ZnO films (group A)

Figure 2 shows a typical absorption spectrum 

of a zinc oxide film (group B). The band gap, Eg 
= (3.15-3.2) eV was found by extrapolating its 
linear section to the energy axis. It can be argued 
that it is noticeably larger than the band gap of 
the group A zinc oxide films. This means that the 
sizes of ZnO crystallites obtained in a solution of 
zinc acetate with polyvinyl alcohol impurities are 
smaller than crystallites of ZnO films obtained 
from a solution without PVA impurities.

Fig. 2. Typical spectra of the optical absorption 
of ZnO films (group B).

Figure 3 shows a typical edge of the absorp-
tion spectra of zinc oxide films (group C). The 
band gap, obtained from the extrapolation of 
their straight section is (2.9-2.96) eV. Thus, the 
zinc oxide films obtained by oxidizing a met-
al zinc film in air atmosphere have the small-
est band gap. However, the shape of the opti-
cal absorption edge indicates their most perfect 
crystalline structure compared to films obtained 
from a solution of zinc acetate.

Fig. 3. Typical spectra of the optical absorption 
of ZnO films (group C).
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The band gap of ZnO films obtained with PVA 
admixture is greater than that of similar films ob-
tained without PVA admixture. The reason is that 
the PVA polymer matrix limits the size of the re-
action volumes where zinc oxide crystallites are 
synthesized, and thus inhibits the growth of ZnO 
crystallites.

The current-voltage characteristics and the 
dark current temperature dependences were in-
vestigated in order to assess the electrophysical 
properties and the presence of their own defects 
in the band gap of zinc oxide films

Current-voltage characteristic (CVC) of the 
ZnO film (group A), measured in air (Fig. 4), 
shows the current linear dependence on the ap-
plied voltage, which indicates the electrical uni-
formity of the film. The inter electrode resistance 
calculated from the CVC is about 4 ∙ 107 Ohms.

Fig. 4. Current-voltage characteristic of ZnO 
film (group A), measured in air (T = 293K)

 The dark current temperature dependence 
of ZnO film (group A), measured in vacuum 
at heating of the film is shown at Fig.5. It can 
be distinguished three characteristic areas. The 
current at all these sites grows with temperature 
exponentially. The first section, located in the 
low-temperature region, has the conductivity 
activation energy of 0.08 eV, which, with in-
creasing temperature, changes the line slope to 
the activation energy of 0.16 eV. At a tempera-
ture of about 105 °C, this section is replaced by 
a section with a sharp rise of current with the 
conductivity activation energy of 1.6 eV.

Fig. 5. The dark current temperature 
dependence of the ZnO film (group A) 

measured in vacuum. (U = 10 V).

The first and the second temperature-depen-
dent regions may correspond to donor levels 
formed in the films’ volume by single- and dou-
ble-ionized oxygen vacancies, just as in the case 
with tin dioxide films. The sharp increase in the 
current at a temperature above 105 °C is caused 
by oxygen desorption from the surface of ZnO 
films. It is known that an oxygen atom adsorbed 
on the surface of a ZnO film captures one elec-
tron from the conduction band thus transforming 
into a single negatively charged ion, or captures 
two electrons and becomes a twice negatively 
charged ion. This leads to a current locking type 
bending of the surface energy zones and to the 
appearance of local levels (0.7-0.76) eV and 
(1.4-1.6) eV, respectively with energy distances 
from the bottom of the conduction band on the 
surface of the film. At high temperatures elec-
trons, trapped by oxygen atoms, are thermally 
released into the conduction band, and oxygen 
atoms are desorbed from the film surface.

The current–voltage characteristic of the ZnO 
film (group B) (Fig. 6) is slightly superlinear and 
has a tendency to an exponential current –volt-
age dependence. Such dependence is inherent 
to the barrier current flow mechanism. That is, 
in the films obtained with PVA admixtures, the 
intercrystalline potential barriers affecting the 
current flow are more pronounced. The average 
value of the inter-electrode resistance, calculat-
ed from the initial linear section of the CVC, is 
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about 2.8 ∙ 109 Ohms. Therefore, the presence 
of PVA impurity increases the film resistance 
by almost 2 orders of magnitude. The reason is, 
that the PVA evaporates during the annealing, 
thus increasing the porosity of these films, and 
they become nanostructured with a more devel-
oped surface. Nanometer crystallites can create 
a quantum well effect for carriers [17], which 
also lead to greater resistance.

Fig 6. The CVC of the ZnO film (group B) 
measured in air (T = 293K).

Fig. 7 shows the temperature dependence of 
the current measured during heating and cooling 
of the ZnO film (group B). It also contains low-
temperature sections with activation energies 
of 0.08 eV and 0.15 eV associated with oxygen 
vacancies. There is also a high-temperature re-
gion with an activation energy of about 1.6 eV, 
caused by the desorption of double charged oxy-
gen ions from the ZnO film surface. At the same 
time, the only one section with activation energy 
(0.14-0.16) eV is observed in the current tem-
perature dependence curve, measured at cool-
ing. If the film is being cooled to room tempera-
ture, then the current remains almost 60 times 
greater than at heating. This is due to the fact 
that, when the film is heated in vacuum oxygen 
desorbes and the conductivity is controlled only 
by donor vacancies of oxygen in the volume of 
the film. However, when the air is let into the 
chamber, then the current decreases to almost 
the original value. Moreover, the decrease of the 
current strength in “e” times occurs very rapidly 
over a period of about 35 s. (Fig. 7).

 
Fig. 7. The dark current temperature 

dependence of the ZnO film (group B)

When in the Fig. 8 a slower relaxation region 
is observed, then the straightening of the curve 
in the coordinates (ln I - t) indicates that relax-

ation follows the law , where the 
characteristic time constant τ is 150 s.

Fig. 8. Relaxation of the current in the film 
(group B) at letting the ambient air into the 

chamber (T = 298 K, U = 150 V).

The interelectrode resistance of zinc oxide 
(Group С) films calculated from the current-
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voltage characteristic (Fig. 9) has of about 2 ∙ 
105 Ohms, which is also much lower than for 
Group A and Group B films.

Fig. 9. The CVC of the ZnO film (group C) 
measured in air (T = 290 K).

Comparison of the calculation results for zinc 
oxide films’ parameters obtained by different 
chemical methods is shown in table 1.

Table 1
Type of films A B C

Bandwidth
(3,06-
3,02) 
еV

(3,15-
3,2) еV

(2,9-
2,96) 
еV

Inter-
electrode 
resistance

4∙107 
Ohm

2,8∙109 
Ohm

2∙105 
Ohm

Zinc oxide films obtained from a solution 
of zinc acetate with admixtures of polyvinyl 
alcohol have a much higher resistance than 
similar films obtained without PVA admixture. 
This happens in the process of high-temperature 
annealing of PVA, playing the role of a polymer 
matrix, with the consequent evaporation of the 
decay products and hence, the zinc oxide films 
become porous with a more developed surface.

The ZnO film, obtained by oxidation of zinc 
metal films appeared low-resistance and have 
the smallest band gap. However, the shape of 
the optical absorption edge indicates their most 
perfect crystalline structure compared to films 
obtained from a solution of zinc acetate.

Conclision
The zinc oxide films obtained by three 

different methods showed typical for them 

optical absorption and bandgap (2.9 to 3.2 eV) 
characteristic for this material, which indicates 
the presence of crystalline structure in them. 
Moreover, the use of polyvinyl alcohol made it 
possible to obtain samples with the highest values 
of Eg and electrical resistance, which is caused 
by the nanosize crystallites of group C films. 
The investigated electrophysical characteristics 
of the obtained zinc oxide films made it possible 
to establish the contribution to the conductivity 
of their own defects and surface states.
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ELECTROPHYSICAL PROPERTIES OF ZINC OXIDE THIN FILMS 
OBTAINED BY CHEMICAL METHODS

Y. I. Bulyga, A. P. Chebanenko, V. S. Grinevych, L. M. Filevska

Summary
The electrophysical characteristics comparative studies were carried out for ZnO films obtained 

by chemical precipitation from zinc acetate solutions and thermal oxidation of zinc films. The 
ZnO films showed optical absorption and band gap (2.9 to 3.2 eV) specific for this material, 
which indicates the presence of crystalline structure in them. The use of polyvinyl alcohol made it 
possible to obtain samples with the highest values of Eg and electrical resistance, which is caused 
by the nanosize crystallites of the films. The investigated electrophysical characteristics of the ZnO 
films made it possible to establish the contribution of their own defects and surface states to the 
conductivity.

Key words: zinc oxide, thin films, electrophysical properties
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ЭЛЕКТРОФИЗИЧЕСКИЕ СВОЙСТВА ТОНКИХ ПЛЕНОК ОКСИДА 
ЦИНКА, ПОЛУЧЕННЫХ ХИМИЧЕСКИМИ МЕТОДАМИ

Ю. И. Булыга, А. П. Чебаненко, В. С. Гриневич, Л. Н. Филевская

Резюме 
Проведены сравнительные исследования электрофизических характеристик пленок ZnO, 

полученных химическим осаждением из растворов ацетата цинка и термическим окислением 
пленок цинка. Пленки ZnO показали оптическое поглощение и ширину запрещенной 
зоны (2,9-3,2 эВ), характерные для этого материала, что свидетельствует о наличии в них 
кристаллической структуры. Использование поливинилового спирта позволило получить 
образцы с наибольшими значениями Eg и электросопротивления, что обусловлено 
наноразмером кристаллитов в пленках. Исследованные электрофизические характеристики 
пленок ZnO позволили установить вклад собственных дефектов и поверхностных состояний 
в проводимость.

Ключевые слова: оксид цинка, тонкие пленки, электрофизические свойства
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ЕЛЕКТРОФІЗИЧНІ ВЛАСТИВОСТІ ТОНКИХ ПЛІВОК ОКСИДУ ЦИНКУ, 
ОТРИМАНИХ ХІМІЧНИМИ МЕТОДАМИ

Ю. І. Булига, А. П. Чебаненко, В. С. Гріневич, Л. М. Філевська

Резюме
Проведено порівняльні дослідження електрофізичних характеристик плівок ZnO, 

отриманих шляхом хімічного осадження з розчинів ацетату цинку та термічного окислення 
плівок цинку. Плівки оксиду цинку демонстрували специфічне для цього матеріалу 
оптичне поглинання та ширину забороненої зони (2,9-3,2 еВ), що вказує на наявність у них 
кристалічної структури. Використання полівінілового спирту дозволило отримати зразки з 
найвищими значеннями Eg та електричного опору, що спричинені нанорозміром кристалітів 
плівок. Досліджені електрофізичні характеристики плівок ZnO дали змогу встановити 
внесок власних дефектів та станів поверхні в електропровідність.

Ключові слова: оксид цинку, тонкі плівки, електрофізичні властивості 
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SPECTROSCOPY AND DYNAMICS OF MULTIELECTRON ATOM 
IN A MAGNETIC FIELD: NEW APPROACH 

Spectroscopy and dynamics of multielectron atomic system in a magnetic field is numerically investigated. It is 
presented a new quantum-mechanical approach to calculating the energies and widths of some states for the multi-
electron atomic system in in a homogeneous magnetic field.  The approach is based on the numerical difference 
solution of the Schrödinger equation, the model potential method and the operator perturbation theory formalism. As 
illustration, the data for energies of the electronic excited and ground state of the lithium atom in dependence upon the 
magnetic field strength are listed and compared with available theoretical results, obtained on the basis of alternative 
Hartree-Fock method.

1. Introduction
The hydrogen atom in a constant magnetic 

field has been considered in a fairly large num-
ber of studies, however, many of the results turn 
out to be either unsuitable for specific applica-
tions or even incomplete until recently (see, for 
example, [1-5]). In the case of many-electron 
(non-hydrogen-like) atomic systems in a mag-
netic field, the situation looks dramatic enough. 
The fact is that generalizing the model to the 
case of many-electron atoms is quite problem-
atic. Traditional methods such as perturbation 
theory, models based on asymptotic expansions 
in the magnitude of the field B, quasiclassi-
cal approaches (see, [1–14]) encounter signifi-
cant problems when generalizing to the case 
of many-electron systems. Particularly acute is 
the problem of describing the dynamics of an 
atomic system in the intermediate region of 
magnetic field strengths, where it is necessary 
to consider the Coulomb and magnetic interac-
tions on an equal footing. The problem is also 
relevant for the field of strong and superstrong 
fields, where today there are no sufficiently reli-
able data on the energy characteristics of atomic 
systems in the field. On the whole, at present, 
sufficiently convenient universal data for arbi-
trary states of many-electron atomic systems are 
absent for any values   of the magnetic field B. 
Among modern methods for describing atomic 
spectroscopy in a magnetic field, a series of pa-
pers [4-18] should be distinguished, where per-
turbation theory methods, various schemes, and 
algorithms have been developed based on the 

numerical solution of the  Schrödinger equation 
in the Hartree–Fock and other approximations. 
Based on them, it was possible to obtain a lot of 
useful numerical data regarding the energies of 
various states of a number of many-electron at-
oms at various magnetic field intensities. At the 
same time, in a number of cases, as the authors 
admit [3,8], their data require clarification due to 
the neglect of correlation effects, relativistic cor-
rections, and other factors. Also relevant is the 
problem of describing the stochastic behavior of 
an atomic system in a magnetic field. It should 
be noted that various aspects of stochasticity in 
systems and the main features of quantum chaos 
that take place in the dynamics of many-electron 
atomic systems of atomic systems in a magnetic 
field are currently either partially or completely 
not studied, at least at a detailed quantitative 
level [14]. Naturally, therefore, the solution of 
the problem of a quantitative description of the 
elements of quantum chaos in the behavior of 
many-electron atomic systems in a static mag-
netic field seems extremely urgent and quite 
complicated (see [2]). 

In this paper we shortly present a new quan-
tum-mechanical approach to calculating the en-
ergies and widths of some states for the multi-
electron atomic system in in a homogeneous 
magnetic field.  The approach is based on the 
numerical difference solution of the Schröding-
er equation, the model potential method and the 
operator perturbation theory formalism.
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2. Theoretical approach
The Hamiltonian of a multielectron atom in a 

magnetic field B differs from the operator of the 
hydrogen atom by the presence of the Coulomb 
interaction operator, which naturally aggravates 
the problem of separation of variables in the 
Schrödinger equation. Introducing a cylindrical 
coordinate system ( ρ, φ, z), with the axis Oz || 
B and taking into account that the dependence 
of the wave function on the rotation angle ϕ  
around the z axis is trivial: 

                                                                           (1)

one should write the Schrödinger equation for 
the one-electron function of an atomic system 
(atomic units are used here e=h=m=1) as:

                                                                    (2)

where Vc (r) is the potential that describes the 
effect of all other electrons on the given one. 
Naturally, it is absent for the hydrogen atom. As 
the potential Vc, we use the Green-like  poten-
tial (c.g.[2]), which approximates the Hartree 
potential quite accurately:
                                                                        (3)

where function ( ) ( ) ]11exp[1 +−=Ω drHr  is the  
shielding function and H, d are the parameters 
of the potential.  The required parameters, as a 
rule, are selected from the condition of the best 
fitting of the experimental values   of the energy 
levels of free atoms (c.g. [2]). Note that a po-
tential of type (2) was used intensively in calcu-
lating the energy levels and oscillator strengths 
of various atomic systems, including Li,Be, B, 
C, N, O, F, Ne, and others (see [17-20]). To 
take into account the exchange corrections, the 
exchange potential was taken in the simplest 
Slater approximation and added to potential 
(3) [19].  The two-dimensional equation (2) is 
naturally not solved analytically in a general 
form.  The terms appearing in it: the potential 
of the Coulomb interaction, which contains  

,2/1)22( zr += ρ potential V [ 2/122 )( z+ρ ] pre-
vents the separation of variables. One could re-
write the Schrödinger equation as follows:

                                                                       (4)
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The potential 22ρg8/1  limits the move-
ment in the direction perpendicular to the field 
direction. Similarly, in the regiong >> 1, the 
motion of an electron across a magnetic field 
is determined by the size of its cyclotron orbit, 

2/1)/( eMc=l and along the field by a modified 
Coulomb interaction, which takes into account 
the non-Coulomb character of the potential field 
in which an electron moves in a many-electron 
atom [18]. Note that calculations of multielec-
tron atomic systems with introduced potentials 
are quite well known in the literature (see [2,18-
20]); moreover, computational schemes based 
on them have been tested several times and test-
ed for a number of atoms in the free state. The 
potential (3) was successfully used in calculating 
the energies and forces of atomic oscillators of 
the 1st period of the periodic table (see review in 
[21]). For solution of the Schrödinger equation 
with hamiltonian equations (7) we constructed 
the finite differences scheme which is in some 
aspects similar to method [2]. An infinite region 
is exchanged by a rectangular  region: 0<ρ< ρL , 
0<z< zL . It has sufficiently large size; inside it a 
rectangular uniform grid with steps ρh , zh was 
constructed. The external boundary condition, 
as usually, is: .0)( =/∂Y∂ rn  The knowledge 
of the asymptotic behaviour of wave function 
in the infinity allows to get numeral estimates 
for ρL , zL . A wave function has an asymptotic 
of the kind as: exp[-(-2E)1/2r], where (-E) is the 
ionization energy from stationary state to low-
est Landau level. Then L is estimated as L~9(-
2E)-1/2. The more exact estimate is found em-
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scheme is used for second derivative on z. The 
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point symmetric differences scheme with the 
use of the Lagrange interpolation formula dif-
ferentiation. To calculate the values of the width 
G for resonances in atomic spectra in a magnetic 
field one can use the modified operator perturba-

method and the operator perturbation theory 
formalism. 
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where Vc (r) is the potential that describes the  
effect of all other electrons on the given one. 
Naturally, it is absent for the hydrogen atom. 
As the potential Vc, we use the Green-like  
potential (c.g.[2]), which approximates the 
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where Vc (r) is the potential that describes the  
effect of all other electrons on the given one. 
Naturally, it is absent for the hydrogen atom. 
As the potential Vc, we use the Green-like  
potential (c.g.[2]), which approximates the 
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where Vc (r) is the potential that describes the  
effect of all other electrons on the given one. 
Naturally, it is absent for the hydrogen atom. 
As the potential Vc, we use the Green-like  
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where Vc (r) is the potential that describes the  
effect of all other electrons on the given one. 
Naturally, it is absent for the hydrogen atom. 
As the potential Vc, we use the Green-like  
potential (c.g.[2]), which approximates the 
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where Vc (r) is the potential that describes the  
effect of all other electrons on the given one. 
Naturally, it is absent for the hydrogen atom. 
As the potential Vc, we use the Green-like  
potential (c.g.[2]), which approximates the 
Hartree potential quite accurately: 
                                                                   
                         

r

rN
V c 
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where function     ]11exp[1  drHr  is the  
shielding function and H, d are the parameters 
of the potential.  The required parameters, as a 
rule, are selected from the condition of the best 
fitting of the experimental values of the energy 
levels of free atoms (c.g. [2]). Note that a 
potential of type (2) was used intensively in 
calculating the energy levels and oscillator 
strengths of various atomic systems, including 
Li,Be, B, C, N, O, F, Ne, and others (see [17-
20]). To take into account the exchange 
corrections, the exchange potential was taken 
in the simplest Slater approximation and added 
to potential (3) [19].  The two-dimensional 

equation (2) is naturally not solved analytically 
in a general form.  The terms appearing in it: 
the potential of the Coulomb interaction, 
which contains  ,2/1)22( zr   potential V 
[ 2/122 )( z ] prevents the separation of 
variables. One could rewrite the Schrödinger 
equation as follows: 
 
                    H (,z)=E(,z)                 (4) 
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                                                                  (5) 
 The potential 8/1  limits the movement 
in the direction perpendicular to the field 
direction. Similarly, in the region >> 1, the 
motion of an electron across a magnetic field 
is determined by the size of its cyclotron orbit, 

2/1)/( eMc and along the field by a 
modified Coulomb interaction, which takes 
into account the non-Coulomb character of the 
potential field in which an electron moves in a 
many-electron atom [18]. Note that 
calculations of multielectron atomic systems 
with introduced potentials are quite well 
known in the literature (see [2,18-20]); 
moreover, computational schemes based on 
them have been tested several times and tested 
for a number of atoms in the free state. The 
potential (3) was successfully used in 
calculating the energies and forces of atomic 
oscillators of the 1st period of the periodic 
table (see review in [21]). For solution of the 
Schrödinger equation with hamiltonian 
equations (7) we constructed the finite 
differences scheme which is in some aspects 
similar to method [2]. An infinite region is 
exchanged by a rectangular  region: 0<< L , 
0<z< zL . It has sufficiently large size; inside it 
a rectangular uniform grid with steps h , 

zh was constructed. The external boundary 
condition, as usually, is: .0)(  rn  The 
knowledge of the asymptotic behaviour of 
wave function in the infinity allows to get 

еМ
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tion theory method (see details in Ref.[12,13]). 
Note that the imaginary part of the state energy 
in the lowest PT order is:  

                                                       
        2||2/Im >YY<== EsEb HGE p       (8)                                                 

with the total Hamiltonian of system in a  mag-
netic field. The state functions YEb and YEs are 
assumed to be normalized to unity and by the 
d(k -k’)-condition, accordingly. Other calcula-
tion details can be found in Refs. [2, 19-21]. 

3. Illustration results and conclusion
As illustration, below we present the data 

(tables 1 and 2) for energies of the electronic 
excited and ground state of the lithium atom in 
dependence upon the magnetic field strength 
(parameter g) and compared with available the-
oretical results, obtained on the basis of alterna-
tive methods. Parameter g varies within: g=B/
Bo=0.00-10, where 3332

0 / ZhcemB = . In Table 
1 there are listed the energies of the ground state 
of the lithium atom in dependence upon the pa-
rameter g. For the lithium atom there are avail-
able the results of calculations for the ground 
state and a few low-lying states of the Li atom 
at the regime of weak and intermediate fields. 
In particular, the Hartree-Fock (HF) calcula-
tion results are in the Refs. [6,7]. As the ground 
state analysis shows, in whole our data are cor-
responding to the alternative HF results, how-
ever, indeed, they lie a little lower for a weak 
field regime and more substantially lower in the 
intermediate regime of the magnetic  parameter. 
In table 2 similar data are listed for the Li ex-
cited state.

Table 1. 
Total energies (in a.u.) of the ground state of 
Li atom in a magnetic field with strength g: 
HF-mesh- the  Hartree-Fock data from [6], 

HF – data from [7], MP- this work;

g 1s22s
HF-mesh

1s22s
HF

1s22s
MP

0.000 27.4328 27.4327 27.4329
0.002 27.4338 27.4340
0.009 27.4371 27.4371 27.4373
0.020 27.4421 27.4424

0.126 27.4741 27.4739 27.4745
0.200 27.4840 27.4843
0.900 27.4250 27.4240 27.4253
1.800 27.2460 27.2446 27.2464
2.000 27.1962 27.1967
2.500 27.0562 27.0568
3.600 26.6787 26.6640 26.6793
5.000 26.0881 26.0887
5.400 25.9011 25.8772 25.9018
7.000 25.0891 25.0902

Table 2. 
Total energies (in a.u.) of the  excited state 

of the Li atom in the magnetic field with the 
strength g: HF-mesh- the  Hartree-Fock data 
from [6], HF – data from [7], MP- this work

g 1s22p-1
HF-mesh

1s22p-1
HF

1s22p-1
MP

0.000 27.3651 27.3651 27.3652 
0.002 27.3671 27.3673
0.009 27.3739 27.3738 27.3741 
0.020 27.3840 27.3843
0.126 27.4565 27.4565 27.4568 
0.200 27.4922 27.4925
0.900 27.6563 27.6563 27.6567 
1.800 27.6766 27.6747 27.6770 
2.000 27.6625 27.6631
2.500 27.6035 27.6041
3.600 27.3764 27.3627 27.3771 
5.000 26.9423 26.9430
5.400 26.7952 26.7747 26.7959 
7.000 26.1267 26.1279

The difference between the listed data can be 
explained by the partial account of electron cor-
relation corrections, which is absent in the HF 
calculation. 
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PACS 31.15.Ne, 31.10.1z

A. O. Makarova, A. A. Buyadzhi, O. V. Dubrovsky

SPECTROSCOPY AND DYNAMICS OF MULTIELECTRON ATOM 
IN A MAGNETIC FIELD: NEW APPROACH 

Summary. Spectroscopy of multielectron atomic system in a magnetic field is numerically 
investigated. It is presented a new quantum approach to calculating energies and widths of states 
for multi-electron atomic system in a homogeneous magnetic field.  The approach is based on 
numerical difference solution of the Schrödinger equation, model potential method and operator 
perturbation theory. The data for energies of electronic excited and ground state of the lithium atom 
in dependence upon the magnetic field strength are listed and compared with available theoretical 
results, obtained on the basis of alternative Hartree-Fock method.       

Key words: atomic system, magnetic field, spectroscopy and dynamics
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А. О Макарова, А. А. Буяджи, О. В. Дубровский

СПЕКТРОСКОПИЯ И ДИНАМИКА МНОГОЭЛЕКТРОННОГО АТОМА
В МАГНИТНОМ ПОЛЕ: НОВЫЙ ПОДХОД

Резюме. Изучается спектроскопия многоэлектронных атомных систем в магнитном 
поле. Представлен новый квантовый подход к расчету энергий и ширин состояний для 
многоэлектронного атома в однородном магнитном поле. Метод основан на численном 
разностном решении уравнения Шредингера, методе модельного потенциала и операторной 
теории возмущений. Приведены расчетные данные для энергий основного и возбужденного 
состояний атома лития в зависимости от напряженности магнитного поля и проведено 
сравнение с имеющимися теоретическими результатами, полученными на основе 
альтернативного метода Хартри-Фока.

Ключевые слова: атомная система, магнитное поле, спектроскопия и динамика
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О. О. Макарова, Г. А. Буяджи, О. В. Дубровський

СПЕКТРОСКОПІЯ І ДИНАМІКА БАГАТОЕЛЕКТРОННОГО АТОМА
У МАГНІТНОМУ ПОЛІ: НОВИЙ ПІДХІД

Резюме. Вивчається спектроскопія багато електронних атомних систем в магнітному 
полі. Представлений новий квантовий підхід до розрахунку енергій і ширин станів для 
багатоелектронного атома в однорідному магнітному полі. Метод  заснований на чисельному 
різницевому рішенні рівняння Шредінгера, методі модельного потенціалу та операторній 
теорії збурень. Наведені розрахункові дані для енергій основного та збудженого станів атома 
літію в залежності від напруженості магнітного поля і проведено порівняння з наявними 
теоретичними результатами, отриманими на основі альтернативного методу Хартрі-Фока.

Ключові слова: атомна система, магнітне поле, спектроскопія та динаміка
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THEORETICAL AUGER SPECTROSCOPY OF
THE NEON: TRANSITION ENERGIES AND WIDTHS

The combined relativistic energy approach and relativistic many-body perturbation theory with the zeroth order 
density functional approximation is applied to determination of the energy and spectral parameters of the resonant 
Auger decay for neon atomic system. The results are compared with reported experimental results as well as with 
those obtained by semiempirical and ab initio Hartree-Fock methods. The important point is linked with an accurate 
accounting for the complex exchange-correlation (polarization) effect contributions and using the optimized one-
quasiparticle representation in the relativistic many-body perturbation theory zeroth order that significantly provides a 
physically reasonable agreement between theory and experiment.

1. Introduction
The research in many fields of modern atom-

ic physics (spectroscopy, spectral lines theory, 
theory of atomic collisions etc), astrophysics, 
plasma physics, laser physics and quantum and 
photo-electronics requires an availability of sets 
of correct data on the energetic, spectroscopic 
and structural properties of atoms.  The Au-
ger electron spectroscopy remains an effective 
method to study the chemical composition of 
solid surfaces and near-surface layers [1-8]. 

As it is well known [11], the Auger process 
is a radiationless transition of an atom from an 
initial state possessing an inner-shell vacancy to 
a final state in which the inner vacancy is filled 
by an outer-shell electron with the simultaneous 
ejection of another outer-shell electron, result-
ing in two new vacancies. The kinetic energy 
of the ejected Auger electron is measured by 
Auger-electron spectroscopy (AES). Sensing 
the Auger spectra in atomic systems and solids 
gives the important data for the whole number 
of scientific and technological applications. 
So called two-step model is used most widely 
when calculating the Auger decay characteris-
tics [1-5]. Since the vacancy lifetime in an inner 
atomic shell is rather long (about 10-17 to 10-14s), 
the atom ionization and the Auger emission are 
considered to be two independent processes. In 
the more correct dynamic theory of the Auger 
effect [2,3] the processes are not believed to be 

independent from one another. The fact is taken 
into account that the relaxation processes due 
to Coulomb interaction between electrons and 
resulting in the electron distribution in the va-
cancy field have no time to be over prior to the 
transition. 

In fact, a consistent Auger decay theory has 
to take into account correctly a number of corre-
lation effects, including the energy dependence 
of the vacancy mass operator, the continuum 
pressure, spreading of the initial state over a 
set of configurations etc [1-19]. The most wide-
spread theoretical studying the Auger spectra 
parameters is based on using the multi-config-
uration Dirac-Fock (MCDF) calculation [2,3].  
The theoretical predictions based on MCDF 
calculations have been carried out within differ-
ent approximations and remained hitherto non-
satisfactory in many relations. Earlier [8-13] it 
has been proposed relativistic perturbation the-
ory (PT) method of the Auger decay character-
istics for complex atoms, which is based on the 
Gell-Mann and Low S-matrix formalism energy 
approach) and QED PT formalism [4-7]. The 
novel element consists in using the optimal ba-
sis of the electron state functions derived from 
the minimization condition for the calibration-
non-invariant contribution (the second order PT 
polarization diagrams contribution) to the im-
aginary part of the multi-electron system energy 
already at the first non-disappearing approxima-
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tion of the PT.  Earlier it has been applied in 
studying the Auger decay characteristics for a 
set of neutral atoms, quasi-molecules and sol-
ids. Besides, the ionization cross-sections of in-
ner shells in various atoms and the Auger elec-
tron energies in solids were estimated.   Here 
we apply the combined relativistic energy ap-
proach and relativistic many-body perturbation 
theory with the zeroth order density functional 
approximation is applied to determination of the 
energy and spectral parameters of the resonant 
Auger decay for neon atomic system.

2. The theoretical method
In Refs. [8-17] the fundamentals of the rela-

tivistic many-body PT formalism have been in 
detail presented, so further we are limited only 
by the novel elements.   Let us remind that the 
majority of complex atomic systems possess a 
dense energy spectrum of interacting states. In 
Refs. [3-13, 19-33] there is realized  field pro-
cedure for calculating the energy shifts DE of 
degenerate states, which is connected with the 
secular matrix M diagonalization. The whole 
calculation of the energies and decay probabili-
ties of a non-degenerate excited state is reduced 
to the calculation and diagonalization of the M. 
The complex secular matrix M is represented in 
the form [9,10]:  

    ( ) ( ) ( ) ( )0 1 2 3 .M M M M M= + + +        (1)

where ( )0M  is the contribution of the vacuum di-
agrams of all order of PT, and ( )1M , ( )2M , ( )3M  
those of the one-, two- and three-QP diagrams 
respectively. The diagonal matrix ( )1M  can be 
presented as a sum of the independent 1QP con-
tributions. The optimized 1-QP representation is 
the best one to determine the zeroth approxima-
tion. In the relativistic energy approach [4-9], 
which has received a great applications during 
solving numerous problems of atomic, molecu-
lar and nuclear physics (e.g., see Refs. [10-13]), 
the imaginary part of electron energy shift of 
an atom is directly connected with the radiation 
decay possibility (transition probability). An ap-

proach, using the Gell-Mann and Low formula 
with the QED scattering matrix, is used in treat-
ing the relativistic atom. The total energy shift 
of the state is usually presented in the form:

                DE = ReDE + i G/2 ,                  (2)

where G is interpreted as the level width, and the 
decay possibility P = G. The imaginary part of 
electron energy of the system, which is defined 
in the lowest order of perturbation theory as [4]:
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where (a>n>f)  for electron and (a<n<f)  for va-
cancy. Under calculating the matrix elements (3) 
one should use the angle symmetry of the task 
and write the expansion for potential sin|w|r12/r12 
on spherical functions as follows [4]: 
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where J  is the Bessel function of first kind and 
(l)= 2l + 1. This expansion is corresponding to 
usual multipole one for probability of radiative 
decay. 
Within the frame of QED PT approach the Au-
ger transition probability and the Auger line in-
tensity are defined by the square of an electron 
interaction matrix element having the form [4]: 

( )( )( )( )[ [ ( ) ( )∑ ×







m−
l−=

lm
l

mw 1234Re1
31

312
1

43211234 Qmm
jjjjjjV

;

BrQul
lll += QQQ .                     (5)

The terms Qul
lQ  and Br

lQ  correspond to sub-
division of the potential into Coulomb part 
cos|ω|r12/r12 and Breat one, cos|ω|r12α1α2/r12. 
The real part of the electron interaction matrix 
element is determined using expansion in terms 
of Bessel functions: 
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where J is the 1st order Bessel function, (l)=2l+1. 

The Coulomb part Qul
lQ  is expressed in terms of 

radial integrals Rl , angular coefficients Sl  [4]:

                           
( ) ( ) ( ) ( ){ ++= llll 3~241~3~241~12431243Re1Re SRSR

Z
Q l

Qul
 

( ) ( ) ( ) ( )}.3~4~2~1~3~4~2~1~34~2~134~2~1 llll ++ SRSR
(7)

As a result, the Auger decay probability is ex-
pressed in terms of ReQl(1243) matrix elements: 

( ) ( ) ( ) ( ) ( ) ( )( ) ( )( )∫∫ >l<ll = rZrZrfrfrfrfrrdrR 11
24221311

2
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2
111243Re

       (8)
where f is the large component of radial part of 
single electron state Dirac function; function Z 
and angular coefficient are defined in Refs. [4-
7]. The other items in (7) include small compo-
nents of the Dirac functions; the sign «~» means 
that in (7) the large radial component fi is to be 
changed by the small gi  one and the moment  li 
is to be changed by  1−= ii ll~  for Dirac number 
æ1> 0 and li+1 for æi<0. 

The Breat interaction is known to change 
considerably the Auger decay dynamics in some 
cases. The Breat part of Q is defined in [4,11]. 
The Auger width is obtained from the adiabatic 
Gell-Mann and Low formula for the energy shift 
[4]. The direct contribution to the Auger level 
width with a vacancy nalajama  is as follows: 
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while the exchange diagram contribution is:  
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The partial items of the ∑∑
bg k sum answer 

to contributions of a-1g(bg)-1K channels result-
ing in formation of two new vacancies bg and 
one free electron k: wk=wa+wb–wa. The final ex-
pression for the width in the representation of 
jj-coupling scheme of single-electron moments 
has the form:
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The calculating of all matrix elements, wave 

functions, Bessel functions etc is reduced to 
solving the system of differential equations. 
The formulas for the autoionization (Auger) 
decay probability include the radial integrals 
Ra(akgb), where one of the functions describes 
electron in the continuum state. When calculat-
ing this integral, the correct normalization of the 
wave functions is very important, namely, they 
should have the following asymptotic at  r→0:
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The important aspect of the whole procedure 
is an accurate accounting for the exchange-
correlation effects. We have used the general-
ized relativistic Kohn-Sham density functional  
[8-17] in the zeroth approximation of relativistic 
PT; naturally, the perturbation operator contents 
the operator (7) minus the cited Kohn-Sham 
density functional. Further the wave functions 
are corrected by accounting of the first order PT 
contribution. Besides, we realize the procedure 
of optimization of relativistic orbitals base. The 
main idea is based on using ab initio optimiza-
tion procedure, which  is reduced to minimiza-
tion of the gauge dependent multielectron con-
tribution ImDEninv of the lowest QED PT correc-
tions to the radiation widths of atomic levels. 
The formulae for the Auger decay probability 
include the radial integrals Ra(akgb), where one 
of the functions describes electron in the contin-
uum state. The energy of an electron formed due 
to a transition jkl is defined by the difference be-
tween energies of atom with a hole at j level and 
double-ionized atom at kl levels in final state:
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To single out the above-mentioned correla-

tion effects, the equation (13) can be presented 
as [8,9]: 

);,()()()(),( 1212
J

S
J

S
A LlklEkEjELjklE ++ D−−−= ,

(14)

part cos||r12/r12 and Breat one, 
cos||r1212/r12. The real part of the 
electron interaction matrix element is 
determined using expansion in terms of 
Bessel functions:  
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where J is the 1st order Bessel function, 
()=2+1. The Coulomb part Qul

Q  is 
expressed in terms of radial integrals R , 
angular coefficients S  [4]: 
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As a result, the Auger decay probability is 
expressed in terms of ReQ(1243) matrix 
elements:  
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where f is the large component of radial part 
of single electron state Dirac function; 
function Z and angular coefficient are 
defined in Refs. [4-7]. The other items in (7) 
include small components of the Dirac 
functions; the sign «» means that in (7) the 
large radial component fi is to be changed by 
the small gi  one and the moment  li is to be 
changed by  1 ii ll~  for Dirac number æ1> 0 
and li+1 for æi<0.  

The Breat interaction is known to change 
considerably the Auger decay dynamics in 
some cases. The Breat part of Q is defined in 
[4,11]. The Auger width is obtained from the 
adiabatic Gell-Mann and Low formula for 
the energy shift [4]. The direct contribution 
to the Auger level width with a vacancy 
nljm  is as follows:  
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channels resulting in formation of two new 
vacancies  and one free electron k: 
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The important aspect of the whole 

procedure is an accurate accounting for the 
exchange-correlation effects. We have used 
the generalized relativistic Kohn-Sham 
density functional [8-17] in the zeroth 
approximation of relativistic PT; naturally, 
the perturbation operator contents the 
operator (7) minus the cited Kohn-Sham 
density functional. Further the wave 
functions are corrected by accounting of the 
first order PT contribution. Besides, we 
realize the procedure of optimization of 
relativistic orbitals base. The main idea is 
based on using ab initio optimization 
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()=2+1. The Coulomb part Qul

Q  is 
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The calculating of all matrix elements, 

wave functions, Bessel functions etc is 
reduced to solving the system of differential 
equations. The formulas for the 
autoionization (Auger) decay probability 
include the radial integrals R(k), where 
one of the functions describes electron in the 
continuum state. When calculating this 
integral, the correct normalization of the 
wave functions is very important, namely, 
they should have the following asymptotic at  
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The important aspect of the whole 

procedure is an accurate accounting for the 
exchange-correlation effects. We have used 
the generalized relativistic Kohn-Sham 
density functional [8-17] in the zeroth 
approximation of relativistic PT; naturally, 
the perturbation operator contents the 
operator (7) minus the cited Kohn-Sham 
density functional. Further the wave 
functions are corrected by accounting of the 
first order PT contribution. Besides, we 
realize the procedure of optimization of 
relativistic orbitals base. The main idea is 
based on using ab initio optimization 
procedure, which  is reduced to minimization 
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where the item D takes into account the dynamic 
correlation effects (relaxation due to hole screen-
ing  with electrons etc.) To take these effects into 
account, the set of procedures elaborated in the 
atomic theory [8-13] is used. All calculations 
are performed on the basis of the modified nu-
meral code Superatom (version 93).

3. Results and conclusion
In tables 1 we present the data on the tran-

sition energies and angular anisotropy param-
eter β (for each parent state) for the resonant 
Auger decay to the 2s12p5(1.3P) np and 2s0p6 2S 
np (n=3,4) states of Ne+. There are listed experi-
mental data by De Fanis et al [18] and Pahler et 
al [15], theoretical ab initio Hartree-Fock results 
[18] and our data, obtained within the relativis-
tic many-body PT with using the gauge-invari-
ant QED PT method for generating relativistic 
functions basis’s. In table 2 we the data on the 
widths (meV) for the 2s12p5(1.3P)np and 2s0p6 

(1S) np (n=3,4) slates of Ne+. There are listed 
experimental data by [18], theoretical ab initio 
multi configuration Hartree-Fock results by Si-
nanis et al [16], single-configuration Hartree-
Fock data by Armen-Larkins [17] and our data, 
obtained within the relativistic many-body PT.  

Table 1. 

Transition energies Ek (for each parent state 
for the resonant Auger decay to the 2s12p5(1.3P) 
np and 2s0p6 2S np (n=3,4) states of Ne+: the 
experimental data [18,15], theoretical ab ini-

tio Hartree-Fock results [18] and our data

Final state
A=2s12p5

B=2s02p6

Exp. 
Ek, 

[18]

Theory:
Ek, [18] 

Theory:
Ek, [7]

Theory:
Ek, this

A(1P)3p 2S 778.79 776.43 778.52 778.61

A(1P)3p 2P 778.54 776.40 778.27 778.39

A(1P)3p 2D 778.81 776.66 778.57 778.68

A(1P)3p 2S 788.16 786.51 787.88 787.97

A(1P)3p 2P 788.90 787.52 788.69 788.75

A(1P)3p 2D 789.01 787.64 788.82 788.93

A(1P)4p 2S 773.60 - - 773.52

A(1P)4p 2P 773.48 - - 773.33

A(1P)4p 2D 773.56 - - 773.41

A(3P)4p 2S 783.72 - - 783.62

A(3P)4p 2P 783.95 - - 783.81

A(3P)4p 2D 784.01 - - 783.90

B(1S)3p 2P - - - 754.99

B(1S)4p 2P - - - 749.92

The analysis of the presented results in tables 
1-3 allows to conclude that the précised descrip-
tion of the Auger processes requires the detailed 
accurate accounting for the exchange-correla-
tion effects, including the particle-hole interac-
tion, screening effects and iterations of the mass 
operator. The relativistic many-body PT ap-
proach provides more accurate results due to a 
considerable extent to more correct accounting 
for complex inter electron exchange-correlation 
effects.  It is important to note that using more 
correct gauge-invariant procedure of generating 
the relativistic orbital bases is directly linked 
with correctness of accounting for the correla-
tion effects.

Table 2. 
Widths (meV) for 2s12p5(1.3P)np and 2s0p6 

(1S) np (n=3,4) states of Ne+:  experiment 
[18]; theory: ab initio multi configuration 

Hartree-Fock [16], 1-configuration Hartree-
Fock [17] and this work

final state Exp.
[18]/[15]

Th.
[17]

Th.
[16]

Th.
this

A(1P)3p 2S 530±50
410±50 687 510 524

A(1P)3p 2P 42±3 20.7 - 38
A(1P)3p 2D 34±4 40.2 - 32

A(3P)3p 2S 120±10
110±40 18.8 122 118

A(3P)3p 2P 19±5 10.3 - 16
A(3P)3p 2D 80±10 62.3 - 72
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THEORETICAL AUGER SPECTROSCOPY OF
THE NEON: TRANSITION ENERGIES AND WIDTHS

Summary. The combined relativistic energy approach and relativistic many-body perturbation 
theory with the zeroth order density functional approximation is applied to determination of the 
energy and spectral parameters of the resonant Auger decay for neon atomic system. The results 
are compared with reported experimental results as well as with those obtained by semiempirical 
and ab initio Hartree-Fock methods. The important point is linked with an accurate accounting 
for the complex exchange-correlation (polarization) effect contributions and using the optimized 
one-quasiparticle representation in the relativistic many-body perturbation theory zeroth order that 
significantly provides a physically reasonable agreement between theory and experiment.
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PACS 31.15.A-; 32.30.-r

Е. А. Ефимова, А. С. Чернышев, В. В. Буяджи, Л. В. Никола

ТЕОРЕТИЧЕСКАЯ ОЖЕ-СПЕКТРОСКОПИЯ НЕОНА:
ЭНЕРГИИ ПЕРЕХОДОВ И ШИРИНЫ

Резюме. Комбинированный релятивистский энергетический подход и релятивистская 
многочастичная теория возмущений с приближением функционала плотности нулевого 
порядка применяются для определения энергетических и спектральных параметров 
резонансного оже-распада для атомной системы неона. Результаты сравниваются с 
сообщенными экспериментальными результатами, а также с результатами, полученными 
полуэмпирическим и ab initio методами (типа Хартри-Фока). Важный момент связан с учетом 
вкладов сложных многочастичных обменных корреляционных ‘ффектов и использованием 
оптимизированного одноквазичастичного представления в нулевом приближении 
многочастичной теории возмущений, что  определяет физически разумное согласие между 
теорией и экспериментом.

Ключевые слова: релятивистская теория, Оже-спектроскопия, неон
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Е. O. Єфімова, O. С. Чернишев, В. В. Буяджи, Л. В. Нікола

ТЕОРЕТИЧНА ОЖЕ-СПЕКТРОСКОПІЯ НЕОНУ: 
ЕНЕРГІЇ ПЕРЕХОДІВ ТА ШИРИНИ

Резюме. Комбінований релятивістський енергетичний підхід і релятивістська 
багаточастинкова теорія збурень з наближенням функціонала щільності нульового порядку 
застосовуються для визначення енергетичних і спектральних параметрів резонансного 
оже-розпаду для атомної системи неону. Результати порівнюються з повідомленими 
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експериментальними результатами, а також з результатами, отриманими напівемпіричними 
та ab initio методаи (типу Хартрі-Фока). Важливий момент пов’язаний з урахуванням вкладів 
складних багаточасткових обмінних кореляційних eфектів та з використанням оптимізованого 
одноквазічастічного уявлення в нульовому наближенні релятивістської багаточастинкової 
теорії збурень, що визначає фізично певну згоду між теорією і експериментом. 

Ключові слова: релятивістська теорія, Оже-спектроскопія, неон
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SPECTROSCOPY OF MULTIELECTRON ATOM IN DC ELECTRIC FIELD:
RELATIVISTIC OPERATOR PERTURBATION THEORY

We develop the theoretical basis of a new relativistic operator perturbation theory  approach to multielectron atom 
in a DC electric field combined with a relativistic many-body perturbation theory formalism for a free multielectron 
atom. As illustration of application of the presented formalism, the results of energy and spectral parameters for a 
number of atoms are presented. The relativistic  OPT  method is tested for computing the Stark shifts of Rydberg states 
for a few the multielectron systems such as the sodium and rubidium. The approach allows an accurate and consistent 
treatment of a DC strong field Stark effect in multielectron atoms.

1. Introduction
An investigation of spectra, optical and spec-

tral, radiative and autoionization characteristics 
for  the rare-earth elements (isotopes) and cor-
responding ions in an external electric field is 
traditionally of a great interest for further de-
velopment quantum optics and atomic spectros-
copy and different applications in the plasma 
chemistry, astrophysics, laser physics, quantum 
and nano-electronics  etc. (see Refs. [1–18]).  At 
the present time it attracts a great interest es-
pecially for  multielectron and Rydberg atoms 
that is stimulated by a whole range of interest-
ing phenomena to be studied such as different 
processes in a laser plasma, astrophysical envi-
ronments, quasi-discrete state mixing, a zoo of 
Landau- Zener anticrossings, autoionization in 
the multielectron atoms, the effects of potential 
barriers (shape resonances), new kinds of reso-
nances  above threshold etc [1-20]. There are 
many detailed reviews on the atomic Stark ef-
fect, including the DC strong field one (see, e 
g., [1-11]).  
The calculation difficulties in description of the 
multielectron atoms in electromagnetic (elec-
tric) field inherent to the standard  quantum 
mechanical approach are well known. Here one 
should mention the well-known Dyson phe-
nomenon for a Strong Filed AC, DC Stark ef-
fect. Besides, in contrast to the hydrogen atom, 
the non-relativistic Schrödinger and relativistic 
Dirac equations  for an electron moving in the 

field of the atomic core in many-electron atom  
and a uniform external electric field does not 
allow separation of variables in the parabolic 
coordinates. At the present time, the general-
ization of methods to account for the resonance 
interference, multielectron and relativistic ef-
fects is still an important problem, though here 
a definite progress has been reached too. Dif-
ferent calculational procedures are used in the 
Pade and then Borel summation of the divergent 
Rayleigh-Schrödinger perturbation theory  se-
ries and in the sufficiently exact numerical so-
lution  of the  difference equations  following 
from expansion of the  wave function over finite 
basis (see review in [2]). One should mention 
such approaches as a model potential method, 
quantum defect approximation, complex scaling 
plus B-spline methods (c.g., [1-19]) and effec-
tive operator perturbation theory (OPT) method 
[11-13]; the latter is taken as the basis for our 
approach.   

In this paper we develop a new theoretical 
approach, namely, relativistic operator perturba-
tion theory (ROPT) approach to multielectron 
atom in an electromagnetic field combined with 
a relativistic many-body perturbation theory 
(RMBPT) formalism for a free multielectron 
atom. The key advantage of such an approach 
that it can be applied to DC strong-field Stark 
effect problem for any multielectron system. As 
illustration here the approach is tested for the 
multielectron system such as rubidium Rb. 
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The relativistic density-functional approxi-
mation with the Kohn-Sham potential is taken 
as the zeroth approximation in the RMBPT for-
malism [20-29]. It allows to take into account 
the standard  exchange-correlation corrections 
of the second order and dominated classes of 
the higher orders diagrams (polarization interac-
tion, quasiparticles screening, etc.). The basis of 
our approach is an approach, developed in Refs. 
[17,18]. 

2. Relativistic operator perturbation theo-
ry for multielectron atoms in an electric field

As the principal ideas of the approach have 
been presented in Ref. [17,18], here we are lim-
ited to some key elements. As usually, we start 
from the Dirac Hamiltonian (in relativistic uni
ts):                                                  

 zrZpH i ⋅⋅+−+= εaaba / ,    (1)

 Here a field strength intensity ε is expressed 
in the relativistic units (εrel= a5/2εat.un.; a is the 
fine structure constant). One could see that a 
relativistic wave function in the Hilbert space 
is a bi-spinor. In order to further diagonalize the 
Hamiltonian (1), we need to choose the correct 
basis of relativistic functions, in particular, by 
choosing the following functions as in Ref, 
[1313]. The corresponding matrix elements of 
the total  Hamiltonian  will be no-zeroth only 
between the states with the same MJ. In fact this 
moment is a single limitation of the whole ap-
proach. Transformation of co-ordinates in the 
Pauli Hamiltonian (in comparison with the 
Schrodinger equation Hamiltonian it contents 
additional potential term of a magnetic dipole 
in an external field) can be performed by the 
standard way. However, procedure in this case is 
significantly simplified. They can be expressed 
through the set of one-dimensional integrals, 
described in details in Refs. [8,14]. To simplify 
the calculational procedure, the uniform electric 
field ε    should be substitute by the function 
(c.g. [12]:
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with sufficiently large t (t=1.5t2). The motiva-

tion of a choice of the ( )tε  and some physical 
features of electron motion  are presented in 
Refs. [56-58]. Here we only underline that  the 
function ( )tε  practically coincides with the con-
stant ε in the inner barrier motion region, i.e. t
< 2t and disappears at t > 2t . It is important that 
the final results do not depend on the parameter 
t. It is carefully checked in the numerical cal-
culation. As usually (see [11-13]), the scattering 
states energy spectrum now spreads over the 
range ( )∞+− ,2εt , compared with  ( )∞+∞− ,  in 
the uniform field. In contrast to the case of a free 
atom in scattering states in the presence of the 
uniform electric field remain quantified at any 
energy E, i.e. only definite values of 1b  are pos-
sible. The latter are determined by the confine-
ment condition for the motion along the h-axis. 
The same is true in our case, but only for 

Ultimately, such a procedure provides construc-
tion of realistic functions of the bound and scat-
tering states. In a certain sense, this completely 
corresponds to the advantages of the distorted-
wave approximation known in scattering theory 
[11]. 
     The total Hamiltonian  does not possess 
the bound stationary states. According to Ref. 
[12,13], one has to define the zero order Hamil-
tonian H0, so that its spectrum reproduces quali-
tatively that of the initial one. To calculate the 
width G of the concrete quasistationary state 
in the lowest PT order one needs only two ze-
roth–order EF of H0: bound state function EbY  
and scattering state function EsY . There can be 
solved a more  general problem: a construction 
of the bound  state function along with its com-
plete orthogonal complementary of  scattering 
functions EY  with  

                      

The imaginary part of state energy (the reso-
nance width) in the lowest PT order is deter-
mined by the standard way:

         ImE = G/2 = p|<YEb |H|YEs>|2      (3)  
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Ultimately, such a procedure provides 
construction of realistic functions of the 
bound and scattering states. In a certain 
sense, this completely corresponds to the 
advantages of the distorted-wave 
approximation known in scattering theory 
[11].  
     The total Hamiltonian  does not possess 
the bound stationary states. According to 
Ref. [12,13], one has to define the zero order 
Hamiltonian H0, so that its spectrum 
reproduces qualitatively that of the initial 
one. To calculate the width  of the concrete 
quasistationary state in the lowest PT order 
one needs only two zeroth–order EF of H0: 

bound state function Eb  and scattering state 
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orthogonal complementary of  scattering 
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The imaginary part of state energy (the 
resonance width) in the lowest PT order is 
determined by the standard way: 
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with the total Hamiltonian H . The state 
functions 

Eb  and Es  are assumed to be 
normalized to 1 and by the  kk   
condition, accordingly. The matrix elements 

sEEb H   entering the high- order PT 
corrections can be determined in the same 
way. They can be expressed through the set 
of one-dimensional integrals, described in 
details in Refs. [2,12].  

Further the ROPT scheme is combined 
with the RMBPT in spherical coordinates for 
a free atom. The details of this procedure can 
be found in the references [17,18]. The 
RMBPT formalism is constructed following 
to Refs. [2,23,26].  We will describe an 
atomic multielectron system by the 
relativistic Dirac Hamiltonian (the atomic 
units are used) as follows:  
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where Z is a charge of nucleus, i ,j are the 
Dirac matrices, ij is the transition 
frequency, c – the velocity of light. The 
interelectron interaction potential (second 
term in (4)) takes into account the retarding 
effect and magnetic interaction in the lowest 
order on parameter of the fine structure 
constant. In the  PT zeroth approximation it 
is used ab initio mean-field  potential: 
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with the standard Coulomb (or some model 
potential analog), exchange Kohn-Sham VX 
and correlation Vc potentials (look details in 
Refs. [19,20]). An effective approach to 
accounting the multi-electron polarization 
contributions is described earlier and based 
on using the effective two-QP polarizable 
operator, which is included into the PT first 
order matrix elements.  
 In order to calculate the decay (transition) 
probabilities and widths an effective  
relativistic energy approach (version [19-21]) 
is used.  
In particular, a width of the state, connected 
with an autoionization decay, is determined 
by a coupling with the continuum states and 
calculated as square of the matrix element 
[19]: 
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Here aQ = Qul

aQ + Br
aQ , where Qul

aQ , and 
Br
aQ correspond to the Coulomb and Breit 

parts of the interelectron potential and 
express through Slater-like radial integrals 
and standard angle coefficients. Other details 
can be found in Refs. [2,23,26]. The most 
complicated problem of the relativistic PT 
computing the complex multielectron 
elements spectra is in an accurate, precise 
accounting for the multi-electron exchange-
correlation effects (including polarization 
and screening effects, a continuum pressure 
etc), which can be treated as the effects of the 
PT second and higher orders.  

The detailed description of the 
polarization diagrams and the corresponding 
analytical expressions for matrix elements of 
the polarization QPs interaction (through the 
polarizable core) potential is presented in 
Refs. [2,19,20,26].  
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with the total Hamiltonian H . The state func-
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[19,20]). An effective approach to accounting 
the multi-electron polarization contributions is 
described earlier and based on using the effec-
tive two-QP polarizable operator, which is in-
cluded into the PT first order matrix elements. 
In order to calculate the decay (transition) prob-
abilities and widths an effective  relativistic en-
ergy approach (version [19-21]) is used. 
In particular, a width of the state, connected with 
an autoionization decay, is determined by a cou-
pling with the continuum states and calculated 
as square of the matrix element [19]:
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Here aQ = Qul
aQ + Br

aQ , where Qul
aQ , and Br

aQ cor-
respond to the Coulomb and Breit parts of the 
interelectron potential and express through 
Slater-like radial integrals and standard angle 
coefficients. Other details can be found in Refs. 
[2,23,26]. The most complicated problem of the 
relativistic PT computing the complex multi-
electron elements spectra is in an accurate, pre-
cise accounting for the multi-electron exchange-
correlation effects (including polarization and 
screening effects, a continuum pressure etc), 
which can be treated as the effects of the PT sec-
ond and higher orders. 

The detailed description of the polarization 
diagrams and the corresponding analytical ex-
pressions for matrix elements of the polarization 
QPs interaction (through the polarizable core) 
potential is presented in Refs. [2,19,20,26]. 

3. Results and Conclusions
     In the framework of the development of spec-
troscopy of the heavy atoms in the external field, 
a quantitative study of the electric field effect on 
the energy levels in the spectra of the some al-
kali atoms was performed. 
     In Table 1 we present the calculation results 
for the Stark resonance energies for some Ry-
dberg states of the Na atom in an electric field 
with the strength 3.59 kV/cm. 

Table 1. 
The energies (in cm-1 ) of the  Stark reso-

nances for Na atom (e=3.59 kV/cm).

State: 
(n1n2m)

Exp. [4] [7] This 
work

26,0,0 15.5 15.5 15.5 15.4
25,0,1 21.1 21.1 21.1 20.9
25,0,0 35.5 35.5 35.5 35.3
24,0,1 41.1 40.4 41.0 40.9
24,1,0 50.5 50.3 50.5 50.4
24,0,0 56.5 57.0 56.5 56.3
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where Z is a charge of nucleus, i ,j are the 
Dirac matrices, ij is the transition 
frequency, c – the velocity of light. The 
interelectron interaction potential (second 
term in (4)) takes into account the retarding 
effect and magnetic interaction in the lowest 
order on parameter of the fine structure 
constant. In the  PT zeroth approximation it 
is used ab initio mean-field  potential: 
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calculated as square of the matrix element 
[19]: 
 

1 2 4 3 1 2 3 4; (2 1)(2 1)(2 1)(2 1)j j j jV
          

1 2 3 4 1 2( 1) x
j j j j m m    

  

           1 3 2 4

1 3 2 4

            
x 1

a

j j a j j a
m m m m



  
  

      
   

 

           1 1 1 2 2 2 4 4 4 3 3 3x ;aQ n l j n l j n l j n l j            (6) 
 
Here aQ = Qul

aQ + Br
aQ , where Qul

aQ , and 
Br
aQ correspond to the Coulomb and Breit 

parts of the interelectron potential and 
express through Slater-like radial integrals 
and standard angle coefficients. Other details 
can be found in Refs. [2,23,26]. The most 
complicated problem of the relativistic PT 
computing the complex multielectron 
elements spectra is in an accurate, precise 
accounting for the multi-electron exchange-
correlation effects (including polarization 
and screening effects, a continuum pressure 
etc), which can be treated as the effects of the 
PT second and higher orders.  

The detailed description of the 
polarization diagrams and the corresponding 
analytical expressions for matrix elements of 
the polarization QPs interaction (through the 
polarizable core) potential is presented in 
Refs. [2,19,20,26].  
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23,0,1 61.2 60.7 61.1 61.0
23,0,0 79.3 80.3 79.4 79.2
22,0,1 84.1 83.1 83.9 83.5
22,1,1 75.0 74.9 75.1 74.9

For comparison, we also list the experimental 
data, the results of calculation within the 1/n- 
expansion and model PT version (c.g.[4,6,7, 
10]). Agreement between both the theory and 
the experiment is quite satisfactory. Our results 
are obtained in the first PT order, i.e., the first 
PT order provides physically reasonable results. 
In Table 2  we present the calculation results for 
the Stark resonance energies for some Rydberg 
states of the Rb atom in an electric field with 
the strength 2.189 kV/cm. For comparison there 
are also presented the results of calculation in 
the framework of 1 / n-approximation (taking 
into account the permeability of the barrier), the 
method of summation of the PT series and ex-
perimental data (c.g.[4,6,7, 10]). There is physi-
cally reasonable agreement between theory and 
experiment.
     Note that our results are obtained in the first 
PT order, i.e. already the first PT order

Table 2. 
The energies (in cm-1 ) of the  Stark reso-

nances for Rb atom (e=2.189 kV/cm).

mnn 21

Exp.
[6]

1/n
[4]

PT
[7]

T h i s 
work

23,0,0
22,0,0
21,1,0
20,2,0
21,0,0
20,1,0
20,0,0
18,1,0
16,2,0
18,0,0

133.1
157.0
161.1
163.9
185.2
186.3
217.2
248.4
284.7
289.5

132.8
157.1
159.5
163.2
184.2
185.4
214.6
247.2
284.0
288.6

132.9
157.2
160.6
163.7
184.8
185.8
214.9
247.3
284.1
289.0

133.0
157.1
160.9
163.9
185.1
186.2
216.9
248.2
285.5
289.3

provides the physically reasonable results. Natu-
rally its accuracy can be increased by an account 
of the next PT order. The ROPT approach can be 
used in calculating the Stark resonance param-

eters in a case of the strong electric fields and it 
is of a great interest for many modern atomic,  
molecular, plasmas and semiconductors  phys-
ics applications (see Refs. [31-39]).
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PACS 31.15.A-  

A. A. Kuznetsova, A. V. Glushkov, E. S. Romanenko, E. K. Plisetskaya

SPECTROSCOPY OF MULTIELECTRON ATOM IN DC ELECTRIC FIELD:
RELATIVISTIC OPERATOR PERTURBATION THEORY

Summary. We develop the theoretical basis of a new relativistic operator perturbation theory  
approach to multielectron atom in a DC electric field combined with a relativistic many-body 
perturbation theory formalism for a free multielectron atom. As illustration of application of the 
presented formalism, the results of energy and spectral parameters for a number of atoms are pre-
sented. The relativistic  OPT  method is tested for computing the Stark shifts of Rydberg states for 
a few the multielectron systems such as the sodium and rubidium. The approach allows an accurate 
and consistent treatment of a DC strong field Stark effect in multielectron atoms.    

Keywords: multielectron atom, electric field, relativistic operator perturbation theory,  Rydberg 
states 
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А. А. Кузнецова, А. В. Глушков, Э. С. Романенко, Е. К. Плисетская

СПЕКТРОСКОПИЯ МНОГОЭЛЕКТРОННОГО АТОМА В ЭЛЕКТРИЧЕСКОМ 
ПОЛЕ: РЕЛЯТИВИСТСКАЯ ОПЕРАТОРНАЯ ТЕОРИЯ ВОЗМУЩЕНИЙ 

Резюме. Изложены теоретические основы нового аппарата релятивистской оператор-
ной теории возмущений в спектроскопии многоэлектронного атома в электрическом поле, 
объединенного с формализмом релятивистской многочастичной теории возмущений  для 
свободного многоэлектронного атома. В качестве иллюстрации применения представленно-
го формализма приведены результаты энергетических и спектральных параметров для ряда 
атомов. Релятивистский метод OPT тестируется для вычисления штарковских сдвигов рид-
берговских состояний для нескольких многоэлектронных систем, в частности, для натрия 
и рубидия. Новый подход разработан для последовательного описания  эффекта Штарка в 
многоэлектронных атомах в сильном внешнем электрическом поле. 

Ключевые слова:  Многоэлектронные атом, электрическое поле, релятивистская опера-
торная теория возмущений оператора, ридберговские состояния
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СПЕКТРОСКОПІЯ БАГАТОЕЛЕКТРОННОГО АТОМА В ЕЛЕКТРИЧНОМУ ПОЛІ: 
РЕЛЯТИВІСТСЬКА ОПЕРАТОРНА ТЕОРІЯ ЗБУРЕНЬ

Резюме. Викладено теоретичні основи нового апарату релятивістської операторної те-
орії збурень в спектроскопії багатоелектронного атома в електричному полі, об’єднаного з 
формалізмом релятивістської багаточастинкової теорії збурень для вільного багатоелектрон-
ного атома. В якості ілюстрації застосування представленого формалізму наведені резуль-
тати обчислення енергетичних і спектральних параметрів для ряду атомів. Релятивістський 
метод OPT тестується для обчислення штарківських зсувів  рідбергівських станів для декіль-
кох багатоелектронних систем, зокрема, для натрію і рубідію. Новий підхід розроблений для 
послідовного опису ефекту Штарка в багатоелектронних атомах в сильному зовнішньому 
електричному полі. 

Ключові слова: багатоелектронний атом, електричне поле, релятивістська операторна 
теорія збурень оператора, рідбергівські стани
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THEORETICAL STUDYING RYDBERG STATES SPECTRUM OF THE URANIUM 
ATOM ON THE BASIS OF RELATIVISTIC MANY-BODY PERTURBATION THEORY

Theoretical studying spectrum of the Rydberg states for the uranium atom is carried out within the relativistic 
many-body perturbation theory with ab initio zeroth approximation and generalized relativistic energy approach.  The 
zeroth approximation of the relativistic perturbation theory is provided by the optimized Dirac-Kohn-Sham ones. 
Optimization has been fulfilled by means of introduction of the parameter to the Kohn-Sham exchange potentials 
and further minimization of the gauge-non-invariant contributions into radiation width of atomic levels with using 
relativistic orbital set, generated by the corresponding zeroth approximation Hamiltonian. 

1.  Introduction
Development of new directions in the 

field of optics and spectroscopy, laser physics 
and quantum electronics, such as precision 
spectroscopy of heavy and ultra-heavy atoms and 
ions, newest astrospectroscopic studies, impulse 
heating methods in controlled thermonuclear 
synthesis spectrum, etc., necessitates the 
solution of urgent and important problems 
of atomic optics and laser spectroscopy at a 
fundamentally new level of theoretical sequence 
and fullness. In the last decade, spectroscopy of 
multiply charged ions, which covers the UV 
and X-ray bands of the spectrum, has been 
intensively developing. Significant progress in 
the development of experimental methods of 
research, in particular, a significant increase 
in the intensity and quality of laser radiation, 
the use of accelerators, colliders of heavy 
ions, sources of synchrotron radiation and, 
as a consequence, the possibility of precision 
study of increasingly energetic processes, 
stimulates the theories of new methods of 
theories calculation of their characteristics, in 
particular, radiation and autoionization ones. 
It is known that autoionization states play an 
essential role in various elementary atomic 
processes such as autoionization, selective 
photoionization, electron scattering at atoms, 
atomic and ionic atomic collisions, etc. The 

presence of autoionization states in ions 
significantly affects the nature of the spectrum 
of high-radiation astrophysical and laboratory 
plasma. Their radiation decay is accompanied 
by the formation of the most complex spectra 
of dielectronic satellites to resonant ion lines 
of subsequent ionization multiplicity, which 
contain information about the state of the plasma 
used for its diagnosis, as well as the study of the 
physical conditions in the solar corona and other 
astrophysical objects [1-25]. 
The multi-configuration Dirac-Fock method 
is the most reliable version of calculation for 
multielectron systems with a large nuclear charge. 
In these calculations the one- and two-particle 
relativistic and important exchange-correlation 
corrections are taken into account (see [9] and 
Refs. therein). However, one should remember 
about very complicated structure of spectra of 
the heavy atoms, including actinides, uranium, 
trans-uranium elements and others and necessity 
of correct accounting for the different correlation 
effects such as polarization interaction of the 
valent quasiparticles and their mutual screening, 
iterations of a mass operator etc.). One of the 
effective methods of studying the heavy atoms 
is the relativistic many-body perturbation theory 
(RMBPT), namely, [26-29]. It has been earlier 
effectively applied to computing spectra of low-
lying states for some lanthanides atoms [25] 
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(see [26,27]).  The aim of our present work is 
to use an analogous version of the relativistic 
many-body perturbation theory (PT) with an 
ab initio Dirac-Kohn-Sham approximation to 
study spectrum of autoionization states for the 
uranium. It is important to remind that isotope 
separation of atomic uranium using laser 
selective photoionization processes has attracted 
much attention now [3-6,9]. 

2.  The relativistic many-body
perturbation theory and energy approach

As the method of computing is earlier 
presented in detail, here we are limited only by 
the key topics [26-29]. Generally speaking, the 
majority of complex atomic systems possess 
a dense energy spectrum of interacting states 
with essentially relativistic properties. In the 
theory of the non-relativistic atom a convenient 
field procedure is known for calculating the 
energy shifts DΕ  of degenerate states. This 
procedure is connected with the secular matrix 
M diagonalization [30-32]. In constructing M, 
the Gell-Mann and Low adiabatic formula for 
DΕ  is used. 
     In contrast to the non-relativistic case, the 
secular matrix elements are already complex 
in the second order of the electrodynamical 
PT (first order of the interelectron interaction). 
Their imaginary part of DΕ  is connected with 
the radiation decay (radiation) possibility. In this 
approach, the whole calculation of the energies 
and decay probabilities of a non-degenerate 
excited state is reduced to the calculation and 
diagonalization of the complex matrix M. In the 
papers of different authors, the Re ED  calculation 
procedure has been generalized for the case of 
nearly degenerate states, whose levels form 
a more or less compact group. One of these 
variants has been previously introduced: for a 
system with a dense energy spectrum, a group 
of nearly degenerate states is extracted and their 
matrix M is calculated and diagonalized. If the 
states are well separated in energy, the matrix 
M reduces to one term, equal to ED . The non-
relativistic secular matrix elements are expanded 
in a PT series for the interelectron interaction. 

The complex secular matrix M is represented in 
the form [26,27]:

              ( ) ( ) ( ) ( )0 1 2 3 .M M M M M= + + +     (1)

where ( )0M  is the contribution of the vacuum 
diagrams of all order of PT, and ( )1M , ( )2M
, ( )3M  those of the one-, two- and three- 
quasiparticle diagrams respectively. ( )0M  is a 
real matrix, proportional to the unit matrix. It 
determines only the general level shift. We have 
assumed ( )0 0.M =  The diagonal matrix ( )1M  
can be presented as a sum of the independent 
one-quasiparticle contributions. For simple 
systems (such as alkali atoms and ions) the one-
quasiparticle energies can be taken from the 
experiment. Substituting these quantities into (1) 
one could have summarized all the contributions 
of the one -quasiparticle diagrams of all orders 
of the formally exact QED PT. However, the 
necessary experimental quantities are not often 
available. 
     The first two order corrections to ( )2Re M  
have been analyzed previously using Feynman 
diagrams (look Ref. in [2,3]). The contributions 
of the first-order diagrams have been completely 
calculated. In the second order, there are two 
kinds of diagrams: polarization and ladder ones.  
The polarization diagrams take into account the 
quasiparticle interaction through the polarizable 
core, and the ladder diagrams account for the 
immediate quasiparticle interaction [30-36]. 
Some of the ladder diagram contributions as 
well as some of the three-quasiparticle diagram 
contributions in all PT orders have the same 
angular symmetry as the two-quasiparticle 
diagram contributions of the first order. These 
contributions have been summarized by a 
modification of the central potential, which 
must now include the screening (anti-screening) 
of the core potential of each particle by the two 
others. The additional potential modifies the 
one-quasiparticle orbitals and energies. 
    Then the secular matrix is as follows: 

                     )2()1( ~~ MMM +→ ,              (2) 
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where ( )1M  is the modified one-quasiparticle 
matrix ( diagonal), and ( )2M  the modified 
two-quasiparticle one. ( )1M  is calculated by 
substituting the modified one-quasiparticle 
energies), and ( )2M  by means of the first PT 
order formulae for ( )2M , putting the modified 
radial functions of the one-quasiparticle states 
in the radial  integrals.. 
Let us remind that in the QED theory, the photon 
propagator D(12) plays the role of this interaction. 
Naturally the analytical form of D(12) depends 
on the gauge, in which the electrodynamical 
potentials are written. Interelectron interaction 
operator with accounting for  Breit interaction 
has been taken as follows:  

   (3)

where, as usually, αi are the Dirac matrices. 
In general, the results of all approximate 
calculations depended on the gauge.  Naturally 
the correct result must be gauge-invariant. The 
gauge dependence of the amplitudes of the 
photoprocesses in the approximate calculations 
is a known fact and is investigated by Grant, 
Armstrong, Aymar and Luc-Koenig, Glushkov-
Ivanov-Ivanova et al (see review in [9,32]). Grant 
has investigated the gauge connection with the 
limiting non-relativistic form of the transition 
operator and has formulated the conditions for 
approximate functions of the states, in which 
the amplitudes of the photo processes are gauge 
invariant (see review in [9]). These results 
remain true in the energy approach because 
the final formulae for the probabilities coincide 
in both approaches. Glushkov-Ivanov have 
developed a new relativistic gauge-conserved 
version of the energy approach [32]. In ref. 
[30,35-40] it has been developed its further 
generalization. Here we applied this approach 
for generating the optimized relativistic orbitals 
basis in the zeroth approximation of the many-
body PT. Optimization has been fulfilled by 
means of introduction of the parameter to the 
Fock and Kohn-Sham exchange potentials 
and further minimization of the gauge-non-

invariant contributions into radiation width 
of atomic levels with using relativistic orbital 
bases, generated by the corresponding zeroth 
approximation Hamiltonians [26]. Other details 
can be found in Refs. [9,27-29,41-47].

3. Some results and conclusion
In Table 1 we present the measured [3] and 

calculated energies (in cm-1) of the levels of the 
lower members of the Rydberg series of uranium 
5f37s2np, counted from the level of 33083.3 
cm-1; excitation sequence: 6056.81 + 6030.6 + 
(5943-5951) Å. 

Table 1. 
The measured and calculated energies (in cm-
1) of the levels of the lower members of the 
Rydberg series of uranium 5f37s2np, counted 
from the level of 33083.3 cm-1; excitation 
sequence: 6056.81 + 6030.6 + (5943-5951) Å

Eexp
[3]

Eth 
[3]

Eth
This work

ncalc

49885.6
49889.4
49893.0

49885.9
49889.5
49892.8

49889.7
49891.9
49894.2

44
45
46

49896.3
49898.9
49901.4
49903.9

49895.8
49898.8
49901.4
49903.9

49896.6
49898.8
49901.3
49903.9
49906.2
49908.4
49910.5

47
48
49
50
51
52
53

In Table 2 we present the measured [3] and 
calculated energies (in cm-1) of the levels of the 
lower members of the Rydberg uranium series 
5f37s2nf, counted from the level 32857.449cm-

1 (5f36d7s8s 0
5

7 L ); excitation sequence: 
6056.81+6113.89+(5862-5914) Å. 
Analysis shows that the correct account for 
the complex many-body exchange-correlation 
effects plays very critical role. 
It should be noted too that the data on energies 
of the members of the Rydberg series should 

where  1M  is the modified one-quasiparticle 
matrix ( diagonal), and  2M  the modified 
two-quasiparticle one.  1M  is calculated by 
substituting the modified one-quasiparticle 
energies), and  2M  by means of the first PT 
order formulae for  2M , putting the 
modified radial functions of the one-
quasiparticle states in the radial  integrals..  
Let us remind that in the QED theory, the 
photon propagator D(12) plays the role of 
this interaction. Naturally the analytical form 
of D(12) depends on the gauge, in which the 
electrodynamical potentials are written. 
Interelectron interaction operator with 
accounting for  Breit interaction has been 
taken as follows:   
 

           
ij

ji
ijji r

αα1
riexprrV


  ,      (3) 

 
where, as usually, i are the Dirac matrices. 
In general, the results of all approximate 
calculations depended on the gauge.  
Naturally the correct result must be gauge-
invariant. The gauge dependence of the 
amplitudes of the photoprocesses in the 
approximate calculations is a known fact and 
is investigated by Grant, Armstrong, Aymar 
and Luc-Koenig, Glushkov-Ivanov-Ivanova 
et al (see review in [9,32]). Grant has 
investigated the gauge connection with the 
limiting non-relativistic form of the transition 
operator and has formulated the conditions 
for approximate functions of the states, in 
which the amplitudes of the photo processes 
are gauge invariant (see review in [9]). These 
results remain true in the energy approach 
because the final formulae for the 
probabilities coincide in both approaches. 
Glushkov-Ivanov have developed a new 
relativistic gauge-conserved version of the 
energy approach [32]. In ref. [30,35-40] it 
has been developed its further generalization. 
Here we applied this approach for generating 
the optimized relativistic orbitals basis in the 
zeroth approximation of the many-body PT. 
Optimization has been fulfilled by means of 
introduction of the parameter to the Fock and 
Kohn-Sham exchange potentials and further 

minimization of the gauge-non-invariant 
contributions into radiation width of atomic 
levels with using relativistic orbital bases, 
generated by the corresponding zeroth 
approximation Hamiltonians [26]. Other 
details can be found in Refs. [9,27-29,41-47]. 
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excitation sequence: 6056.81 + 6030.6 + 

(5943-5951) Å 
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47 
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In Table 2 we present the measured [3] and 
calculated energies (in cm-1) of the levels of 
the lower members of the Rydberg uranium 
series 5f37s2nf, counted from the level 
32857.449cm-1 (5f36d7s8s 0

5
7 L ); excitation 

sequence: 6056.81+6113.89+(5862-5914) Å.  
Analysis shows that the correct account for 
the complex many-body exchange-
correlation effects plays very critical role.  
It should be noted too that the data on 
energies of the members of the Rydberg 
series should be checked and correspond to 
so called the smoothness test. 
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be checked and correspond to so called the 
smoothness test.

Table 2. 
The observed and calculated energies (in cm-

1) of the levels of the lower members of the 
Rydberg uranium series 5f37s2nf, counted 

from the level 32857.449 cm-1 (5f36d7s8s 0
5

7 L
); excitation sequence: 6056.81 + 6113.89 + 

(5862-5914) Å

Eexp
[3]

Eth 
[3]

Eth
This *

expn
ncalc .

49765.3
49830.7
49877.8
49917.0

49767
49824
49871
49911

49765.0
49829.1
49876.5
49916.2

15.10
16.23
17.24
18.23

20
21
22
23

The detailed analysis shows that some presented 
(in literature) values of the Rydberg states 
energies do not correspond to this test and as 
result, there is a possibility of a jump to another 
Rydberg series. More detailed data of this study 
are presented in Ref. [45]. 
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 V. B. Ternovsky 
 

THEORETICAL STUDYING RYDBERG STATES SPECTRUM OF THE URANIUM 
ATOM ON THE BASIS OF RELATIVISTIC MANY-BODY PERTURBATION THEORY

Summary. Theoretical studying energies of the autoionization states for the uranium atom is carried out 
within the relativistic many-body perturbation theory with ab initio zeroth approximation and generalized 
relativistic energy approach.  The zeroth approximation of the relativistic perturbation theory is provided 
by the optimized Dirac-Kohn-Sham ones. Optimization has been fulfilled by means of introduction of the 
parameter to the Kohn-Sham exchange potentials and further minimization of the gauge-non-invariant con-
tributions into radiation width of atomic levels with using relativistic orbital set, generated by corresponding 
zeroth approximation Hamiltonian. 

Keywords: Relativistic perturbation theory, optimized zeroth approximation, heavy atom, Rydberg states

PACS 32.30.-r

В. Б. Терновский

ТЕОРЕТИЧЕСКОЕ ИССЛЕДОВАНИЕ СПЕКТРА РИДБЕРГОВСКИХ СОСТОЯНИЙ 
АТОМА УРАНА НА ОСНОВЕ РЕЛЯТИВИСТСКОЙ МНОГОЧАСТИЧНОЙ ТЕО-

РИИ ВОЗМУЩЕНИЙ

Резюме. В рамках релятивистской многочастичной теории возмущений и обобщенного 
релятивистского энергетического подхода проведено теоретическое исследование спектра 
ридберговских состояний атома урана. В качестве нулевого приближения релятивистской 
теории возмущений выбрано оптимизированное приближение Дирака-Кона-Шэма. Оптими-
зация выполнена путем введения параметра в обменные потенциалы Фока и Кона-Шэма и 
дальнейшей минимизацией калибровочно-неинвариантных вкладов в радиационные шири-
ны атомных уровней с использованием релятивистского базиса орбиталей, сгенерированно-
го соответствующим гамильтонианом нулевого приближения. 

Ключевые слова: Релятивистская теория возмущений, оптимизированное нулевое при-
ближение, тяжелый атом, ридберговские состояния
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В. Б. Терновський,

ТЕОРЕТИЧНЕ ВИВЧЕННЯ СПЕКТРУ РІДБЕРГІВСЬКИХ СТАНІВ АТОМУ УРАНА 
НА ОСНОВІ РЕЛЯТИВІСТСЬКОЇ БАГАТОЧАСТКОВІ ТЕОРІЇ ЗБУРЕНЬ

Резюме. В рамках релятивістської багаточастинкової  теорії збурень і узагальненого реля-
тивістського енергетичного підходу проведено теоретичне дослідження спектра автоіоніза-
ційних станів атома урану. В якості нульового наближення релятивістської теорії збурень об-
рано оптимізоване наближення Дірака-Кона-Шема. Оптимізація виконана шляхом введення 
параметра в обмінний потенціал Кона-Шема і подальшої мінімізації калібрувально-неінва-
ріантних вкладів в радіаційні ширини атомних рівнів з використанням релятивістського ба-
зису орбіталей, згенерованого відповідним гамільтоніаном нульового наближення.

Ключові слова: Релятивістська теорія збурень, оптимізоване нульове наближення, 
важкий атом, рідбергівські стани
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RELATIVISTIC SPECTROSCOPY OF  HEAVY RYDBERG ATOMIC SYSTEMS 
IN A BLACK-BODY RADIATION FIELD

We present the results of studying the spectroscopic characteristics of heavy Rydberg atomic systems in a black-
body (thermal) radiation field. As theoretical approach we apply the  combined generalized relativistic energy approach 
and relativistic many-body perturbation theory with ab initio Dirac zeroth  approximation. There are presented the 
calculational data for the thermal black-body radiation ionization characteristics of the alkali Rydberg atoms, in 
particular, the sodium in Rydberg states with principal quantum number n=10-100 and ytterbium ion. Application 
of theory to computing the spectral parameters of studied atomic systems have demonstrated physically reasonable 
agreement between the theoretical and experimental data. The  accuracy of the theoretical data is provided by a 
correctness of the corresponding relativistic wave functions and accounting for the exchange-correlation effects.

1. Introduction
At the present time, the study of Rydberg 

atoms (molecules) is definitely one of the most 
popular and very interesting directions of mod-
ern quantum physics and chemistry, atomic 
optics and spectroscopy. The huge relevance 
of the investigation of the energy and spectral 
properties of the Rydberg atoms (molecules) is, 
of course, due to the standard requirements for 
spectroscopic information of a number of appli-
cations and related physical disciplines, which 
include physics and chemistry of laboratory, 
astrophysical plasma, astrophysics and radioas-
tronomy, atomic and molecular optics and spec-
troscopy, laser physics and quantum electronics 
and many others [1-94]). From the other side, 
the experiments with Rydberg atoms had very 
soon resulted in the discovery of an important 
ionization mechanism, provided by unique fea-
tures of the Rydberg atoms. 

Relatively new topic of the modern theory 
is connected with consistent treating the Ryd-
berg atoms in a field of the Blackbody radiation 
(BBR). It should be noted that the BBR is one of 
the essential factors affecting the Rydberg states 
in atoms [1]. The account for the ac Stark shift, 
fast redistribution of the levels’ population and 
photoionization provided by the environmental 
BBR  became of a great importance for success-
fully handling atoms in their Rydberg states. 

The vast majority of existing papers on the de-
scription of Rydberg atoms in the  thermal radia-
tion field (c.g. [1-32]) are based on the Coulomb 
hydrogen-like approximation, different versions 
of the quantum defect method, classical and 
quasiclassical model approaches, the model and 
pseudo – potential methods. The authors of the 
papers [3-10] applied the Coulomb approxima-
tion, quantum defect formalism, different ver-
sions of the model and pseudo-potential method 
etc (as a rule, the non-relativistic versions are 
used) to determine the spectral and radiative 
properties of different Rydberg atoms and ions.   

It should be noted separately the cycles of 
theoretical and experimental works by Ryabtsev-
Beterov et al [2,3], as well as theoretical works 
of Dyachkov-Pankratov and others (c.g.[1-10]), 
in which the advanced versions of a quasi-clas-
sical approach to the calculation of radiation am-
plitudes, oscillator strengths, and cross-sections 
for the Rydberg atoms in the BBR radiation field 
were actually developed.   In the papers [1-3,7-
10] the authors present the calculational data on 
the ionization rates for Rydberg atoms of alkali 
elements (lithium, sodium, potassium, caesium) 
by a BBR radiation field. The calculations were 
carried out for the nS, nP, and nD states in the 
wide range of principal quantum numbers and 
temperatures. The above theoretical works and 
relevant models were substantially based on 
non-relativistic approximation. 
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At the same time one should note that for 
heavy Rydberg atoms (both in the free state and 
in an external electromagnetic field) it is fun-
damentally important to accurately account for 
both relativistic and exchange-correlation ef-
fects. 

The quality and consistency of accounting 
for these effects also determine the accuracy of  
description of the energy and spectroscopic pa-
rameters of the heavy Rydberg atoms, including 
these atoms in a thermal radiation field. 

Naturally, the standard methods of the theo-
retical atomic physics, including the Hartree-
Fock and Dirac-Fock  approximations should be 
used in order to determine the thermal ioniza-
tion characteristics of neutral and Rydberg at-
oms [2]. 

One could note that the correct treating of the 
heavy Rydberg atoms parameters in an external 
electromagnetic field, including the BBR field, 
requires using strictly relativistic models. In a 
case of multielectron atomic systems it is nec-
essary to account for thee exchange-correlation 
corrections.     

Among the fundamentally important ex-
change-correlation effects for essentially many-
electron systems, one should single out such ef-
fects as polarization interaction and screening, 
continuum pressure, the non-Coulomb grouping 
of levels in the heavy Rydberg atoms spectra etc. 
It should be noted that these effects are not cor-
rectly considered, for example,  within simpli-
fied Coulomb approximation or quantum defect 
models (c.g.[11-20]). Their account requires us-
ing very consistent methods. 

We present the results of studying the spec-
troscopic characteristics of heavy Rydberg 
atomic systems in a black-body (thermal) radia-
tion field. 

As theoretical approach we apply the  com-
bined generalized relativistic energy approach 
and relativistic many-body perturbation theory 
with ab anitio Dirac zeroth  approximation.

 
2. Atom in a Black-body radiation field: 

Theoretical aspects
From the physical viewpoint, a qualitative 

picture of the BBR Rydberg atoms ionization is 
easily understandable. Even for temperatures of 

order T=104 K, the frequency of a greater part 
of the BBR photons ω does not exceed 0.1 a.u. 
Usually, it is enough to use a single- electron ap-
proximation  for calculating the ionization cross 
section σnl (ω). 

The latter appears in a product with the 
Planck’s distribution for the thermal photon 
number density: 

    (1)

where k=3.1668×10−6 a.u., K−1 is the Boltz-
mann constant, c = 137.036 a.u. is the speed of 
light. Ionization rate of a bound state nl results 
in the integral over the Blackbody radiation fre-
quencies:
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where  the radial matrix element of the ion-
ization transition from the bound state with the 
radial wave function Rnl(r) to continuum state 
with the wave function REl (r) normalized to the 
delta function of energy. 

The corresponding radial matrix elements are 
written by the standard way. Other details can be 
found in Refs. [9-16].

 
3. Relativistic perturbation theory and 

energy approach
We apply a generalized energy approach [9-

20] and relativistic perturbation theory with the 
zeroth approximation [21-32] to computing the 
Rydberg atoms ionization parameters. Accord-
ing to Ref. [11,22], the RMBPT zeroth order 
Hamiltonian of the Rydberg atomic system is as 
follows:    
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where  the radial matrix element of the 
ionization transition from the bound state 
with the radial wave function Rnl(r) to 
continuum state with the wave function REl 
(r) normalized to the delta function of 
energy.  
     The corresponding radial matrix elements 
are written by the standard way. Other details 
can be found in Refs. [9-16]. 
  

3. Relativistic perturbation theory and 
energy approach 

We apply a generalized energy approach 
[9-20] and relativistic perturbation theory 
with the zeroth approximation [21-32] to 
computing the Rydberg atoms ionization 
parameters. According to Ref. [11,22], the 
RMBPT zeroth order Hamiltonian of the 
Rydberg atomic system is as follows:     
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where с is the velocity of light, i,j – the 
Dirac matrices, ij –the transition frequency,  
Z is a charge of atomic nucleus. The general 
potential in (4) includes   self-consistent 
Coulomb-like mean-field potential 

)|( brU iMF , ab ibitio one-particle exchange-
correlation (relativistic generalized exchange 
Kohn-Sham potential plus generalized 
correlation  Lundqvist-Gunnarsson potential) 

)|( brV iXC  with the gauge calibrated 
parameter b (it is determined within special 
relativistic procedure on the basis of 
relativistic energy approach; c.g. [21-32]).  
     The perturbation operator is as follows: 
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 The multielectron interelectron exchange-
correlation effects (the core polarization and 
screening effects, continuum pressure etc) 
are taken into consideration  as the RMBPT 
second and higher orders contributions. The 
details of calculation of the corresponding 
matrix elements of the polarization and 
screening interelectron interaction potentials 
are described in Refs. [9,22,33-38].  
In relativistic theory radiation decay 
probability (ionization cross-section etc) is 
connected with the imaginary part of electron 
energy shift. The total energy shift of the 
state is usually presented in the form: E = 
ReE + i /2, where  is interpreted as the 

level width, and a decay probability P = . 
The imaginary part of electron energy shift is 
defined in the PT lowest order as:  
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where (>n>f)  for electron and (<n<f)  for 
vacancy. The matrix element is determined 
as follows: 

 

  )()1(
sin

)( 121
12

12
221 r)Ψ(rΨ

r
r

r)Ψ(rΨdrdrV *
l2

*
k

*
j1

*
iijkl 



 

            
  )()1(

sin
)( 121

12

12
221 r)Ψ(rΨ

r
r

r)Ψ(rΨdrdrV *
l2

*
k

*
j1

*
iijkl 



                (7) 
Their detailed description of the matrix 
elements and procedure for their computing 
is presented in  Refs. [16-20]. The relativistic 
wave functions are calculated by solution of 
the Dirac equation with the potential, which 
includes the Dirac-Fock consistent field 
potential and additionally  polarization 
potential [22].  
     The total ionization rate of the Rydberg 
atomic system in the BBR radiation field is 
usually determined as the sum of direct BBR 
ionization rate of the initially excited state,  
the ionization (field ionization) rate of highly 
excited states, which are populated from the 
initial Rydberg state via absorption of the 
BBR photons, the rate of direct BBR-induced 
ionization of atoms from the neighbouring 
Rydberg states and  the rate of field 
ionization of high-lying Rydberg states (with  
populating through so called two-step 
process via the BBR photons absorption).   
     The total width of the Rydberg state 
(naturally isolated from all external 
electromagnetic fields except BBR one) 
consists, apparently, of natural, spontaneous 
radiation width sp

nlГ and BBR-induced 
(thermal) width BBR

nlГ :  
                                                          
                   )(ГГГ TBBR

nl
sp
nl

tot
nl  .              (8) 
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Their detailed description of the matrix 
elements and procedure for their computing 
is presented in  Refs. [16-20]. The relativistic 
wave functions are calculated by solution of 
the Dirac equation with the potential, which 
includes the Dirac-Fock consistent field 
potential and additionally  polarization 
potential [22].  
     The total ionization rate of the Rydberg 
atomic system in the BBR radiation field is 
usually determined as the sum of direct BBR 
ionization rate of the initially excited state,  
the ionization (field ionization) rate of highly 
excited states, which are populated from the 
initial Rydberg state via absorption of the 
BBR photons, the rate of direct BBR-induced 
ionization of atoms from the neighbouring 
Rydberg states and  the rate of field 
ionization of high-lying Rydberg states (with  
populating through so called two-step 
process via the BBR photons absorption).   
     The total width of the Rydberg state 
(naturally isolated from all external 
electromagnetic fields except BBR one) 
consists, apparently, of natural, spontaneous 
radiation width sp

nlГ and BBR-induced 
(thermal) width BBR
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where с is the velocity of light, ai,aj – the 
Dirac matrices, wij –the transition frequency,  Z 
is a charge of atomic nucleus. The general po-
tential in (4) includes   self-consistent Coulomb-
like mean-field potential )|( brU iMF , ab ibitio 
one-particle exchange-correlation (relativistic 
generalized exchange Kohn-Sham potential plus 
generalized correlation  Lundqvist-Gunnarsson 
potential) )|( brV iXC  with the gauge calibrated 
parameter b (it is determined within special 
relativistic procedure on the basis of relativistic 
energy approach; c.g. [21-32]). 

The perturbation operator is as follows:

                                (5)

The multielectron interelectron exchange-
correlation effects (the core polarization and 
screening effects, continuum pressure etc) are 
taken into consideration  as the RMBPT second 
and higher orders contributions. The details of 
calculation of the corresponding matrix ele-
ments of the polarization and screening intere-
lectron interaction potentials are described in 
Refs. [9,22,33-38]. 
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where (a>n>f)  for electron and (a<n<f)  for 
vacancy. The matrix element is determined as 
follows:
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Their detailed description of the matrix ele-
ments and procedure for their computing is pre-
sented in  Refs. [16-20]. The relativistic wave 
functions are calculated by solution of the Dirac 
equation with the potential, which includes the 
Dirac-Fock consistent field potential and addi-
tionally  polarization potential [22]. 

The total ionization rate of the Rydberg atom-
ic system in the BBR radiation field is usually 
determined as the sum of direct BBR ionization 
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rally isolated from all external electromagnetic 
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natural, spontaneous radiation width sp
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BBR-induced (thermal) width BBR
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Accordingly, the effective lifetime of the Ry-
dberg state is inversely proportional to the total 
decay rate as a result of spontaneous transitions 
and transitions induced by the BBR radiation:
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The detailed procedures of calculation of 
the radial  and angular integrals (amplitudes) in 
the matrix elements are described in Refs. [9-
20,22,38-41]. All calculations are performed on 
the basis of the numeral code Superatom-ISAN 
(version 93).

4. Results and conclusions
In Table 1 we present our theoretical data on 

the effective lifetime of the sodium nP, nD Ry-
dberg states and for comparison some theoreti-
cal data by Beterov et al [2,3] for temperatures 
T=300, 600K. In Table 2 we present our theoret-
ical data on the effective lifetime of the sodium 
nP, nD Rydberg states for temperatures T=300 
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Their detailed description of the matrix 
elements and procedure for their computing 
is presented in  Refs. [16-20]. The relativistic 
wave functions are calculated by solution of 
the Dirac equation with the potential, which 
includes the Dirac-Fock consistent field 
potential and additionally  polarization 
potential [22].  
     The total ionization rate of the Rydberg 
atomic system in the BBR radiation field is 
usually determined as the sum of direct BBR 
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where (>n>f)  for electron and (<n<f)  for 
vacancy. The matrix element is determined 
as follows: 
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                (7) 
Their detailed description of the matrix 
elements and procedure for their computing 
is presented in  Refs. [16-20]. The relativistic 
wave functions are calculated by solution of 
the Dirac equation with the potential, which 
includes the Dirac-Fock consistent field 
potential and additionally  polarization 
potential [22].  
     The total ionization rate of the Rydberg 
atomic system in the BBR radiation field is 
usually determined as the sum of direct BBR 
ionization rate of the initially excited state,  
the ionization (field ionization) rate of highly 
excited states, which are populated from the 
initial Rydberg state via absorption of the 
BBR photons, the rate of direct BBR-induced 
ionization of atoms from the neighbouring 
Rydberg states and  the rate of field 
ionization of high-lying Rydberg states (with  
populating through so called two-step 
process via the BBR photons absorption).   
     The total width of the Rydberg state 
(naturally isolated from all external 
electromagnetic fields except BBR one) 
consists, apparently, of natural, spontaneous 
radiation width sp

nlГ and BBR-induced 
(thermal) width BBR

nlГ :  
                                                          
                   )(ГГГ TBBR

nl
sp
nl

tot
nl  .              (8) 
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and 600K. Obviously, the accuracy of the theo-
retical data is provided by a correctness of the 
corresponding relativistic wave functions and 
accounting for the exchange-correlation effects.

Table 1. 
Effective lifetime (µs) of  the nP Rydberg 

states in the sodium spectrum for the tem-
perature T = 300: [2]- theory by Beterov et al 

and this work.

n

T= 300 K
P1/2
P3/2
Ref.
[2]

T= 300 
K

P1/2
P3/2
This 
work

10 4.80
4.76

4.84
4.81

20 20.99
20.89

21.06
20.96

30 48.71
48.56

48.84
48.70

Table 2. 
Effective lifetime (µs) of  the nP, nD Rydberg 

states in the sodium spectrum for
the temperatures T = 300, 600K (this work).

n

T= 600 
K

P1/2
P3/2
This 
work

T= 300 K
D3/2
D5/2

This work

T= 600 
K

D3/2
D5/2
This 
work

10 2.84
2.83

0.913
0.914

0.837
0.838

20 11.42
11.38

6.263
6.266

5.164
5.167

30 26.03
25.97

18.602
18.609

14.281
14.285

In conclusion we also present our result of  
computing the relative blackbody radiative shift  
(in 10−14) for singly ionized Yb:  β=--0.097. 

The similar β values are obtained using third-
order relativistic many-body calculations [4] 
β=−0.0983 and ab initio method [5]:  β=−0.094. 
In these calculations different methods are used 
to compute  matrix elements and different orbit-
al basises  are used. The details of this problem 
will be presented in a separate paper. 
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A. V. Tsudik, A. A. Kuznetsova, P. A. Zaichko, V. F. Mansarliysky

RELATIVISTIC SPECTROSCOPY OF  HEAVY RYDBERG ATOMIC SYSTEMS 
IN A BLACK-BODY RADIATION FIELD

Summary. We present the results of studying the spectroscopic characteristics of heavy Rydberg 
atomic systems in a black-body (thermal) radiation field. As theoretical approach we apply the  
combined generalized relativistic energy approach and relativistic many-body perturbation theory 
with ab initio Dirac zeroth  approximation. There are presented the calculational data for the ther-
mal black-body radiation ionization characteristics of the alkali Rydberg atoms, in particular, the 
sodium in Rydberg states with principal quantum number n=10-100 and ytterbium ion. Applica-
tion of theory to computing the spectral parameters of studied atomic systems have demonstrated 
physically reasonable agreement between the theoretical and experimental data. The  accuracy of 
the theoretical data is provided by a correctness of the corresponding relativistic wave functions 
and accounting for the exchange-correlation effects.

Key words: Rydberg heavy  atoms, relativistic theory, black-body radiation field.
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А. В. Цудик, А. А. Кузнецова, П. А. Заичко, В. Ф. Мансарлийский

РЕЛЯТИВИСТСКАЯ СПЕКТРОСКОПИЯ ТЯЖЕЛЫХ РИДБЕРГОВСКИХ 
АТОМНЫХ СИСТЕМ В ПОЛЕ ИЗЛУЧЕНИЯ ЧЕРНОГО ТЕЛА

Резюме. Представлены результаты изучения спектроскопических характеристик тяжелых 
ридберговских атомных систем в поле чернотел(теплового) излучения. В качестве теоретиче-
ского подхода мы применяем комбинированный релятивистский энергетический подход и реля-
тивистскую многочастичную теорию возмущений с оптимизированныи дираковским нулевым 
приближением. Представлены результаты расчета спектроскопических характеристик щелоч-
ных ридберговских атомов в поле теплового излучения черного тела, в частности, натрия в рид-
берговских состояниях с главным квантовым числом n=20-100 и иона иттербия. Применение 
теории к вычислению спектральных параметров исследуемых атомных систем продемонстри-
ровало физически разумное согласие между теоретическими и экспериментальными данными. 
Точность теоретических данных обеспечивается корректностью вычисления соответствующих 
релятивистских волновых функций и полнотой учета обменно-корреляционных эффектов.

Ключевые слова: ридберговские тяжелые атомы, релятивистская теория, тепловое излучение.
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А. В. Цудік, Г. О. Кузнецова, П. А. Заічко, В. Ф. Мансарлійський

РЕЛЯТИВІСТСЬКА СПЕКТРОСКОПІЯ ВАЖКИХ РІДБЕРГІВСЬКИХ 
АТОМНИХ СИСТЕМ В ПОЛІ ВИПРОМІНЮВАННЯ ЧОРНОГО ТІЛА

Резюме. Представлені результати вивчення спектроскопічних характеристик важких рід-
бергівських атомних систем в полі чорнотільного (теплового) випромінювання. В якості тео-
ретичного підходу ми застосовуємо комбінований релятивістський енергетичний підхід і ре-
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лятивістську багаточастинкову теорію збурень з оптимізованим діраківським нульовим набли-
женням. Представлені результати розрахунку спектроскопічних характеристик лужних рід-
бергівських атомів в полі теплового випромінювання, зокрема, натрію в рідбергівських станах 
з головним квантовим числом n = 20-100 та іону ітербію. Застосування теорії до обчислення 
спектральних параметрів досліджуваних атомних систем продемонструвало фізично розумну 
згоду між теоретичними і експериментальними даними. Точність теоретичних даних забезпе-
чується коректністю обчислення відповідних релятивістських хвильових функцій і повнотою 
обліку обмінно-кореляційних ефектів.

Ключові слова: рідбергівські важкі атоми, релятивістська теорія, теплове випромінювання.
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RELATIVISTIC CALCULATION OF THE HYPERFINE STRUCTURE 
PARAMETERS FOR COMPLEX ATOMS WITHIN MANY-BODY PERTURBATION 

THEORY

Abstract.  The hyperfine structure parameters and electric quadrupole moment of the 201Hg mercury isotope the Mn 
atom are estimated within the relativistic many-body perturbation theory formalism with a correct and effective taking 
into account the exchange-correlation, relativistic, nuclear and radiative corrections. Analysis of the data shows that an 
account of the interelectron correlation effects is crucial in the calculation of the hyperfine structure parameters.  The 
fundamental reason of physically reasonable agreement between theory and experiment is connected with the correct 
taking into account the inter-electron correlation effects, nuclear (due to the finite size of a nucleus), relativistic and 
radiative corrections. The key difference between the results of the relativistic Hartree-Fock Dirac-Fock and many-
body perturbation theory methods calculations is explained by using the different schemes of taking into account the 
inter-electron correlations as well as nuclear and radiative ones. 

1.  Introduction
The research on the hyperfine structure (HFS) 
characteristics  of the heavy neutral and highly 
ionized atoms is of a great  fundamental importance 
in many fields of atomic physics (spectroscopy, 
spectral lines theory), astrophysics, plasma 
physics, laser physics and so on  (see, for 
example, refs. [1-37]). The experiments on the 
definition of hyperfine splitting also enable 
to refine the deduction of nuclear magnetic 
moments of different isotopes and to check an 
accuracy of the various calculational models 
employed for the theoretical description of the 
nuclear effects. In recent years, due to significant 
progress in experimental studies, interest in 
studying the spectra of elements with empty d, 
f shells has sharply increased (see [1-10]). The 
multi-configuration relativistic Hartree-Fock 
(RHF) , Dirac-Fock (DF), ulriconfiguration DF 
(MCDF) approaches (see, for example, refs. [1-
9]) are the most reliable versions of calculation 
for multi-electron systems with a large nuclear 
charge. Usually, in these calculations the one- 
and two-body relativistic effects are taken into 
account practically precisely. It should be given 
the special attention to three very general and 
important computer systems for relativistic 

and QED calculations of atomic and molecular 
properties such as “GRASP”, “Dirac”; 
“BERTHA”, “QED”, “Dirac” etc. (see refs. [1-
9] and refs. there). 
In this paper we present the calculational results 
for the HFS structure parameters for the Mn 
atom and  electric quadrupole moment of the 
isotope  201Hg, using the optimized method of the 
relativistic many-body perturbation theory with 
the Dirac-Kohn-Sham zeroth approximation 
and a correct and effective taking into account 
the exchange-correlation, relativistic, nuclear 
and radiative corrections [9-30]. Analysis of the 
data shows that an account of the interelectron 
correlation effects is crucial in the calculation of 
the hyperfine structure parameters.

2. Relativistic method to computing 
hyperfine structure parameters of atoms and 
ions

Let us describe the key moments of the 
approach (more details can be found in refs. 
[19-30]). The electron wave functions (the PT 
zeroth basis) are found from solution of the 
relativistic Dirac equation with potential, which 
includes ab initio mean-field potential, electric, 
polarization potentials of a nucleus. The charge 
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distribution in the Li-like ion is modelled within 
the Gauss model. The nuclear model used for 
the Cs isotope is the independent particle model 
with the Woods-Saxon and spin-orbit potentials 
(see refa. [20]). Let us consider in details more 
simple case of the Li-like ion. We set the charge 
distribution in the Li-like ion nucleus ρ(r) by the 
Gaussian function: 

            ( ) ( ) ( )223 exp4 rRr g−pg=ρ              (1)

where g=4/πR2 and R is the effective nucleus 
radius. The Coulomb potential for the spherically 
symmetric density ρ( r ) is:

                                                                       (2)

Consider the DF type equations. Formally they 
fall into one-electron Dirac equations for the 
orbitals with the potential V(r|R) which includes 
the electrical and the polarization potentials 
of the nucleus; the components of the Hartree 
potential (in the Coulomb units):

            
( ) ( ) rrirrd

Z
irV  ′−∫ ρ′= /1

               (4)                                    

Here ( )irρ  is the distribution of the electron 
density in the state | i >, Vex is the exchange inter-
electron interaction. The main exchange and 
correlation effects will be taken into account in 
the first two orders of the PT by the total inter-
electron interaction [21,22]. 
A procedure of taking into account the radiative 
QED corrections is in details given in the refs. 
[19,20]. 
Regarding the vacuum polarization effect let 
us note that this effect is usually taken into 
consideration in the first PT theory order by 
means of the Uehling-Serber potential. This 
potential is usually written as follows:
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−=                    (5)
                                                                    
where g=r/(αZ). In our calculation we use 
more exact approach [20]. The Uehling 
potential, determined as a quadrature (5), 
may be approximated with high precision by 
a simple analytical function. The use of new 
approximation of the Uehling potential permits 
one to decrease the calculation errors for this 
term down to 0.5 – 1%. 

A method for calculation of the self-energy 
part of the Lamb shift is based on the methods 
[19-24]. The radiative shift and the relativistic 
part of energy in an atomic system are, in 
principle, defined by one and the same physical 
field. One could suppose that there exists some 
universal function that connects the self-energy 
correction and the relativistic energy.  

Its form and properties are in details analyzed 
in Refs.[19-24,30-35]. Unlike usual purely 
electronic atoms, the Lamb shift self-energy part 
in the case of a pionic atom is not significant and 
much inferior to the main vacuum-polarization 
effect. 
     The energies of electric quadruple and magnetic 
dipole interactions are defined by a standard way 
with the hyperfine structure constants, usually 
expressed through the standard radial integrals: 

   A={[(4,32587)10-4Z2χgI]/(4χ2-1)}(RA)-2,                          
                                                                 
B={7.2878 10-7 Z3Q/[(4χ2-1)I(I-1)} (RA)-3,                        
                                                                 (7)
Here gI  is the Lande factor, Q is a quadruple 
momentum of nucleus (in Barn); (RA)-2, (RA)-

3 are the radial integrals usually defined as 
follows:

   (RA)-2,= ∫
∞

0
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The radial parts F and G of  the Dirac function 
two components for electron, which moves in 

The charge distribution in the Li-like ion is 
modelled within the Gauss model. The 
nuclear model used for the Cs isotope is the 
independent particle model with the Woods-
Saxon and spin-orbit potentials (see refa. 
[20]). Let us consider in details more simple 
case of the Li-like ion. We set the charge 
distribution in the Li-like ion nucleus (r) by 
the Gaussian function:  
 

                 223 exp4 rRr               (1) 
 
where =4/R2 and R is the effective nucleus 
radius. The Coulomb potential for the 
spherically symmetric density ( r ) is: 
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                                                                    (2) 
Consider the DF type equations. Formally 
they fall into one-electron Dirac equations 
for the orbitals with the potential V(r|R) 
which includes the electrical and the 
polarization potentials of the nucleus; the 
components of the Hartree potential (in the 
Coulomb units): 
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Z
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               (4)                                     

Here  ir  is the distribution of the electron 
density in the state | i >, Vex is the exchange 
inter-electron interaction. The main exchange 
and correlation effects will be taken into 
account in the first two orders of the PT by 
the total inter-electron interaction [21,22].  
A procedure of taking into account the 
radiative QED corrections is in details given 
in the refs. [19,20].  
Regarding the vacuum polarization effect let 
us note that this effect is usually taken into 
consideration in the first PT theory order by 
means of the Uehling-Serber potential. This 
potential is usually written as follows: 
 

    






1

2

2
2 12112exp

3
2

t
ttZrtdt

r
rU 


  

   

                           ,
3
2 gC

r


                    (5) 

                                                                     
where g=r/(Z). In our calculation we use 
more exact approach [20]. The Uehling 
potential, determined as a quadrature (5), 
may be approximated with high precision by 
a simple analytical function. The use of new 
approximation of the Uehling potential 
permits one to decrease the calculation errors 
for this term down to 0.5 – 1%.  

A method for calculation of the self-
energy part of the Lamb shift is based on the 
methods [19-24]. The radiative shift and the 
relativistic part of energy in an atomic 
system are, in principle, defined by one and 
the same physical field. One could suppose 
that there exists some universal function that 
connects the self-energy correction and the 
relativistic energy.   

Its form and properties are in details 
analyzed in Refs.[19-24,30-35]. Unlike usual 
purely electronic atoms, the Lamb shift self-
energy part in the case of a pionic atom is 
not significant and much inferior to the main 
vacuum-polarization effect.  
     The energies of electric quadruple and 
magnetic dipole interactions are defined by a 
standard way with the hyperfine structure 
constants, usually expressed through the 
standard radial integrals:  
 
   A={[(4,32587)10-4Z2gI]/(42-1)}(RA)-2,                           
                                                                  
B={7.2878 10-7 Z3Q/[(42-1)I(I-1)} (RA)-3,                         
                                                                 (7) 
Here gI  is the Lande factor, Q is a quadruple 
momentum of nucleus (in Barn); (RA)-2, 
(RA)-3 are the radial integrals usually defined 
as follows: 
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

0
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The radial parts F and G of  the Dirac 
function two components for electron, which 
moves in the potential V(r,R)+U(r,R), are 
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the potential V(r,R)+U(r,R), are determined by 
solution of the Dirac equations. 

The key elements of the numerical approach 
to computing the corresponding matrix elements 
are  presented in [19-36]. All calculations are 
performed on the basis of the numeral code 
Superatom-ISAN (version 93).  
 

3. Results and Conclusions
In this subsection we present experimental 

data and the results of the calculation of the HFS 
parameters for some complex atoms. It should be 
noted that the Mn element has one stable isotope 
with a mass number of 55, a nuclear spin of 5/2, 
a magnetic dipole moment of 3.46871668 mЯ 
and an electric quadrupole moment of Q = 0.33 
(1) barn. Basic electronic configuration: 3d54s2 
(6S5/2).

Given the complexity of the spectrum, 
theoretical study of the HFS  should be based 
on a full multi-electron calculation. An useful   
review and detailed analysis  of the studies of 
the HFS of the Mn atom was given, for example, 
in [6]. 

In table 1 we present the available 
experimental (Aexp, Bexp) and theoretical (our 
calculation) values of the energy levels and 
the HFS parameters for the Mn configuration  
3d54s2,3d64s. The reasonable agreement between 
theoretical and measured data can be reached 
by  way of using the optimized wave functions 
basises and complete, correct accounting for the 
exchange-correlation corrections. 

Further we present the results of calculating 
the HFS constants and the electric quadrupole 
moment for the 201Hg isotope. The mercury 
atom has an external valent configuration 6s2 
and can be considered within the many-body 
paerturbation theory as the  two-quasipartial 
system. Mercury has one stable isotope 201Hg (I 
= 3/2) with a relative prevalence of 13.2%. 

The 199Hg isotope with a relative distribution 
of 16.9% has two quadrupole excited states 
with energies of 158 and 208 keV. The values   
of quadrupole moment for a few radioactive 
isotopes with masses from 185 to 203 are 
presented by the group Ulm and others (see, for 
example, [4,5]).

Table 1. 
Experimental (Aexp, Eexp) and theoretical 
(our calculation) values of the energy levels 
(cm-1) and HFS constants (MHz) for the Mn 

configuration 3d54s2

Level Term Eexp Eth

3d54s2 a6S5/2 0.0 0.0
3d64s a6D9/2 17052.29 17001.38
3d64s a6D7/2 17282.00 17209.34
3d64s a6D5/2 17451.52 17394.91
3d64s a6D3/2 - 17500.12
3d64s a6D1/2 - 17565.24
3d54s2 a4G11/2 25265.74 25201.43
3d54s2 a4G5/2 25281.04 25219.45
3d54s2 a4G9/2 25285.43 25221.36
3d54s2 a4G7/2 25287.74 25224.16
3d54s2 b4D5/2 30419.61 30382.46
3d54s2 b4D3/2 - 30374.97
Level Term Aexp Ath

3d54s2 a6S5/2 -72.4 -73
3d64s a6D9/2 503(8) 504
3d64s a6D7/2 457(3) 457
3d64s a6D5/2 434(4) 434
3d64s a6D3/2 467(6) 466
3d64s a6D1/2 892(16) 891
3d54s2 a4G11/2 405.3(9) 405.4
3d54s2 a4G5/2 596.2(9) 596.0
3d54s2 a4G9/2 395.2(3) 395.1
3d54s2 a4G7/2 437,1 437.4
3d54s2 b4D5/2 288(5) 290
3d54s2 b4D3/2 456 453
Level Term Bexp Bth

3d54s2 a6S5/2 0.019 0.016
3d54s2 b4D5/2 130(5) 129
3d54s2 b4D3/2 - -36
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A reasonable compilation of the values   of 
quadrupole moments for isotopes in the 
mass range 185–206 is presented in the well-
known Raghavan table. Currently available 
experimental values   of the quadrupole moment 
Q (201Hg) are given in table 2. The muon 
“muonic 3d” value of 386 (49) mb was used 
in the recent final report “year-2001” on the 
nuclear quadrupole moments [6]. 

Table 2. 

The values of the electric quadrupole moment 
Q (mb) for isotope of 201Hg

Q (mb) Method Ref. Year
383
381
387 (6)
347(43)
385 (40)
485 (68)
386 (49)
267 (37)
390 (20)

455 (40)

420
500 (50)

600

500

Atomic
Atomic
Atomic
Nuclear
Atomica

Muonicb

Muonic 
3dc

Muonic 
2pc

Solidd

Atomic 
3P2

Atomic
Atomice

Solide

Atomice

This work
Khetselius

Pyykko et al
Fornal et al
Ulm et al

Gunther et 
al

Hahn et al
Hahn et al
Edelstein-

Pound
McDermott-

Lichten
Murakawa

Blaise-
Chantrel

Dehmelt et 
al

Schuler-
Schmidt

2018
2006
2005
2001
1988
1983
1979
1979
1975

1960

1959
1957

1954

1935

Note: a- standard Raghavan value; the value of 
199Hg (I = 5/2)  is consistent with the ratio 201/199; 
c - direct muon experiment  for 201Hg; d- solid state 
HgCl2 plus compiled value 199Hg;

In table 3 we list  the experimental and 
calculated values   of the nuclear electric 
quadrupole moment Q (mb) for 201Hg and the 
HFS constants (MHz) for the 3P1  state of the 
201Hg neutral mercury. The calculations were 
performed within the uncorrelated DF method, 

multi-configuration DF (MCDF) approximation  
with accounting for the Breit-QED corrections 
[6], the N-QED theory with an accounting for 
the Breit-QED corrections [20], and the present 
method (RMBPT) with the Gaussian model for 
a nuclear density distribution). The value of  Q 
obtained by us is in the best agreement with the 
data obtained by the group Ulm. Comparison 
of our calculational results and data by the 
DF method (single-configuration and multi-
configuration approximations taking into 
account the Breit and QED corrections) shows 
that our values   of the constant A are in 

Table 3. 

Experimental and calculated values of the 
nuclear electric quadrupole moment Q (mb) 
for 201Hg and the values of the HFS constants 
(MHz) for the  3P1  state of a neutral mercury 

atom 201Hg states (see text) 

Method Q (mb)
DF 478.13
MCDF (+Breit_QED) 386.626
N-QED 380. 518
This work (e-Corr) -90.824
This work (Breit+QED) -2.420
This work (Total) 380. 518
Exp. Look Table 2
Method A (MHz)
DF -4368.266
MCDF (+Breit_QED) -5470.810
N-QED -5460.324
This work (e-Corr) -1162
This work (Breit+QED) -20.868
This work (Total) -5460,.324
Exp. -5454.569 (0.003)
Method B (MHz)
DF ---
MCDF (+Breit_QED) ---
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N-QED -286.512
This work (e-Corr) -60.974
This work (Breit+QED) -1.099
This work (Total) -286.512
Exp. -280.107 (0,005)

reasonable agreement with the experiment. The 
analysis shows that the contribution due to the 
electron – electron correlations t o the values   
of the HFS constants is ~ 100–500 MHz for 
various states. This circumstance explains the 
low degree of consistency in accuracy of the data 
provided, obtained in the framework of different 
versions of the DF method. The key difference 
between the results of the calculation in the 
framework of our approach and the MCDF is 
due to different methods of taking into account 
the electron-electron correlations. 
The contributions of higher-order QED TV 
corrections and corrections for the finite 
core size can reach 1–2 tens of MHz, and it 
seems obviously important to consider them 
more correctly. In addition, it is necessary to 
take direct account of nuclear polarization 
contributions, which can be done within the 
framework of solving the corresponding nuclear 
problem, for example, using the shell model with 
Woods-Saxon and spin-orbit potentials. Such 
an approach is outlined in Refs [20,33]. These 
topics require the separated accurate treatment.
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PACS 31.30.Gs 

О. О. Антошкіна, М. П. Макушкіна, О. Ю. Хецеліус, Т. Б. Ткач

РЕЛЯТИВІСТСЬКИЙ РОЗРАХУНОК ПАРАМЕТРІВ НАДТОНКОЇ  СТРУКТУРИ 
СКЛАДНИХ АТОМІВ В РАМКАХ

БАГАТОЧАСТИНКОВОЇ ТЕОРІЇ ЗБУРЕНЬ

Резюме. Параметри надтонкою структури і електричний квадрупольний момент ізотопу 
ртуті 201Hg і атома Mn розраховані на основі релятивістської багаточастинкової теорії збурень 
з ефективним акуратним урахуванням обмінно-кореляційних, релятивістських, ядерних і 
радіаційних поправок. Аналіз даних показує, що урахування ефектів міжелектронної кореляції 
має критичне значення при обчисленні параметрів надтонкої структури. Фізично розумне 
узгодження теорії і прецизійного експерименту може бути забезпечено завдяки повному 
послідовному обліку міжелектронних кореляційних ефектів, ядерних, релятивістських та 
радіаційних поправок. Ключова відмінність між результатами розрахунків в наближеннях 
Дірака-Фока, різних версіях формалізму теорії збурень в основному пов’язано з 
використанням різних схем обліку міжелектронних кореляцій, а також врахування ядерних 
і радіаційних поправок.

Ключові слова: Надтонка структура, важкий атом, релятивістська теорія збурень, 
кореляційні, ядерні, радіаційні поправки  
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RELATIVISTIC CALCULATION OF THE HYPERFINE STRUCTURE 
PARAMETERS FOR COMPLEX ATOMS WITHIN MANY-BODY PERTURBATION 

THEORY

Summary. The hyperfine structure parameters and electric quadrupole moment of the 201Hg 
mercury isotope the Mn atom are estimated within the relativistic many-body perturbation theory 
formalism with a correct and effective taking into account the exchange-correlation, relativistic, 
nuclear and radiative corrections. Analysis of the data shows that an account of the interelectron 
correlation effects is crucial in the calculation of the hyperfine structure parameters.  The fundamental 
reason of physically reasonable agreement between theory and experiment is connected with the 
correct taking into account the inter-electron correlation effects, nuclear (due to the finite size of 
a nucleus), relativistic and radiative corrections. The key difference between the results of the 
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relativistic Hartree-Fock Dirac-Fock and many-body perturbation theory methods calculations is 
explained by using the different schemes of taking into account the inter-electron correlations as 
well as nuclear and radiative ones. 

Keywords: Hyperfine structure, Heavy atoms, Relativistic perturbation theory, correlation, 
nuclear, radiative corrections
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О. А. Антошкина, М. П. Макушкина, О. Ю. Хецелиус, Т. Б. Ткач

РЕЛЯТИВИСТСКИЙ РАСЧЕТ ПАРАМЕТРОВ СВЕРХТОНКОЙ СТРУКТУРЫ 
СЛОЖНЫХ АТОМОВ В РАМКАХ МНОГОЧАСТИЧНОЙ ТЕОРИИ ВОЗМУЩЕНИЙ

Резюме. Параметры сверхтонкой структуры и электрический квадрупольный момент 
изотопа ртути 201Hg и атома Mn рассчитаны на основе релятивистской многочастичной 
теории возмущений с эффективным аккуратным учетом обменно-корреляционных, 
релятивистских, ядерных и радиационных поправок. Анализ данных показывает, что 
учет эффектов межэлектронной корреляции имеет критическое значение при вычислении 
параметров сверхтонкой структуры. Физически разумное согласие теории и прецизионного 
эксперимента может быть обеспечено благодаря полному последовательному учету 
межэлектронных корреляционных эффектов, ядерных, релятивистских и радиационных 
поправок. Ключевое различие между результатами расчетов в приближениях Дирака-Фока, 
различных версиях формализма теории возмущений в основном связано с использованием 
различных схем учета межэлектронных корреляций, а также учета ядерных и радиационных 
поправок. 

Ключевые слова:  Сверхтонкая структура, тяжелый атом,  релятивистская теория 
возмущений, корреляционные, ядерные, радиационные поправки
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ELECTRON-COLLISIONAL SPECTROSCOPY OF ATOMS AND IONS:  ADVANCED 
ENERGY APPROACH

An advanced relativistic energy approach combined with a scattering theory is used to calculate the electron-
collision excitation cross-sections, collision strengths for a number of multicharged ions. The relativistic many-body 
perturbation theory is used alongside the gauge-invariant scheme to generate an optimal Dirac-Kohn-Sham- Debye-
Hückel one-electron representation.  The results of relativistic calculation (taking into account the exchange and 
correlation corrections) of the electron collision cross-sections (strengths) of excitation of the transition between the 
fine-structure levels (2P 3/2- 2P 1/ 2) of the ground state of F-like ions with Z = 19-26 and  of the [2s2 1S -(2s2p 1Р)] 
transition in the В-like O4+ are presented and analysed.

1. Introduction
Electron-collisional spectroscopy of atoms 

and multicharged ions is one of the most fast 
developing branches of modern atomic spec-
troscopy. The properties of laboratory and astro-
physical plasmas have drawn considerable at-
tention over the last  decades [1-15]. It is known 
that multicharged ions play an important role 
in the diagnostics of a wide variety of plasmas. 
Similar interest is also stimulated by importance 
of this information for correct determination of 
the characteristics for plasma in thermonuclear 
(tokamak) reactors, searching new mediums for 
X-ray range lasers. 

     In the case of solving collision problems 
involving multi-electron atomic systems, as 
well as low-energy processes, etc., the structure 
of atomic systems should be described on the 
basis of rigorous methods of quantum theory. 
As a rule, the Hartree-Fock (HF) or Hartree-
Fock-Slater (HFS) models  implemented in the 
tight-binding approximation were used to de-
scribe the wave functions of the bound states of 
atoms and ions. Another direction is the models 
of the central potential (model potential, pseu-
dopotential) implemented in the distorted wave 
approximation (DWA). It should be mentioned 
the currently widespread and widely used R-
matrix method and its various promising modi-
fications, as well as a generalization of the well-
known Dirac-Fock method to the case of taking 

into account multipolarity in the corresponding 
operators (see, e.g. , [1-7]).  It should be noted 
that, depending on the perturbation theory (PT)  
basis used, different versions of the R-matrix 
method received the corresponding names. For 
example, in specific calculations such versions 
as R-MATR-СI3-5R and R-MATR-41 R-matrix 
method were used using respectively wave func-
tions in the multiconfiguration approximation, in 
particular, 5- and 41- configuration wave func-
tions. As numerous applications of the R-matrix 
method have shown, it has certain advantages 
in terms of accuracy and consistency over such 
popular approaches as the first-order PT method, 
as well as the distorted wave approximation tak-
ing into account configuration interaction ( CI-
DWBA); --- approximation of distorted waves 
using the HF basis (HF-DWBA), finally, the rel-
ativistic approximation of distorted waves with 
a 1-configuration and multi-configuration wave 
function of the ground state (SCGS-RDWA, 
MCGS-RDWA, etc.). Improved models have 
also appeared in theories of the coupled-chan-
nel (VC) type VCDWA (Variational Continuum 
Distorted Wave), for example, a modification of 
the Vraun-Scroters type and others (see [1-5]). 
Various cluster methods have also been widely 
used (see in more details [1-3,14,15]). 

  In this paper, we present and use an ad-
vanced relativistic energy approach to calculate 
the electron-ion collision strengths, effective 
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collision strengths and the associated cross sec-
tions. The relativistic many-body PT is utilised 
alongside the gauge-invariant scheme to gener-
ate an optimal one-electron representation. The 
calculated effective collision strengths of the 
Ne-like krypton excitation are listed. 

2. Advanced energy approach to electron 
collision strengths for atomic systems

     The detailed description of our approach 
was earlier presented (see, for example, Refs. 
[7-9,13]). Therefore, below we are limited only 
by the key points. The generalized relativistic 
energy approach combined with the RMBPT 
has been in details described in Refs. [6,14-18]. 
It generalizes earlier developed energy approach 
[6,16]. 

     The key idea is in calculating the energy 
shifts DE of degenerate states that is connect-
ed with the secular matrix M diagonalization 
[6,16]. To construct M, one should use the Gell-
Mann and Low adiabatic formula for DE. The 
secular matrix elements are already complex in 
the PT second order. The whole calculation is 
reduced to calculation and diagonalization of 
the complex matrix M .and definition of matrix 
of the coefficients with eigen state vectors IK

ivieB ,  
[6,8,9]. 

     To calculate all necessary matrix elements 
one must use the basis’s of the 1QP relativistic 
functions. Within an energy approach the total 
energy shift of the state is usually presented as 
[6,16]:

                   DE = ReDE + i Г/2               (1)                                                   

where Г is interpreted as the level width and 
decay possibility P = Г. The imaginary part of 
electron energy of the system, which is defined 
in the lowest PT order as [6]: 
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for electron and for vacancy. 
The separated terms of the sum in (3) repre-

sent the contributions of different channels. It is 
known that their adequate description requires 

using the optimized basis’s of wave functions. 
In [6] it has been proposed “ab initio” optimiza-
tion principle for construction of cited basis’s. 
It uses a minimization of the gauge dependent 
multielectron contribution of the lowest QED 
PT corrections to the radiation widths of atomic 
levels. This contribution describes collective ef-
fects and it is dependent upon the electromag-
netic potentials gauge (the gauge non-invariant 
contribution dEninv). The minimization of Im-
dEninv leads to integral differential equation, that 
is numerically solved. In result one can get the 
optimal one-electron basis of the PT [14,16,17]. 
It is worth to note that this approach was used 
under solving of multiple problems of modern 
atomic , nuclear and molecular physics (see [14-
25]). The scattered part of ImrE appears first 
in the second order of the atomic PT. The col-
lisional de-excitation cross section is defined as 
follows [6,8,9]: 
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where Qr is the sum of the known Coulomb 
and Breit matrix elements [6,14,16]. The effec-
tive collision strength )( FI →Ω is associated 
with a collisional cross section s as follows (in 
the Coulomb units): 

                                                 
       

]}2)[()12/{(

/)()(

2 ++

⋅→Ω=→

inini ZJ

FIFI

εaε

ps
      (3)                     

where Z is the nucleus charge and a is the 
fine structure constant, inε is the incident energy. 
Further let us firstly consider the Debye shield-
ing model according to Refs. [7-9]. 

     It is known in the classical theory of plas-
mas developed by Debye-Hückel, the interac-
tion potential between two charged particles  is 
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modelled by the Yukawa-type potential, which 
contains the shielding parameter μ. The param-
eter μ is connected with the plasma parameters 
such as the temperature T and the charge density 
n  as follows:  Tkne B/~ 2m . Here, as usually, 
е is the electron charge and кБ is the Boltzman 
constant.  

The density n is given as a sum of the elec-
tron density Ne and ion density Nk of the k-th ion 
species having the nuclear charge 

                    qk : ∑+=
k

kke Nq Nn 2 .            (4)

It should be noted that indeed the Debye 
screening for the atomic electrons in the Cou-
lomb field of nuclear charge is well understood 
due to the presence of the surrounding plasma 
electrons with high mobility. On the other hand, 
the contribution due to the Debye screening be-
tween electrons would be of smaller magnitude 
orders. 

Majority of the previous works on the spec-
troscopy study have considered the screening 
effect only in the electron-nucleus potential 
where the electron-electron interaction poten-
tial is truncated at its first term of the standard 
exponential expansion for its dominant contri-
bution [3-69]. However, it is also important to 
take into account the screening in the electron- 
electron interactions for large plasma strengths 
to achieve more realistic results in the search for 
stability of the atomic structure in the plasma 
environment. 

By introducing the Yukawa-type e-N and e-e 
interaction potentials, an electronic Hamiltonian 
for N-electron ion in a plasma is in atomic units 
as follows [7]:

(5)

To generate the wave functions basis we use 
the optimized Dirac-Kohn-Sham potential with 
one parameter [14,15], which calibrated within 
the special ab initio procedure within the relativ-
istic energy approach [16,17]. All calculations 
are performed on the basis of the code Supera-
tom-ISAN (version 93).

3. Results and conclusion
In Table 1 we present the results of our rel-

ativistic calculation (taking into account the 
exchange and correlation corrections) of the 
electron collision strengths of excitation the 
transition between the fine-structure levels (2P 
3/2- 2P 1/ 2) of the ground state of F-like ions with  
Z = 19-26. 

The energy of the incident electron is 
 ein = 0.1294×Z2 eV, T = z2 keV (z is the core 
charge), Ne = 1018 cm-3. For comparison, in Table 
1 there are also listed  the calculation results based 
on the most advanced versions of the R-matrix 
method, nonrelativistic calculation data in the 
framework of the energy approach, and also the 
available experimental data [1-3]. 

The analysis shows that the presented data are 
in physically reasonable agreement, however, 
some difference can be explained by using differ-
ent relativistic orbital basises and different models 
for accounting of the plasma screening effect. This 
circumstance is mainly associated with the correct 
accounting of relativistic and exchange-correlation 
effects, using the optimized basis of relativistic or-
bitals (2s2 2p5; 2s 2p6 2s2 2p4 3l, l=0-2)

Table 1. 

The electron collision strengths of excitation 
the transition between the fine-structure lev-
els (2P 3/2- 2P 1/ 2) of the ground state of F-like 

ions with Z = 19-26 

Ion ICFT
R-matrix

LS+JAJOM
R-matrix

Ar X 0.582 0.420
Ca XII 0.162 0.160
Ti  XIV 0.225 0.220
Cr  XVI 0.112 0.100

Fe  XVIII 0.132 0.110
Ion Our

data
Exp.
[6]

Ar X 0.492 0.49
Ca XII 0.159 -
Ti  XIV 0.252 -
Cr  XVI 0.142 -

Fe  XVIII 0.148 0.15

and, to a lesser extent, taking into account the 
effect of the plasma environment.

associated with a collisional cross section  
as follows (in the Coulomb units):  
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where Z is the nucleus charge and  is the 
fine structure constant, in is the incident 
energy. Further let us firstly consider the 
Debye shielding model according to Refs. [7-
9].  
     It is known in the classical theory of 
plasmas developed by Debye-Hückel, the 
interaction potential between two charged 
particles  is modelled by the Yukawa-type 
potential, which contains the shielding 
parameter . The parameter  is connected 
with the plasma parameters such as the 
temperature T and the charge density n  as 
follows:  Tkne B/~ 2 . Here, as usually, е 
is the electron charge and кБ is the Boltzman 
constant.   
     The density n is given as a sum of the 
electron density Ne and ion density Nk of the 
k-th ion species having the nuclear charge  
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It should be noted that indeed the Debye 
screening for the atomic electrons in the 
Coulomb field of nuclear charge is well 
understood due to the presence of the 
surrounding plasma electrons with high 
mobility. On the other hand, the contribution 
due to the Debye screening between 
electrons would be of smaller magnitude 
orders.  

Majority of the previous works on the 
spectroscopy study have considered the 
screening effect only in the electron-nucleus 
potential where the electron-electron 
interaction potential is truncated at its first 
term of the standard exponential expansion 
for its dominant contribution [3-69]. 
However, it is also important to take into 
account the screening in the electron- 
electron interactions for large plasma 
strengths to achieve more realistic results in 

the search for stability of the atomic structure 
in the plasma environment.  

By introducing the Yukawa-type e-N and 
e-e interaction potentials, an electronic 
Hamiltonian for N-electron ion in a plasma is 
in atomic units as follows [7]: 
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To generate the wave functions basis we use 
the optimized Dirac-Kohn-Sham potential 
with one parameter [14,15], which calibrated 
within the special ab initio procedure within 
the relativistic energy approach [16,17]. All 
calculations are performed on the basis of the 
code Superatom-ISAN (version 93). 
 

3. Results and conclusion 
 
     In Table 1 we present the results of our 
relativistic calculation (taking into account 
the exchange and correlation corrections) of 
the electron collision strengths of excitation 
the transition between the fine-structure 
levels (2P 3/2- 2P 1/ 2) of the ground state of F-
like ions with Z = 19-26.  
     The energy of the incident electron is in 
= 0.1294×Z2 eV, T = z2 keV (z is the core 
charge), Ne = 1018 cm-3. For comparison, in 
Table 1 there are also listed  the calculation 
results based on the most advanced versions 
of the R-matrix method, nonrelativistic 
calculation data in the framework of the 
energy approach, and also the available 
experimental data [1-3].  
     The analysis shows that the presented data 
are in physically reasonable agreement, 
however, some difference can be explained 
by using different relativistic orbital basises 
and different models for accounting of the 
plasma screening effect. This circumstance is 
mainly associated with the correct accounting 
of relativistic and exchange-correlation 
effects, using the optimized basis of 
relativistic orbitals (2s2 2p5; 2s 2p6 2s2 2p4 3l, 
l=0-2) 
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     The electron-ion collision characteristics 
for Be-like ions are of great interest for appli-
cations such as the diagnosis of astrophysical, 
laboratory, and thermonuclear plasmas, as well 
as EBIT plasmas (see, for example, [4,5]). In the 
latter case, the characteristic values   of electron 
density turn out to be significantly (several or-
ders of magnitude) less than those considered 
above (1015-1017). In particular, the so-called 
MEIBEL (the merged electron-ion beams ener-
gy-loss) experiment (1999), the results of which 
for a Be-like oxygen ion are presented in Fig. 1. 
In this figure there also listed the cross section 
(10-16 cm3) of the electron-collision excitation 
of the [2s2 1S -(2s2p 1Р)] transition in the spectra 
of Вe-like oxygen together with the data from 
an alternative 3-configuration R-matrix calcu-
lation [4]. At energies below 20eV there is the 
reasonable agreement between the theoretical 
and experimental, but, above 20eV there is a 
discrepancy, which is due to different degrees of 
allowance for correlation effects (interaction of 
configurations) due to the difference in the bases 
used. 

Fig.1. Cross section for electron-collision ex-
citation of the [2s2 1S -(2s2p 1Р)] transition in 
the spectra of В-like O4+: Experiment MEI-
BEL - points; Theory: R-matrix – solid line; 

our theory - dashed line.

References
1. Badnell, N.R. Calculations for electron-ion 

collisions and photoionization processes for 
plasma modeling. J. Phys.: Conf. Ser. 2007, 
88, 012070.

2. Griffin, D.C., Balance, C., Mitnik,  D., 
Berengut, J.C. Dirac R-matrix calculations 
of electron-impact excitation of neon-like 
krypton. J. Phys. B: At. Mol. Opt. Phys. 
2008, 41, 215201.

3. Yongqiang, Li; Jianhua, Wu; Yong, Hou, Ji-
anmin Yuan. Influence of hot and dense plas-
mas on energy levels and oscillator strengths 
of ions: Be-like ions for Z = 26–36, J. Phys. 
B: At. Mol. Opt. Phys. 2008, 41, 145002.

4.  Bannister, M. E., Djuri , N., Woitke, O., 
Dunn, G., Chung, Y. -S, Smith, A. C. H., 
Wallbank, B., Berrington, K. A.  Absolute 
cross-sections for near–threshold electron-
impact excitation of Be-like C2+, N3+, O4+. 
Int. J. Mass Spectr. 1999, 192, 39-48. 

5. Smith, A. C. H., Bannister, M. E., Chung, 
Y. -S, Djuri,  N., Dunn, G. H., Wallbank, 
B.,  Woitke, O. Near-threshold Electron-im-
pact Excitation of Multiply-charged Be-like 
Ions.  Phys.Scr. 1999, T80, 283-287.

6. Ivanov, L.N.; Ivanova, E.P.; Knight, L. En-
ergy approach to consistent QED theory for 
calculation of electron-collision strengths: 
Ne-like ions. Phys. Rev. A. 1993, 48, 4365-
4374.

7. Buyadzhi, V.V. Laser multiphoton spectros-
copy of atom embedded in Debye plasmas: 
multiphoton resonances and transitions. 
Photoelectronics. 2015, 24, 128-133.

8. Buyadzhi, V.V.; Chernyakova, Yu.G.; 
Smirnov, A.V.; Tkach, T.B. Electron-col-
lisional spectroscopy of atoms and ions in 
plasma: Be-like ions. Photoelectronics. 
2016, 25, 97-101.

9. Buyadzhi, V.; Chernyakova, Yu.; Antoshki-
na, O.; Tkach, T. Spectroscopy of multich-
arged ions in plasmas:  Oscillator strengths 
of Be-like ion Fe. Photoelectronics. 2017, 
26, 94-102.

10. Glushkov, A.V.; Malinovskaya, S.V.; Pre-
pelitsa, G.P.; Ignatenko, V. Manifestation of 
the new laser-electron nuclear spectral ef-
fects in the thermalized plasma: QED theory 



66

of co-operative laser-electron-nuclear pro-
cesses. J. Phys.: Conf. Ser. 2005, 11, 199-
206.

11. Glushkov, A.V.; Malinovskaya, S.V.; 
Chernyakova Y.G.; Svinarenko, A.A. Co-
operative laser-electron-nuclear processes: 
QED calculation of electron satellites spec-
tra for multi-charged ion in laser field. Int. 
Journ. Quant. Chem. 2004, 99, 889-893.

12. Glushkov, A.V.; Malinovskaya, S.V.; Lo-
boda, A.V.; Shpinareva, I.M.; Gurnitskaya, 
E.P.; Korchevsky, D.A. Diagnostics of the 
collisionally pumped plasma and search 
of the optimal plasma parameters of x-ray 
lasing: calculation of electron-collision 
strengths and rate coefficients for Ne-like 
plasma. J. Phys.: Conf. Ser. 2005, 11, 188-
198.

13. Glushkov, A.V.; Ambrosov, S.V.; Loboda, 
A.V.; Gurnitskaya, E.P.; Prepelitsa, G.P. 
Consistent QED approach to calculation of 
electron-collision excitation cross sections 
and strengths: Ne-like ions. Int. J. Quantum 
Chem. 2005, 104, 562-569.

14. Glushkov, A.V. Relativistic Quantum theory. 
Quantum mechanics of atomic systems; As-
troprint: Odessa, 2008. 

15. Khetselius, O.Yu. Hyperfine structure of 
atomic spectra. Astroprint: Odessa, 2008.

16. Glushkov, A.V.; Ivanov, L.N.; Ivanova, E.P. 
Autoionization Phenomena in Atoms. Mos-
cow Univ. Press, 1986, 58-160

17. Glushkov, A.; Ivanov, L. Radiation decay of 
atomic states: atomic residue polarization 
and gauge noninvariant contributions. Phys. 
Lett. A 1992, 170, 33.

18. Glushkov, A.V. Spectroscopy of atom and 
nucleus in a strong laser field: Stark effect 
and multiphoton resonances. J. Phys.: Conf. 
Ser. 2014, 548, 012020

19. Khetselius, O.Yu. Spectroscopy of coopera-
tive electron-gamma-nuclear processes in 
heavy atoms: NEET effect. J. Phys.: Conf. 
Ser. 2012, 397, 012012.

20. Glushkov A.V.; Ivanov, L.N. DC strong-
field Stark effect: consistent quantum-me-
chanical approach. J. Phys. B: At. Mol. Opt. 
Phys. 1993, 26, L379-386. 

21. Ignatenko, A.V. Probabilities of the radia-
tive transitions between Stark sublevels in 
spectrum of atom in an DC electric field: 
New approach. Photoelectronics, 2007, 16, 
71-74.

22. Glushkov, A.V.; Ambrosov, S.V.; Ignatenko, 
A.V. Non-hydrogenic atoms and Wannier-
Mott excitons in a DC electric field: Photo-
ionization, Stark effect, Resonances in ion-
ization continuum and stochasticity. Photo-
electronics, 2001, 10, 103-106.

23. Glushkov A., Ternovsky V., Buyadzhi V., 
Prepelitsa G.,  Geometry of a relativistic 
quantum chaos: New approach to dynamics 
of quantum systems in electromagnetic field 
and uniformity and charm of a chaos. Proc. 
Intern. Geom. Center. 2014, 7(4), 60-71.  

24. Khetselius, O.Yu. Relativistic perturbation 
theory calculation of the hyperfine structure 
parameters for some heavy-element iso-
topes. Int. Journ.Quant.Chem. 2009, 109, 
3330-3335. 

25. Khetselius, O. Hyperfine structure of radi-
um. Photoelectronic. 2005, 14, 83-85.



67

PACS 31.15.-p 
V. V. Buyadzhi

ELECTRON-COLLISIONAL SPECTROSCOPY OF ATOMS AND IONS:  ADVANCED 
ENERGY APPROACH

Summary. An advanced relativistic energy approach combined with a scattering theory is used 
to calculate the electron-collision excitation cross-sections, collision strengths for a number of mul-
ticharged ions. The relativistic many-body perturbation theory is used alongside the gauge-invari-
ant scheme to generate an optimal Dirac-Kohn-Sham- Debye-Hückel one-electron representation.  
The results of relativistic calculation (taking into account the exchange and correlation corrections) 
of the electron-collision cross-sections (strengths) of excitation of the transition between the fine-
structure levels (2P 3/2- 2P 1/ 2) of the ground state of F-like ions with Z = 19-26 and  of the [2s2 1S 

-(2s2p 1Р)] transition in the В-like O4+ are presented and analysed
Key words: spectroscopy of ions, relativistic energy approach, collision cross-sections
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ЭЛЕКТРОН-CТОЛКНОВИТЕЛЬНАЯ СПЕКТРОСКОПИЯ АТОМОВ И ИОНОВ: 
РЕЛЯТИВИСТСКИЙ ЭНЕРГЕТИЧЕСКИЙ ПОДХОД

Резюме. Эффективный релятивистский энергетический подход в сочетании с теорией 
столкновений используется для расчета сечений электрон-столкновительного возбуждения, 
сил столкновений для ряда многозарядных ионов. Релятивистская теория многочастичная 
теория возмущений наряду с эффективной калибровочно-инвариантной схемой использу-
ется для генерации оптимального одноэлектронного представления Дирака-Кона-Шама-
Дебая-Хюккеля. Представлены и анализируются результаты расчета (с учетом обменных 
и корреляционных поправок) сечений  столкновительного  возбуждения перехода между 
уровнями тонкой структуры (2P 3/2- 2P 1/ 2)  F-подобных ионов и возбуждения перехода [2s2 1S 

-(2s2p 1Р)] в Ве-подобном O4+. 
Ключевые слова: спектроскопия ионов, энергетический подход, сечения столкновений  
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СПЕКТРОСКОПІЯ ЗА РАХУНОК ЕЛЕКТРОННИХ ЗІТКНЕНЬ АТОМІВ І 
ИОНОВ: РЕЛЯТИВІСТСЬКИЙ ЕНЕРГЕТИЧНИЙ ПІДХІД

Резюме. Ефективний релятивістський енергетичний підхід в поєднанні з теорією зіткнень 
використовується для розрахунку перетинів електрон-зіткнень збудження, сил зіткнень для 
ряду багатозарядних іонів. Релятивістська теорія багаточастинкових теорія збурень викорис-
товується для генерації оптимального одноелектронного уявлення Дірака-Кона-Шама-Де-
бая-Хюккеля. Представлені і аналізуються результати розрахунку (з урахуванням обмінних 
і кореляційних поправок) перерізів збудження за рахунок зіткнення переходу між рівнями 
тонкої структури (2P 3/2- 2P 1/ 2) F-подібних іонів і збудження переходу [2s2 1S -(2s2p 1Р)] в Ве-
подібному O4+.

Ключові слова: спектроскопія іонів, енергетичний підхід, перерізи зіткнень
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RELATIVISTIC THEORY OF SPECTRA OF PIONIC AND KAONIC ATOMS: 
HYPERFINE STRUCTURE, TRANSITION PROBABILITIES FOR NITROGEN

A new theoretical approach to energy and spectral parameters of the hadronic (pionic and kaonic) atoms in the 
excited states with precise accounting for the relativistic, radiation and nuclear effects is applied to the study of radiation 
parameters of transitions between hyperfine structure components of the pionic and kaonic nitrogen. The advanced data 
on the probabilities of radiation transitions between components of the hyperfine structure transitions 5g-4f, 5f-4d in 
the spectrum of pionic  nitrogen and 8k-7i, 8i-7h in the spectrum of kaonic nitrogen are presented and compared with 
alternative theoretical data. 

1. Introduction
Our work is devoted to the further application 

of earlier developed new theoretical approach 
[1-8] to the description of spectra and different 
spectral parameters, in particular, radiative 
transitions probabilities for hadronic (pionic 
and kaonic) atoms in the excited states with 
precise accounting for the relativistic, nuclear 
and radiative effects. As it was indicated earlier 
[7-12] nowadays  investigation of the pionic, 
kaonic and at whole the exotic hadronic atomic 
systems represents a  great interest as from 
the viewpoint of the  further development 
of atomic and nuclear spectral theories as 
creating new tools for sensing the nuclear 
structure and fundamental hadron-nucleus 
strong interactions [6-14]. Spectroscopy of 
hadronic atoms already in the electromagnetic 
sector is extremely valuable area of   research 
that provide unique data for different areas of 
physics, including nuclear, atomic, molecular 
physics, physics of particles, sensor electronic 
etc.  It should be emphasized that the theory of 
pion spectra of atoms are highly excited, even 
in the electromagnetic sector (ie short-range 
strong pion-N interaction  neglects little) is 
extremely complex and at present, despite the 
known progress remains very poorly developed. 
It is about the fundamental theoretical problems 
describing relativistic atoms considering nuclear, 
radiation effects, and a completely insufficient 
spectral data for pion atoms. While determining 

the properties of pion atoms in theory is very 
simple as a series of H such models and more 
sophisticated methods such combination chiral 
perturbation theory (TC), adequate quantitative 
description of the spectral properties of atoms in 
the electromagnetic pion sector (not to mention 
even the strong interaction sector ) requires the 
development of High-precision approaches, 
which allow you to accurately describe the role 
of relativistic, nuclear, radiation QED (primarily 
polarization electron-positron vacuum, etc.). 
pion effects in the spectroscopy of atoms.

The most popular theoretical models for pionic 
and kaonic atoms are naturally based on the 
using the Klein-Gordon-Fock equation, but there 
are many important problems connected with 
accurate accounting for as pion-kaon-nuclear 
strong interaction effects as QED radiative 
corrections (firstly, the vacuum polarization 
effect etc.). This topic has been a subject of 
intensive theoretical and experimental interest 
(see [1-16]). The perturbation theory expansion 
on the physical; parameter aZ is usually used to 
take into account the radiative QED corrections, 
first of all, effect of the polarization of electron-
positron vacuum etc. This approximation is 
sufficiently correct and comprehensive in a case 
of the light pionic atoms, however it becomes 
incorrect in a case of the heavy atoms with large 
charge of a nucleus Z.

The  more correct accounting of the QED, 
finite nuclear size and electron-screening effects 
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for pionic atoms is also very serious and actual 
problem to be solved more consistently in 
comparison with available theoretical models 
and schemes.  At last, a development of the 
comprehensive theory of hyperfine structure 
and computing radiative transitions probabilities 
between its components is of a great interest and 
importance in a modern theory of the hadronic  
atom spectra [1-39].

 
2. Theory
The basic topics  of our theoretical approach 

have been earlier presented [3-8,27,28], so here 
we are limited only by the key elements.  The 
relativistic dynamic of a spinless boson (pion) 
particle is  described by the Klein-Gordon-Fock 
(KGF) equation. As usually, an electromagnetic 
interaction between a negatively charged pion 
and the atomic nucleus can be taken into account 
introducing the nuclear potential Aν in the KG 
equation via the minimal coupling pν→ pν− qAν. 
Generally speaking, the Klein-Gordon-Fock 
equation can be rewritten as the corresponding 
two-component equation :

            
                                                      

(1)
where si  are the Pauli spin matrices and

                                   
      (2)

This equation is equivalent to the 
stationary Klein-Gordon-Fock equation. The 
corresponding non-stationary Klein-Gordon-
Fock equation can be written as follows:                                    

                                           
  2 2 2 2 2

02
1( ) { [ ( )] } ( )tc x i eV r x
c

m Y = ∂ + + ∇ Y 

 
(3)

where c is the speed of light, h is the Planck 
constant, m is the reduced mass of the pion-
nuclear system,  and Ψ0(x) is the scalar wave 
function of the space-temporal coordinates. 
Usually one considers the central potential 
[V0(r), 0] approximation with the stationary 
solution:

                                                       
         (x)  exp(-iEt xφY = / 	) ( ) ,         (4)                           

where xφ( ) is the solution of the equation:

2 2 2 2 2
02

1{ [ ( )] } ( ) 0E eV r c x
c

m φ+ + ∇ − =                   
                                                             (5)

Here E is the total energy of the system (sum 
of the mass energy mc2 and binding energy e0). 
In principle, the central potential V0 is the sum 
of the following potentials:  the electric potential 
of a nucleus, vacuum-polarization potential. 
The  strong interaction potential can be added 
below.  Generally speaking, an energy of the 
pionic atomic system can be represented as the 
following sum:  

                                           
        ,KG FS QED NE E E E E≈ + + +       (6)                          
                                                                                                               
where KGE is the energy of a pion in a 

nucleus ( ),Z A  with the point-like charge, FSE  
is the contribution due to the nucleus finite size 
effect,  VPE is the radiation QED correction, NE  
is the energy shift due to the strong (pion- or 
kaon- nuclear) interaction NV .  In principle, the 
central potential V0 should include the central 
Coulomb potential, the radiative (in particular, 
vacuum-polarization) potential as well as the 
electron-screening  potential in the atomic-
optical (electromagnetic) sector. Surely, the full 
solution of the pionic atom energy especially for 
the low-excited state requires an inclusion the 
hadron-nuclear strong potential.

The next step is accounting the  nuclear finite 
size effect or the Breit-Rosenthal-Crawford-
Schawlow one. In order to do it we  use the 
widespread Gaussian model for nuclear charge 
distribution. The advantages of this model in 
comparison with usually used models such as 
for example an uniformly charged sphere model 
and others had been analysed in Ref. [3]. Usually 
the Gauss model is determined as follows: 

                                                      
       ( ) ( ) ( ),exp4 223 rRr gpgρ −=      (7)                                       

where 24 Rp=g , R is an effective radius 
of a nucleus.

In order to take into account very important 
radiation QED effects we use the radiative 
potential from the Flambaum-Ginges theory 
[15]. In includes the standard Ueling-Serber 
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potential and electric and magnetic form-factors 
plus potentials for accounting of the high order 
QED corrections such as:

+Φ+Φ+Φ=Φ )()()()( rrrr fgUrad .

)(
3
2)( rr orderhigh

Ul
−Φ+Φ+

 (8)
where  
                                
    
                                           
             
  

       (9)                                                      
Here е – a proton charge and universal 

function B(Z) is defined by expression:  
B(Z)=0.074+0.35Za. 

At last to take into account the electron 
screening effect we use the  standard procedure, 
based on  addition of the total interaction 
potential SCF potential of the electrons, which 
can be determined within the Dirac-Fock 
method by solution of the standard relativistic 
Dirac equations. It should be noted however, that 
contribution of theses corrections is practically 
zeroth for the pionic nitrogen, however it can be 
very important in transition to many-electron as 
a rule heavy hadronic  atoms. 

 Further in order to calculate probabilities of 
the radiative transitions between energy level of 
the pionic atoms we have used the well-known 
relativistic energy  approach (c. g.[16-28]). 
Other details are in Refs. [4,7,8].

3. Results and conclusions
As example of application of the presented 

approach, in table 1 we present the data on 
radiative transition probabilities  (in s-1) for 
hyperfine transitions 5g-4f in the spectrum of 
the pion nitrogen): Th1- data by Trassinelli-
Indelicato; Th2-  our data. 

Table 1. 
The radiative transition probabilities  (in 
s-1) for hyperfine transitions 5g-4f in the 

spectrum of the pion nitrogen: Th1- data by 
Trassinelli-Indelicato; Th2-  our data

F-F’ Т.I : Р (5g-4f) Т.II : Р (5g-4f) 
5-4 7.13× 1013 7.04× 1013

4-3 5.47× 1013 5.41× 1013

4-4 5.27× 1013 5.23× 1013

3-2 4.17× 1013 4.12× 1013

3-3 0.36× 1013 0.34× 1013

3-4 0.01× 1013 0.009× 1013

In theory by Trassinelli-Indelicato (look, 
for example, [6]) it has been used the standard 
atomic spectroscopy amplitude scheme when 
the transitions energies and probabilities are 
calculated in the known degree separately. At the 
same time this computing within the relativistic 
energy approach is performed more correctly 
and self-consistently (look details in [4,9] and 
Refs. therein). 

In  table 2 we present our data for radiative 
transition probabilities  (in s-1) for hyperfine 
transitions 5f-4d in the spectrum of the pionic 
nitrogen: our data. 

In table 3 we present the data on radiative 
transition probabilities (in s-1) for the hyperfine 
transitions 8k-7i in the spectrum of the kaonic 
nitrogen atom: Th1- the data by Trassinelli-
Indelicato; Th2 - our data. 

Table 2. 
Radiative transition probabilities  (s-1) for 
hyperfine transitions 5f-4d in the spectrum of 

the pioniv nitrogen: our data

F-F’ Our data 
(5f-4d ) 

4-3 4.57× 1013

3-2 3.16× 1013

3-3 2.98× 1013

2-1 2.13× 1013

2-2 2.25× 1013

2-3 0.01× 1013

model in comparison with usually used 
models such as for example an uniformly 
charged sphere model and others had been 
analysed in Ref. [3]. Usually the Gauss 
model is determined as follows:  
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where 24 R , R is an effective radius 
of a nucleus. 

In order to take into account very 
important radiation QED effects we use the 
radiative potential from the Flambaum-
Ginges theory [15]. In includes the standard 
Ueling-Serber potential and electric and 
magnetic form-factors plus potentials for 
accounting of the high order QED 
corrections such as: 
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Here е – a proton charge and universal 
function B(Z) is defined by expression:  
B(Z)=0.074+0.35Z.  
      At last to take into account the electron 
screening effect we use the  standard 
procedure, based on  addition of the total 
interaction potential SCF potential of the 
electrons, which can be determined within 
the Dirac-Fock method by solution of the 
standard relativistic Dirac equations. It 
should be noted however, that contribution of 
theses corrections is practically zeroth for the 
pionic nitrogen, however it can be very 

important in transition to many-electron as a 
rule heavy hadronic  atoms.  
 Further in order to calculate probabilities of 
the radiative transitions between energy level 
of the pionic atoms we have used the well-
known relativistic energy  approach (c. g.[16-
28]). Other details are in Refs. [4,7,8]. 

 
3. Results and conclusions 
As example of application of the presented 

approach, in table 1 we present the data on 
radiative transition probabilities  (in s-1) for 
hyperfine transitions 5g-4f in the spectrum of 
the pion nitrogen): Th1- data by Trassinelli-
Indelicato; Th2-  our data.  
 

Table 1.  
The radiative transition probabilities  

(in s-1) for hyperfine transitions 5g-4f in 
the spectrum of the pion nitrogen: Th1- 
data by Trassinelli-Indelicato; Th2-  our 

data 
 

F-F’ Т.I : Р (5g-4f) Т.II : Р (5g-4f)  
5-4 7.13× 1013 7.04× 1013 
4-3 5.47× 1013 5.41× 1013 
4-4 5.27× 1013 5.23× 1013 
3-2 4.17× 1013 4.12× 1013 
3-3 0.36× 1013 0.34× 1013 
3-4 0.01× 1013 0.009× 1013 

 
In theory by Trassinelli-Indelicato (look, 

for example, [6]) it has been used the standard 
atomic spectroscopy amplitude scheme when 
the transitions energies and probabilities are 
calculated in the known degree separately. At 
the same time this computing within the 
relativistic energy approach is performed more 
correctly and self-consistently (look details in 
[4,9] and Refs. therein).  

In  table 2 we present our data for radiative 
transition probabilities  (in s-1) for hyperfine 
transitions 5f-4d in the spectrum of the pionic 
nitrogen: our data.  

In table 3 we present the data on radiative 
transition probabilities (in s-1) for the 
hyperfine transitions 8k-7i in the spectrum of 
the kaonic nitrogen atom: Th1- the data by 
Trassinelli-Indelicato; Th2 - our data.  
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Table 3. 
The radiative transition probabilities  (in 

s-1) for the  8k-7i transition in the k-N atom: 
Th1- Trassinelli-Indelicato; Th2- our data  

F-F’  TI, P  T.II: our data
8-7 1.54 × 1013 1.51 × 1013

7-6 1.33 × 1013 1.32 × 1013

7-7 1.31 × 1013 1.29 × 1013

6-5 1.15 × 1013 1.12 × 1013

6-6 0.03 × 1013 0.02 × 1013

6-7 0.00 × 1013 0.004 × 1013

 In  table 4 we present our data for radiative 
transition probabilities  (in s-1) for hyperfine 
transitions 8i-7h in the spectrum of the kaonic  
nitrogen: our data. In whole, the computed 
radiative transition probabilities values for 
considered transitions between hyperfine 
structure components in the spectrum of the pion 
within theory by Trassinelli-Indelicato and ours 
demonstrate physically reasonable agreement, 
however our values are a little  lower.

This circumstance fact can be reasonably 
explained by difference in the computing 
schemes and different level of accounting for 
nuclear finite size, QED and other effects (c.g. 
[1-3,20,21]). In any case the data obtained can 
be considered as sufficiently accurate ones and 
used in the corresponding applications, indicated 
in the introduction.

Table 4. 
Radiative transition probabilities  

(in s-1) for hyperfine transitions 8i-7h in  
spectrum of the kaonic nitrogen: our data

F-F’ Our data 
(8i-7h)

7-6 1.16 × 1013

6-5 0.99 × 1013

6-6 0.96 × 1013

5-4 0.81 × 1013

5-5 0.02 × 1013

5-6 0.005 × 1013
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RELATIVISTIC THEORY OF SPECTRA OF PIONIC AND KAONIC ATOMS: 
HYPERFINE STRUCTURE, TRANSITION PROBABILITIES FOR NITROGEN

Summary. A new theoretical approach to energy and spectral parameters of the hadronic (pionic 
and kaonic) atoms in the excited states with precise accounting for the relativistic, radiation and 
nuclear effects is applied to the study of radiation parameters of transitions between hyperfine 
structure components of the pionic and kaonic nitrogen. The advanced data on the probabilities of 
radiation transitions between components of the hyperfine structure transitions 5g-4f, 5f-4d in the 
spectrum of pionic  nitrogen and 8k-7i, 8i-7h in the spectrum of kaonic nitrogen are presented and 
compared with alternative theoretical data. 

Keywords:  relativistic theory, hyperfine structure, hadronic atoms

PACS 36.10.-k

Ю. В. Дубровская, И. Н. Серга, Ю. Г. Чернякова, Л. А. Витавецкая

РЕЛЯТИВИСТСКАЯ ТЕОРИЯ СПЕКТРОВ ПИОННЫХ И КАОННЫХ АТОМОВ 
СВЕРХТОНКАЯ СТРУКТУРА, ВЕРОЯТНОСТИ ПЕРЕХОДОВ ДЛЯ АЗОТА

Резюме. Новый теоретический подход к описанию энергетических и спектральных 
параметров адронного (пионного и каонного) атомов в возбужденных состояниях с 
аккуратным учетом релятивистских, радиационных и ядерных эффектов применяется 
к изучению характеристик радиационных переходов между компонентами сверхтонкой 
структуры пионного и каонного атомов азота. Представлены уточненные данные о 
вероятностях радиационных переходов между компонентами сверхтонких структурных 
переходов 5g-4f, 5f-4d в спектре пионного азота и 8k-7i, 8i-7h в спектре каонного азота, 
некоторые из которых сравниваются с альтернативными теоретическими данными.

Ключевые слова: релятивистская теория, сверхтонкая структура, адронные  атомы
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Ю. В. Дубровська, І. М. Сєрга, Ю. Г. Чернякова, Л. А. Вітавецька

РЕЛЯТИВІСТСЬКА ТЕОРІЯ СПЕКТРІВ ПІОННИХ ТА КАОННИХ АТОМІВ:  
НАДТОНКА СТРУКТУРА,  ЙМОВІРНОСТІ ПЕРЕХОДІВ ДЛЯ АЗОТА

Резюме. Новий теоретичний підхід до опису енергетичних і спектральних параметрів 
адронних  (піонних і каонних) атомів в збуджених станах з акуратним урахуванням 
релятивістських, радіаційних і ядерних ефектів застосовується до вивчення характеристик 
радіаційних переходів між компонентами надтонкої структури піонного і каонов атомів 
азоту. Представлені уточнені дані про ймовірності радіаційних переходів між компонентами 
надтонкої структури, зокрема, переходів 5g-4f, 5f-4d в спектрі піонного азоту і 8k-7i, 8i-7h в 
спектрі каонного азоту, деякі з яких порівнюються з альтернативними теоретичними даними.

Ключові слова: релятивістська теорія, надтонка структура, адронні атоми
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THEORETICAL STUDYING SPECTRAL CHARACTERISTICS OF Ne-LIKE IONS 
ON THE BASIS OF OPTIMIZED RELATIVISTIC MANY-BODY PERTURBATION 

THEORY

Theoretical studying spectroscopic characteristics of the Ne-like multicharged ions is carried out within the rela-
tivistic many-body perturbation theory and generalized relativistic energy approach.  The zeroth approximation of the 
relativistic perturbation theory is provided by the optimized Dirac-Kohn-Sham ones. Optimization has been fulfilled by 
means of introduction of the parameter to the Kohn-Sham exchange potentials and further minimization of the gauge-
non-invariant contributions into radiation width of atomic levels with using relativistic orbital set, generated by the 
corresponding zeroth approximation Hamiltonian. 

1. Introduction
It is well known that the correct data about 

different radiation, energetic and spectroscopic 
characteristics of the multielectron atoms and 
multicharged ions, namely, radiative decay 
widths, probabilities and oscillator strengths 
of atomic transitions, excitation and ionization 
cross-sections are needed in astrophysics and 
laboratory, thermonuclear plasma diagnostics 
and in fusion research. In this light, studying the 
spectral characteristics of the alkali elements 
attracts a special interest. There have been 
sufficiently many reports of calculations and 
compilation of energies and oscillator strengths 
for these atoms and corresponding ions (see, 
for example, [1–28]). In many papers the 
standard Hartree-Fock, Dirac-Fock methods, 
model potential approach, quantum defect 
approximation etc in the different realizations 
have been used for calculating energies and 
oscillator strengths. However, it should be 
stated that for the heavy alkali atoms (such 
as caesium and francium and corresponding 
ions) and particularly for their high-excited 
(Rydberg) states, there is not enough precise 
information available in literature. The multi-
configuration Dirac-Fock method is the most 
reliable version of calculation for multielectron 
systems with a large nuclear charge. In 
these calculations the one- and two-particle 
relativistic and important exchange-correlation 

corrections are taken into account (see Refs. 
[1] and Refs. therein). However, one should 
remember about very complicated structure of 
spectra of the lanthanides atoms and necessity 
of correct accounting for different correlation 
effects such as polarization interaction of the 
valent quasiparticles and their mutual screening, 
iterations of a mass operator etc.).The known 
method of the model relativistic many-body 
perturbation theory (RMBPT) has been earlier 
effectively applied to computing spectra of 
low-lying states for some lanthanides atoms 
[5-11] (see also [12-22]).  We use an analogous 
version of the perturbation theory (PT) to study 
spectroscopic characteristics of some Ne-like 
ions. 

2. Advanced relativistic many-body
perturbation theory and energy approach

As the method of computing is earlier 
presented in detail, here we are limited only by 
the key topics [5-15]. Generally speaking, the 
majority of complex atomic systems possess a 
dense energy spectrum of interacting states with 
essentially relativistic properties. In the theory 
of the non-relativistic atom a convenient field 
procedure is known for calculating the energy 
shifts DΕ  of degenerate states. This procedure 
is connected with the secular matrix M 
diagonalization [12-22]. In constructing M, the 
Gell-Mann and Low adiabatic formula for DΕ  
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is used. In contrast to the non-relativistic case, 
the secular matrix elements are already complex 
in the second order of the electrodynamical 
PT (first order of the interelectron interaction). 
Their imaginary part of DΕ  is connected with 
the radiation decay (radiation) possibility. In this 
approach, the whole calculation of the energies 
and decay probabilities of a non-degenerate 
excited state is reduced to the calculation and 
diagonalization of the complex matrix M. In the 
papers of different authors, the Re ED  calculation 
procedure has been generalized for the case of 
nearly degenerate states, whose levels form 
a more or less compact group. One of these 
variants has been previously introduced: for a 
system with a dense energy spectrum, a group 
of nearly degenerate states is extracted and their 
matrix M is calculated and diagonalized. If the 
states are well separated in energy, the matrix 
M reduces to one term, equal to ED . The non-
relativistic secular matrix elements are expanded 
in a PT series for the interelectron interaction. 
The complex secular matrix M is represented in 
the form [12-14]:  
                                                        

     ( ) ( ) ( ) ( )0 1 2 3 .M M M M M= + + +       (1)

where ( )0M  is the contribution of the vacuum 
diagrams of all order of PT, and ( )1M , ( )2M
, ( )3M  those of the one-, two- and three- 
quasiparticle diagrams respectively. ( )0M  is a 
real matrix, proportional to the unit matrix. It 
determines only the general level shift. We have 
assumed ( )0 0.M =  The diagonal matrix ( )1M  
can be presented as a sum of the independent 
one-quasiparticle contributions. For simple 
systems (such as alkali atoms and ions) the one-
quasiparticle energies can be taken from the 
experiment. Substituting these quantities into (1) 
one could have summarized all the contributions 
of the one -quasiparticle diagrams of all orders 
of the formally exact QED PT. However, the 
necessary experimental quantities are not often 
available. The first two order corrections to 

( )2Re M  have been analyzed previously using 

Feynman diagrams (look Ref. in [1,2]). The 
contributions of the first-order diagrams have 
been completely calculated. In the second order, 
there are two kinds of diagrams: polarization 
and ladder ones.  The polarization diagrams 
take into account the quasiparticle interaction 
through the polarizable core, and the ladder 
diagrams take into account the immediate 
quasiparticle interaction [11-20]. Some of the 
ladder diagram contributions as well as some of 
the three-quasiparticle diagram contributions in 
all PT orders have the same angular symmetry 
as the two-quasiparticle diagram contributions 
of the first order. These contributions have 
been summarized by a modification of the 
central potential, which must now include the 
screening (anti-screening) of the core potential 
of each particle by the two others. The additional 
potential modifies the one-quasiparticle orbitals 
and energies. Then the secular matrix is as 
follows [1,2]: 

                     )2()1( ~~ MMM +→ ,                (2)
 

where ( )1M  is the modified one-quasiparticle 
matrix ( diagonal), and ( )2M  is the modified 
two-quasiparticle one. ( )1M  is calculated by 
substituting the modified one-quasiparticle 
energies), and ( )2M  by means of the first PT 
order formulae for ( )2M , putting the modified 
radial functions of the one-quasiparticle states 
in the radial  integrals.. 
Let us remind that in the QED theory, the photon 
propagator D(12) plays the role of this interaction. 
Naturally the analytical form of D(12) depends 
on the gauge, in which the electrodynamical 
potentials are written. Interelectron interaction 
operator with accounting for the Breit interaction 
has been taken as follows:  

            (3)

where, as usually, αi are the Dirac matrices. 
In general, the results of all approximate 
calculations depended on the gauge.  Naturally 

the Gell-Mann and Low adiabatic formula 
for   is used. In contrast to the non-
relativistic case, the secular matrix elements 
are already complex in the second order of 
the electrodynamical PT (first order of the 
interelectron interaction). Their imaginary 
part of   is connected with the radiation 
decay (radiation) possibility. In this 
approach, the whole calculation of the 
energies and decay probabilities of a non-
degenerate excited state is reduced to the 
calculation and diagonalization of the 
complex matrix M. In the papers of different 
authors, the Re E  calculation procedure has 
been generalized for the case of nearly 
degenerate states, whose levels form a more 
or less compact group. One of these variants 
has been previously introduced: for a system 
with a dense energy spectrum, a group of 
nearly degenerate states is extracted and their 
matrix M is calculated and diagonalized. If 
the states are well separated in energy, the 
matrix M reduces to one term, equal to E . 
The non-relativistic secular matrix elements 
are expanded in a PT series for the 
interelectron interaction. The complex 
secular matrix M is represented in the form 
[12-14]:   
                                                         

            0 1 2 3 .M M M M M          (1) 
 
where  0M  is the contribution of the vacuum 
diagrams of all order of PT, and  1M , 

 2M ,  3M  those of the one-, two- and three- 
quasiparticle diagrams respectively.  0M  is a 
real matrix, proportional to the unit matrix. It 
determines only the general level shift. We 
have assumed  0 0.M   The diagonal matrix 

 1M  can be presented as a sum of the 
independent one-quasiparticle contributions. 
For simple systems (such as alkali atoms and 
ions) the one-quasiparticle energies can be 
taken from the experiment. Substituting these 
quantities into (1) one could have 
summarized all the contributions of the one -
quasiparticle diagrams of all orders of the 
formally exact QED PT. However, the 
necessary experimental quantities are not 
often available. The first two order 

corrections to  2Re M  have been analyzed 
previously using Feynman diagrams (look 
Ref. in [1,2]). The contributions of the first-
order diagrams have been completely 
calculated. In the second order, there are two 
kinds of diagrams: polarization and ladder 
ones.  The polarization diagrams take into 
account the quasiparticle interaction through 
the polarizable core, and the ladder diagrams 
take into account the immediate quasiparticle 
interaction [11-20]. Some of the ladder 
diagram contributions as well as some of the 
three-quasiparticle diagram contributions in 
all PT orders have the same angular 
symmetry as the two-quasiparticle diagram 
contributions of the first order. These 
contributions have been summarized by a 
modification of the central potential, which 
must now include the screening (anti-
screening) of the core potential of each 
particle by the two others. The additional 
potential modifies the one-quasiparticle 
orbitals and energies. Then the secular matrix 
is as follows [1,2]:  
 
                     )2()1( ~~ MMM  ,                (2) 

  
where  1M  is the modified one-quasiparticle 
matrix ( diagonal), and  2M  is the modified 
two-quasiparticle one.  1M  is calculated by 
substituting the modified one-quasiparticle 
energies), and  2M  by means of the first PT 
order formulae for  2M , putting the 
modified radial functions of the one-
quasiparticle states in the radial  integrals..  
Let us remind that in the QED theory, the 
photon propagator D(12) plays the role of 
this interaction. Naturally the analytical form 
of D(12) depends on the gauge, in which the 
electrodynamical potentials are written. 
Interelectron interaction operator with 
accounting for the Breit interaction has been 
taken as follows:   

           
ij

ji
ijji r

αα1
riexprrV


  ,      (3) 

where, as usually, i are the Dirac matrices. 
In general, the results of all approximate 
calculations depended on the gauge.  
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the correct result must be gauge-invariant. The 
gauge dependence of the amplitudes of the 
photo processes in the approximate calculations 
is a well known fact and is in details investigated 
by Grant, Armstrong, Aymar and Luc-Koenig, 
Glushkov-Ivanov et al (see reviews in [5-7] and 
Refs. therein). Grant has investigated the gauge 
connection with the limiting non-relativistic 
form of the transition operator and has formulated 
the conditions for approximate functions of the 
states, in which the amplitudes of the photo 
processes are gauge invariant [3]. Glushkov-
Ivanov have developed a new relativistic gauge-
conserved version of the energy approach [14]. In 
ref. [25, 29-35] it has been developed its further 
generalization. Here we applied this approach 
for generating the optimized relativistic orbitals 
basis in the zeroth approximation of the many-
body PT. Optimization has been fulfilled by 
means of introduction of the parameter to the 
Fock and Kohn-Sham exchange potentials 
and further minimization of the gauge-non-
invariant contributions into radiation width 
of atomic levels with using relativistic orbital 
bases, generated by the corresponding zeroth 
approximation Hamiltonians. Other details can 
be found in Refs. [1-5,36-44].

3. Some results and conclusion
In tables 1 and 2 we present the values of 

probabilities of the transitions between levels 
of the configurations 2s22p53s,3d,4s,4d and 
2s2p63p,4p in the Ne-like ions of the Ni XIX, 
Br XXVI (in s-1; total angle moment  J=1): a – 
the MCDF method; b- relativistic PT with the 
empirical zeroth approximation  (RPTMP); c1 – 
REA-PT data  (without correlation corrections); 
c2 – REA-PT data (with an account for the 
correlation); exp.- experimental data (look [1-6] 
and Refs therein); This work -our data. 

Table 1. 
Probabilities of radiation transitions between 
levels of the configurations 2s22p53s,3d,4s,4d 
and 2s2p63p,4p in the Ne-like ion of Ni XIX 
(in s-1; total angle moment J=1): a – the MCDF 
method; b- relativistic PT with the empirical 
zeroth approximation (RPTMP); c1, с2 – 
REA PT data (without and with account for 
correlation effects); exp. - experiment; this 

work-our data (see text)

Level J=1 Exp. а-MCDF b-RPTMP

2p3/23s1/2 7.6+11 9.5+11 1.3+12
2p1/23s1/2 6.0+11 1.8+12 1.0+12
2p3/23d3/2 1.4+11 2.2+11 1.5+11
2p3/23d5/2 1.2+13 2.1+13 1.2+13
2p1/23d3/2 3.2+13 4.8+13 3.6+13
2s1/2 3p1/2 8.5+11
2s1/2 3p3/2 5.1+12
2p3/24s1/2 3.3+11 3.6+11
2p1/24s1/2 2.0+11 3.0+11
2p3/24d3/2 4.5+10 5.2+10
2p3/24d5/2 8.3+12 8.3+12
2p1/24d3/2 8.1+12 7.9+12

Level J=1
с1-

REA PT
с2-

REA PT
This work

2p3/23s1/2 9.7+11 8.1+11 7.9+11
2p1/23s1/2 7.6+11 6.2+11 6.1+11
2p3/23d3/2 1.7+11 1.4+11 1.3+11
2p3/23d5/2 1.5+13 1.2+13 1.1+13
2p1/23d3/2 4.0+13 3.3+13 3.2+13
2s1/2 3p1/2 9.5+11 8.1+11 8.0+11
2s1/2 3p3/2 5.6+12 4.7+12 4.6+12
2p3/24s1/2 4.1+11 3.4+11 3.3+11
2p1/24s1/2 3.1+11 2.4+11 2.2+11
2p3/24d3/2 5.4+10 4.8+10 4.6+10
2p3/24d5/2 9.2+12 8.2+12 8.1+12
2p1/24d3/2 8.9+12 8.0+12 8.0+12
2s1/24p1/2 6.3+11 5.7+11 5.6+11
2s1/24p3/2 2.7+12 2.4+12 2.3+12

Analysis of the data shows that the 
computational method used provides a 
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physically reasonable agreement between the 
theoretical and experimental data.

Table 2. 
Probabilities of radiation transitions between 
levels of the configurations 2s22p53s,3d,4s,4d 
and 2s2p63p,4p in the Ne-like ion of Br XXVI 
(in s-1; total angle moment J=1): a – the DF 
method; b- RPTMP; c1,2 – REA PT data 
(without and with account for correlation 

effects); exp. - experiment; this -our data

Level J=1 Exp. а-MCDF b-RPTMP
2p3/23s1/2 4.5+12 6.2+12 4.4+12
2p1/23s1/2 3.1+12 4.8+12 2.8+12
2p3/23d3/2 2.8+11 3.9+11 2.9+11
2p3/23d5/2 6.1+13 8.0+13 6.3+13
2p1/23d3/2 8.6+13 9.5+13 8.7+13
2s1/2 3p1/2 3.9+12 4.2+12
2s1/2 3p3/2 1.4+13 1.5+13
2p3/24s1/2 1.1+12 1.2+12
2p1/24s1/2 2.1+12 2.5+12
2p3/24d3/2 2.8+10 7.3+10
2p3/24d5/2 2.8+13
2p1/24d3/2 2.0+13 2.2+13
2s1/24p1/2 2.5+12
2s1/24p3/2 7.1+12

Level J=1 с1-
QED 
PT 

с2-QED 
PT 

This 
work 

2p3/23s1/2 5.5+12 4.4+12 4.3+12
2p1/23s1/2 3.6+12 2.7+12 2.6+12
2p3/23d3/2 3.5+11 2.8+11 2.7+11
2p3/23d5/2 7.5+13 6.1+13 6.1+13
2p1/23d3/2 9.9+13 8.6+13 8.5+13
2s1/2 3p1/2 4.7+12 4.0+12 3.9+12
2s1/2 3p3/2 1.8+13 1.4+13 1.3+13
2p3/24s1/2 1.5+12 1.1+12 1.1+12
2p1/24s1/2 2.8+12 2.3+12 2.2+12
2p3/24d3/2 6.9+10 6.3+10 6.0+10
2p3/24d5/2 2.7+13 2.3+13 2.2+13
2p1/24d3/2 2.3+13 2.0+13 1.9+13
2s1/24p1/2 2.9+12 2.6+12 2.5+12
2s1/24p3/2 8.9+12 8.0+12 7.8+12

Let us note that the transition probabilities 
values in the different photon propagator gauges 
are practically equal. Besides, an account of the 
inter particle (electron) correlation effects is of a 
great importance.  
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THEORETICAL STUDYING SPECTRAL CHARACTERISTICS OF Ne-LIKE IONS 
ON THE BASIS OF OPTIMIZED RELATIVISTIC MANY-BODY PERTURBATION 

THEORY

Summary. Theoretical studying spectroscopic characteristics of the Ne-like multicharged ions 
is carried out within the relativistic many-body perturbation theory and generalized relativistic en-
ergy approach.The zeroth approximation of the relativistic perturbation theory is provided by the 
optimized Dirac-Kohn-Sham ones. Optimization has been fulfilled by means of introduction of the 
parameter to the Fock and Kohn-Sham exchange potentials and further minimization of the gauge-
non-invariant contributions into radiation width of atomic levels with using relativistic orbital sets, 
generated by the corresponding zeroth approximation Hamiltonian. 

Keywords: Relativistic perturbation theory, optimized zeroth approximation, Ne-like multich-
arged ions 
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ТЕОРЕТИЧЕСКОЕ ИЗУЧЕНИЕ СПЕКТРАЛЬНЫХ ХАРАКТЕРИСТИК Ne-
ПОДОБНЫХ ИОНОВ НА ОСНОВЕ ОПТИМИЗИРОВАННОЙ РЕЛЯТИВИСТСКОЙ 

МНОГОЧАСТИЧНОЙ ТЕОРИИ ВОЗМУЩЕНИЙ

Резюме. В рамках релятивистской многочастичной теории возмущений и обобщенного 
релятивистского энергетического подхода проведено теоретическое изучение спектроско-
пических характеристик ряда Ne-подобных многозарядных ионов. В качестве нулевого при-
ближения релятивистской теории возмущений выбрано оптимизированное приближение 
Дирака-Кона-Шэма. Оптимизация выполнена путем введения параметра в обменные по-
тенциалы Фока и Кона-Шэма и дальнейшей минимизацией калибровочно-неинвариантных 
вкладов в радиационные ширины атомных уровней с использованием релятивистского бази-
са орбиталей, сгенерированного соответствующим гамильтонианом нулевого приближения. 

Ключевые слова: Релятивистская теория возмущений, оптимизированное нулевое при-
ближение, Ne-подобные многозарядные ионы
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ТЕОРЕТИЧНЕ ВИВЧЕННЯ СПЕКТРАЛЬНИХ ХАРАКТЕРИСТИК Ne-ПОДІБНИХ 
ИОНОВ НА ОСНОВІ ОПТИМІЗОВАНОЇ РЕЛЯТИВІСТСЬКОЇ БАГАТОЧАСТКОВІ 

ТЕОРІЇ ЗБУРЕНЬ

Резюме. В рамках релятивістської багаточастинкової  теорії збурень і узагальненого ре-
лятивістського енергетичного підходу проведено теоретичне вивчення спектроскопічних 



82

характеристик ряду Ne-подібних багатозарядних іонів. В якості нульового наближення ре-
лятивістської теорії збурень обрано оптимізоване наближення Дірака-Кона-Шема. Оптимі-
зація виконана шляхом введення параметра в обмінний потенціал Кона-Шема і подальшої 
мінімізації калібрувально-неінваріантних вкладів в радіаційні ширини атомних рівнів з ви-
користанням релятивістського базису орбіталей, згенерованого відповідним гамільтоніаном 
нульового наближення.

Ключові слова: Релятивістська теорія збурень, оптимізоване нульове наближення, Ne- 
подібні багатозарядні іони
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SPECTROSCOPIC FACTORS OF DIATOMIC MOLECULES: OPTIMIZED  GREEN’S 
FUNCTIONS AND DENSITY FUNCTIONAL METHOD 

It is presented an advanced approach to computing the spectroscopic factors of the diatomic molecules, which is 
based on the hybrid combined density functional theory (DFT) and the Green’s-functions (GF) approach. The Fermi-
liquid quasiparticle version of the density functional theory is modified and used. The density of states, which describe 
the vibrational structure in photoelectron spectra, is defined with the use of combined DFT-GF approach and is well 
approximated by using only the first order coupling constants in the optimized one-quasiparticle approximation. Using 
the combined DFT-GF approach to computing the spectroscopic factors of diatomic molecules leads to significant 
simplification of the calculation procedure and increasing an accuracy of theoretical prediction.

1. Introduction
In this paper we study the problem of 

calculating the important spectroscopic 
characteristics of multielectron systems (atoms 
and molecules), namely, the  spectroscopic 
factor. The spectroscopic factor is one of the 
most important characteristics of atomic and 
molecular systems and the precise information 
about it is very important for many applications 
[1-38]. The theoretical determination of 
spectroscopic factor for multielectron atomic 
and molecular systems is a rather complicated 
task, since in the framework of traditional a 
priori methods it is reduced to a calculation of 
corrections of perturbation theory of the type: 

           
          

with summation over a large number of 
intermediate states. The spectroscopic factor 
is usually experimentally determined using 
inelastic scattering of fast electrons, as well as 
photoelectron spectroscopy (see [1]). In this 
case, as a rule, there is a discrepancy between the 
results of measurements of spectroscopic factors 
in these experiments caused by the influence of 
many electronic correlations in the initial state of 
the multielectron system

In this paper we present an advanced approach 

to computing the spectroscopic factors of the 
diatomic molecules within  the hybrid combined 
density functional theory (DFT) in the Fermi-
liquid formulation and the Green’s-functions 
(GF) approach to quantitative determination of 
the spectroscopic factors for some molecular 
systems. The approach is based on the Green’s 
function method (Cederbaum-Domske version) 
[1,2] and Fermi-liquid DFT formalism [3-7] and 
using the novel effective density functionals  (see 
also [11-22]). It is important that the calculational 
procedure is significantly simplified with using 
the quasiparticle DFT formalism.  

As usually (see details in refs. [1,4,7]), the 
quantity which contains the information about 
the ionization potentials (I.P.) and molecular 
vibrational structure due to quick ionization is 
the density of occupied states:

                                                                            (1)

where 〉Y0  is the exact ground state wave 

function of the reference molecule and  )(tak
is an electron destruction operator, both in the 
Heisenberg picture. 
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where 0  is the exact ground state wave 
function of the reference molecule and  

)(tak is an electron destruction operator, both 
in the Heisenberg picture.  
2. Theory: Density of states in one-body 
and many-body solution 
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2. Theory: Density of states in one-body 
and many-body solution

As usually, introducing a field operator 

),(),,(),,( θθφθ RaRxxR ii
i
∑=Y   with the 

Hartree-Fock (HF) one–particle functions фi  (

)(Ri∈ are the one-particle HF energies and f 
denotes the set of orbitals occupied in the HF 
ground state; R0 is  the equilibrium geometry 
on the HF level) and dimensionless normal 
coordinates Qs one can write the standard 
Hamiltonian as follows [2,7]:
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with ni=1 (0), iϵf  (iϵf), δσf=1 (0) , (ijkl)ϵσf , 

where the index set v1 means that at least  kφ  and 

lφ or iφ  and jφ are unoccupied, v2 that at most 
one of the orbitals is unoccupied, and  v3  that  

kφ  and jφ or lφ and  jφ  are unoccupied.  The 

sw are the HF frequencies; sb , t
sb  are destruction 

and creation operators for vibrational quanta as 
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The interpretation of the above Hamiltonian 
and an exact solution of the one-body HF 
problem is given in refs. [1,-7]. The usual way 
is to define the HF-single-particle component 

0H  of the Hamiltonian (4) is as in Refs. [1,4]. 
Correspondingly in the one-particle picture the 
density of occupied states is given by
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To get function )(ºNk  one calculates the GF

)(' ºGkk (see details in Refs. [1-7,31-35]:
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Choosing the unperturbed 0H  to be 
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t
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The direct method for calculation of Nk(
∈) as the imaginary part of the GF includes 
a definition of the vertical I.P. (V.I.P.s) of the 
reference molecule and then of Nk ( )∈ .  

The zeros of the functions:

             ( ) ( )[ ]kop
kD ∈S+∈−=∈∈ ,              (10)  

where ( )kop S+∈ denotes the k-th eigenvalue 
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with ni=1 (0), if  (if), f=1 (0) , (ijkl)f 
, where the index set v1 means that at least  

k  and l or i  and j are unoccupied, v2 that 
at most one of the orbitals is unoccupied, and  
v3  that  k  and j or l and  j  are 
unoccupied.  The s are the HF frequencies; 

sb , t
sb  are destruction and creation operators 

for vibrational quanta as  
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The interpretation of the above Hamiltonian 
and an exact solution of the one-body HF 
problem is given in refs. [1,-7]. The usual way 
is to define the HF-single-particle component 

0H  of the Hamiltonian (4) is as in Refs. [1,4]. 
Correspondingly in the one-particle picture 
the density of occupied states is given by 
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(7) 
To get function )(єNk  one calculates the 
GF )(' єGkk (see details in Refs. [1-7,31-35]: 
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Choosing the unperturbed 0H  to be 

Ni
t
ii HaaєH 0 one could define GF as    
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The direct method for calculation of Nk() as 
the imaginary part of the GF includes a 
definition of the vertical I.P. (V.I.P.s) of the 
reference molecule and then of Nk   .   
 The zeros of the functions: 
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of the dia gonal matrix of the one-particle 
energies added to matrix of the self-energy part, 
are the negative V. I. P. ‘s for a given geometry.  
One can write [2,4]:

( ) ( )kkk FPIV +∈−=... ,
                                                   

( )( ) ( ) ( )kkk
kkk

kkkk PIVF ∈S
∂∈S∂−

≈−S=
∈/1

1...
.                                                             (11)

Expanding the ionic energy 1−N
kE about the 

equilibrium geometry of the reference molecule 
in a power series of the normal coordinates leads 
to a set of linear equations for the unknown 
normal coordinate shifts δQS, and new coupling 
constants:
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The coupling constants lg , lly ′  are calculated 
by the well-known perturbation expansion of 
the self-energy part. One could write: 
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and the coupling constant gl, are as [17]:
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The pole strength of the corresponding GF:

                                                
[ ] ,01;.)..(1

1

≥≥






 −

∈∂
∂

−=
−

∑ kkkkk PIV ρρ                            
                                                                                                                          

               ( )[ ],10 −+≈ kkkll qgg ρρ  

                 lkl Qg ∂∈∂±= − /2 2/10             (15)

3. Fermi-liquid quasiparticle density 
functional theory

The  quasiparticle Fermi-liquid version of 
the DFT [3-8,31,36] is used to determine the 
coupling constants etc. The  master equations 
can be obtained on the basis of variational 
principle, if we start from a Lagrangian of a 
molecule Lq. It should be defined as a functional 

of  quasiparticle densities: 

,|)(|)( 2
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l
llν rnr

                 ,|)(|)( 2
1 ∑ Φ∇=

l
llν rnr         (16)

∑ ΦΦ−ΦΦ=
l

lllllν ].[)( **
2 nr

The densities υ0 and υ1  are similar to the HF 
electron density and kinetical energy density 
correspondingly; the density υ2  has no an analog 
in the HF or DFT theory and appears as result of 
account for the energy dependence of the mass 
operator S. A Lagrangian Lq  can be written as 
a sum of a free Lagrangian and Lagrangian of 
interaction: Lq = Lq

0 + Lq
int, where the interaction 

Lagrangian is defined in the form, which is 
characteristic for a standard  DFT  (as a sum of 
the Coulomb and exchange-correlation terms), 
but, it takes into account for a mass operator 
energy dependence of S :

  

(17)
where F is an effective exchange-correlation 

interaction potential. The constants βik are 
defined in Refs. [3-5]. The constant β02  can 
be calculated by analytical way, but it is very 
useful to keep in mind its connection with a 
spectroscopic factor Fsp [4,5]:
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The new element is  linked with using the 
DFT correlation Gunnarsson-Lundqvist, Lee-
Yang-Parrr functionals (c.g.[12-16]).

4. Results and conclusions

Below we present the results of calculation 
of the spectroscopic factors for a number of 
diatomic molecules, in particular, 2222 ,,, FONC  
in the ground state, as well as dimers of noble 
gases *

2
*
2

*
2 ,, XeKrAr  in the lowest excited state. 

As the input data, the data obtained in the 
HF approximation [2,40] are used. For the 

2222 ,,, FONC  the following spectroscopic factors 
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where  kop  denotes the k-th eigenvalue 
of the diagonal matrix of the one-particle 
energies added to matrix of the self-energy 
part, are the negative V. I. P. 's for a given 
geometry.  One can write [2,4]: 
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Expanding the ionic energy 1N
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equilibrium geometry of the reference 
molecule in a power series of the normal 
coordinates leads to a set of linear equations 
for the unknown normal coordinate shifts 
δQS, and new coupling constants: 
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and the coupling constant gl, are as [17]: 
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The pole strength of the corresponding GF: 
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coupling constants etc. The  master equations 
can be obtained on the basis of variational 
principle, if we start from a Lagrangian of a 
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The densities 0 and 1  are similar to the HF 
electron density and kinetical energy density 
correspondingly; the density 2  has no an 
analog in the HF or DFT theory and appears 
as result of account for the energy 
dependence of the mass operator . A 
Lagrangian Lq  can be written as a sum of a 
free Lagrangian and Lagrangian of 
interaction: Lq = Lq

0 + Lq
int, where the 

interaction Lagrangian is defined in the form, 
which is characteristic for a standard  DFT  
(as a sum of the Coulomb and exchange-
correlation terms), but, it takes into account 
for a mass operator energy dependence of  : 
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where F is an effective exchange-correlation 
interaction potential. The constants ik are 
defined in Refs. [3-5]. The constant 02  can 
be calculated by analytical way, but it is very 
useful to keep in mind its connection with a 
spectroscopic factor Fsp [4,5]: 
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were obtained for core )( c
spF  and valence )( V

spF  
shells:

The obtained values   of spectroscopic factors 
make it possible to assess to a certain extent 
the role of various types of correlations, in 
particular, intra-core and intra-valent, in these 
molecules. Since the spectroscopic factor, by 
its definition, is related to the dependence of the 
MSS on energy not taken into account in the HF 
approximation (always in this approximation: 

1=spF ), the difference spF  from 1 indicates 
the corresponding role of various correlation 
effects. In particular, for these molecules, 
the contribution of intra-core correlations is 
somewhat more significant than that of intra-
valent ones, which is also confirmed in ab initio 
calculations (c.f., [40]). For noble gas dimers (

2
gno  outer shells) n

spF  are calculated:

An analysis of the data indicates presence 
of strong correlation effects for the molecules, 
a number of features in the photoionization 
cross section of the 2dn  shells, namely, the 
possible collectivization of the gn 2d shells, the 
presence of “shadow” states in the molecules 
with which strong mixing takes place and to 
which the strength of the initial level )1( spF−  is 
transmitted. Note that such effects are known in 
the theory of atomic photoelectric effect, namely,  
for noble gas atoms (Ar and others) [6,41]).
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make it possible to assess to a certain extent 
the role of various types of correlations, in 
particular, intra-core and intra-valent, in these 
molecules. Since the spectroscopic factor, by 
its definition, is related to the dependence of 
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 An analysis of the data indicates presence of 
strong correlation effects for the molecules, a 
number of features in the photoionization 
cross section of the 2n  shells, namely, the 
possible collectivization of the gn 2 shells, 

the presence of “shadow” states in the 
molecules with which strong mixing takes 
place and to which the strength of the initial 
level )1( spF  is transmitted. Note that such 
effects are known in the theory of atomic 
photoelectric effect, namely,  for noble gas 
atoms (Ar and others) [6,41]). 
 

References 
1. Köppel, H., Domcke, W., Cederbaum, 

L.S., Green’s function method in quantum 
chemistry. Adv. Chem. Phys. 1984, 57, 
59-132 

2. Cederbaum, L., Domcke, W., On 
vibrational structure of photoelectron 
spectra by the Green’s functions method.  
J.Chem. Phys. 1984, 60, 2878-2896. 

3.  Glushkov, A. An universal quasiparticle 
energy functional in a density functional 
theory for relativistic atom. Opt. and 
Spectr. 1989, 66(1), 31-36. 

4. Glushkov, A.V. New approach to 
theoretical definition of ionization 
potentials for molecules on the basis of 
Green’s function method. J. Phys. Chem. 
1992, 66, 2671-2677. 

5. Glushkov, A.V. Relativistic and 
correlation effects in spectra of atomic 
systems. Astroprint: Odessa, 2006.   

6. Glushkov, A.V. Relativistic Quantum 
theory. Quantum mechanics of atomic 
systems. Astroprint: Odessa, 2008. 

7. Ignatenko, A.V., Glushkov, A.V.,  
Lepikh, Ya.I., Kvasikova, A.S. 
Photoelectron spectroscopy of diatomic 
molecules:optimized Green’s functions 
and density functional approach. 
Photoelectronics. 2018, 27, 44-51.   

8. Glushkov A.,  Khetselius O., Svinarenko 
A., Buyadzhi V. Spectroscopy of 
autoionization states of heavy atoms and 
multiply charged ions. TEC, 2015. 

9. Ponomarenko, Е.L., Kuznetsova, A.A., 
Dubrovskaya, Yu.V., Bakunina, E.V. 
Energy and spectroscopic parameters of 
diatomics within  generalized equation of 
motion method. Photoelectronics. 2016, 
25, 114-118. 

The new element is  linked with using the 
DFT correlation Gunnarsson-Lundqvist, Lee-
Yang-Parrr functionals (c.g.[12-16]). 

4. Results and conclusions 
Below we present the results of calculation 

of the spectroscopic factors for a number of 
diatomic molecules, in particular, 

2222 ,,, FONC  in the ground state, as well as 
dimers of noble gases *

2
*
2

*
2 ,, XeKrAr  in the 

lowest excited state. As the input data, the 
data obtained in the HF approximation [2,40] 
are used. For the 2222 ,,, FONC  the following 
spectroscopic factors were obtained for core 

)( c
spF  and valence )( V

spF  shells: 

.71.0,39.0

,74.0,43.0

,77.0,46.0

,80.0,49.0

2

2

2

2









v
sp

c
sp

v
sp

c
sp

v
sp

c
sp

v
sp

c
sp

FFF

FFO

FFN

FFC

 

The obtained values of spectroscopic factors 
make it possible to assess to a certain extent 
the role of various types of correlations, in 
particular, intra-core and intra-valent, in these 
molecules. Since the spectroscopic factor, by 
its definition, is related to the dependence of 
the MSS on energy not taken into account in 
the HF approximation (always in this 
approximation: 1spF ), the difference spF  
from 1 indicates the corresponding role of 
various correlation effects. In particular, for 
these molecules, the contribution of intra-core 
correlations is somewhat more significant 
than that of intra-valent ones, which is also 
confirmed in ab initio calculations (c.f., [40]). 
For noble gas dimers ( 2

gno  outer shells) n
spF  

are calculated: 
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 An analysis of the data indicates presence of 
strong correlation effects for the molecules, a 
number of features in the photoionization 
cross section of the 2n  shells, namely, the 
possible collectivization of the gn 2 shells, 

the presence of “shadow” states in the 
molecules with which strong mixing takes 
place and to which the strength of the initial 
level )1( spF  is transmitted. Note that such 
effects are known in the theory of atomic 
photoelectric effect, namely,  for noble gas 
atoms (Ar and others) [6,41]). 
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A. V. Ignatenko, A. P. Lavrenko

SPECTROSCOPIC FACTORS OF DIATOMIC MOLECULES:  OPTIMIZED 
GREEN’S FUNCTIONS AND DENSITY FUNCTIONAL METHOD

Summary. It is presented an advanced approach to computing the spectroscopic factors of the 
diatomic molecules, which is based on the hybrid combined density functional theory (DFT) and 
the Green’s-functions (GF) approach. The Fermi-liquid quasiparticle DFT version is modified and 
used.  The density of states, which describe the vibrational structure in photoelectron spectra, is de-
fined with the use of combined DFT-GF approach and is well approximated by using only the first 
order coupling constants in the optimized one-quasiparticle approximation. Using the combined 
DFT-GF approach leads to significant simplification of calculation procedure and increasing an 
accuracy of theoretical prediction.

Key words: diatomic molecules, Green’s functions, density functional
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А. В. Игнатенко, А. П. Лавренко

СПЕКТРОСКОПИЧЕСКИЕ ФАКТОРЫ ДЛЯ ДВУХАТОМНЫХ МОЛЕКУЛ: 
ОПТИМИЗИРОВАННЫЙ МЕТОД ФУНКЦИЙ ГРИНА И ФУНКЦИОНАЛА 

ПЛОТНОСТИ

Резюме. Представлен усовершенствованный подход к вычислению спектроскопических 
факторов двухатомных молекул, базирующийся на гибридной комбинированной теории 
функционала плотности (ТФП) и методе функций Грина (ФГ). Используется модель ферми-
жидкостная квазичастичная версия ТФП. Плотность состояний, которая описывает колеба-
тельную структуру в фотоэлектронных спектрах, определяется с использованием комбини-
рованного подхода ТФП - ФГ. Использование комбинированного ТФП-ФГ подхода приводит 
к значительному упрощению процедуры расчета и повышению точности теоретического 
прогнозирования.

Ключевые слова: двухатомные молекулы, функция Грина, функционал плотности
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Г. В. Ігнатенко, О. П. Лавренко

СПЕКТРОСКОПІЧНІ ФАКТОРИ ДВОАТОМНИХ МОЛЕКУЛ: 
ОПТИМІЗОВАНИЙ МЕТОД ФУНКЦІЙ ГРІНА І ФУНКЦІОНАЛУ ГУСТИНИ  

Резюме. Представлений вдосконалений метод обчислення спектроскопічних факторів 
2-атомних молекул, що базується на гібридній теорії функціонала щільності (ТФП) і мето-
ді функцій Гріна (ФГ). Використано фермі-рідинну квазічастинкову версію ТФП. Густина 
станів, які описує коливальну структуру фотоелектронного спектру, визначається в межах 
ТФП-ФГ методу. Використання комбінованого ТФП-ФГ методу призводить до спрощення 
процедури обчислень, підвищення точності прогнозу.

Ключові слова: двоатомні молекули, функція Гріна, функціонал густини
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RELATIVISTIC THEORY OF CALCULATION OF E1 TRANSITION AMPLITUDES, 
AND GAUGE INVARIANCE PRINCIPLE

The combined relativistic energy approach and relativistic many-body perturbation theory with the zeroth order 
Dirac-Kohn-Sham one-particle approximation are used for estimating the energies and the E1 radiative transitions 
amplitudes (oscillator strengths) for the low-excited states of the francium. The comparison with available theoretical 
and experimental (compilated) data is performed. The important point is linked with an accurate accounting for 
the complex exchange-correlation (polarization) effect contributions and using the optimized one-quasiparticle 
representation in the relativistic many-body perturbation theory zeroth order that significantly provides a physically 
reasonable agreement between theory and precise experiment.

1. Introduction

The development of new directions in 
the field of laser, atomic physics, quantum 
electronics, etc., such as pulsed heating methods 
in research on controlled thermonuclear fusion, 
new laser schemes in VUV, X-ray spectral 
regions, astrophysical studies, etc., necessitates 
the solution of new classes of problems of 
atomic and laser physics at a fundamentally new 
level of theoretical consistency and accuracy. 
Significant progress in the development of 
experimental research methods, in particular, a 
significant increase in the intensity and quality 
of laser radiation, the use of accelerators, heavy 
ion colliders, sources of synchrotron radiation 
and, as a result, the possibility of studying 
more and more energy processes, stimulates 
the development of new theoretical methods 
in the theory of heavy atoms calculation of 
their characteristics, in particular, radiation and 
autoionization ones [1-10]. 

However, a study of the spectral characteristics 
of heavy atoms and ions in the Rydberg states has 
to be more complicated as it requires a necessary 
accounting for the relativistic, exchange-
correlations effects and possibly the QED 
corrections for superheavy atomic systems. The 
simultaneous correct accounting of relativistic, 
quantum electrodynamic (QED), and many-

particle correlation effects is essential [1–10]. 
The results of calculating the characteristics of 
atomic processes based on modern theoretical 
methods often differ several times. 

The difference in the values   of the transition 
amplitudes, the oscillator strengths, and the 
radiation widths for heavy atoms using various 
expressions for the photon propagator reaches 
5–30% (we are essentially talking about the non-
fulfillment of the principle of gauge invariance 
when calculating physical quantities) [11-18]. 
From the point of view of applications for the 
majority of the most important atomic systems, 
there is very often partially or completely 
missing information on their energy, radiation or/
and autoionization characteristics (heavy atoms, 
atoms of alkaline-earth elements, lanthanides 
and actinides). 

In this paper the combined relativistic 
energy approach and relativistic many-body 
perturbation theory with the zeroth order Dirac-
Kohn-Sham 1-particle approximation [2,19] are 
used for are used for estimating the energies 
and the E1 radiative transitions amplitudes 
(oscillator strengths) for some low-excited 
states of the francium atom and studying an 
effect of the gauge invariance on the transition 
amplitude values for heavy atoms on example of 
the francium. 
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2. The theoretical method

In Refs. [2,18-22] the fundamentals of the 
relativistic many-body PT formalism have been 
in detail presented, so further we are limited 
only by the novel elements.   Let us remind 
that the majority of complex atomic systems 
possess a dense energy spectrum of interacting 
states. In Refs. [10-12] there is realized a field 
procedure for calculating the energy shifts DE 
of degenerate states, which is connected with 
the secular matrix M diagonalization. The 
whole calculation of the energies and decay 
probabilities of a non-degenerate excited state 
is reduced to the calculation and diagonalization 
of the M. The complex secular matrix M is 
represented in the form:  

    ( ) ( ) ( ) ( )0 1 2 3 .M M M M M= + + +             (1)

where ( )0M  is the contribution of the 
vacuum diagrams of all order of PT, and 

( )1M , ( )2M , ( )3M  those of the one-, two- and 
three-QP diagrams respectively. The diagonal 
matrix ( )1M  can be presented as a sum of the 
independent 1QP contributions. The optimized 
1-QP representation is the best one to determine 
the zeroth approximation. In the relativistic 
energy approach, which has received a great 
application during solving numerous problems 
of atomic, molecular and nuclear physics (e.g., 
see Refs. [21-27]), the imaginary part of electron 
energy shift of an atom is directly connected 
with the radiation decay possibility (transition 
probability). An approach, using the Gell-Mann 
and Low formula with the QED scattering 
matrix, is used in treating the relativistic atom. 
The total energy shift of the state is usually 
presented in the form:

                DE = ReDE + i G/2                   (2)

where G is interpreted as the level width, 
and the decay possibility P = G. The imaginary 
part of electron energy of the system, which 
is defined in the lowest order of perturbation 
theory as [10,11]: 
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where (a>n>f)  for electron and (a<n<f)  for 
vacancy. The matrix element is determined as 
follows:

               (4)  
where ωij is the transition frequency; αi ,αj are 
the Dirac matrices. The separated terms of 
the sum in (1) represent the contributions of 
different channels and a probability of the dipole 
transition 
Naturally, the physical values should not depend 
on the calibration of the photonic propagator. In 
general form, it can be written as     
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where the term DT is corresponding to exchange 
by transverse photons, DL — longitudinal ones, 
C is the gauge constant. contribution of the main 
exchange-correlation (the second and higher 
orders of the atomic perturbation theory or fourth 
etc of the QED perturbation theory) diagrams to 
imaginary part of an electron energy shift looks 
like [11]:
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Expression (6) can be represented as an a sum:  
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with (4) different operator combinations W1, 
W2.  The sum over n can be calculated by the 
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remind that the majority of complex atomic 
systems possess a dense energy spectrum of 
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energy shifts E of degenerate states, which 
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relativistic energy approach, which has 
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numerous problems of atomic, molecular and 
nuclear physics (e.g., see Refs. [21-27]), the 
imaginary part of electron energy shift of an 
atom is directly connected with the radiation 
decay possibility (transition probability). An 
approach, using the Gell-Mann and Low 
formula with the QED scattering matrix, is 
used in treating the relativistic atom. The 
total energy shift of the state is usually 
presented in the form: 
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where  is interpreted as the level width, and 
the decay possibility P = . The imaginary 
part of electron energy of the system, which 
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where ij is the transition frequency; i ,j 
are the Dirac matrices. The separated terms 
of the sum in (1) represent the contributions 
of different channels and a probability of the 
dipole transition  
Naturally, the physical values should not 
depend on the calibration of the photonic 
propagator. In general form, it can be written 
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where  0M  is the contribution of the vacuum 
diagrams of all order of PT, and  1M , 
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independent 1QP contributions. The 
optimized 1-QP representation is the best one 
to determine the zeroth approximation. In the 
relativistic energy approach, which has 
received a great application during solving 
numerous problems of atomic, molecular and 
nuclear physics (e.g., see Refs. [21-27]), the 
imaginary part of electron energy shift of an 
atom is directly connected with the radiation 
decay possibility (transition probability). An 
approach, using the Gell-Mann and Low 
formula with the QED scattering matrix, is 
used in treating the relativistic atom. The 
total energy shift of the state is usually 
presented in the form: 

 
                E = ReE + i /2                   (2) 

 
where  is interpreted as the level width, and 
the decay possibility P = . The imaginary 
part of electron energy of the system, which 
is defined in the lowest order of perturbation 
theory as [10,11]:  
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where (>n>f)  for electron and (<n<f)  for 
vacancy. The matrix element is determined 
as follows: 
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where ij is the transition frequency; i ,j 
are the Dirac matrices. The separated terms 
of the sum in (1) represent the contributions 
of different channels and a probability of the 
dipole transition  
Naturally, the physical values should not 
depend on the calibration of the photonic 
propagator. In general form, it can be written 
as      
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where the term DT is corresponding to 
exchange by transverse photons, DL — 
longitudinal ones, C is the gauge constant. 
contribution of the main exchange-
correlation (the second and higher orders of 
the atomic perturbation theory or fourth etc 
of the QED perturbation theory) diagrams to 
imaginary part of an electron energy shift 
looks like [11]: 
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2. The theoretical method. 
In Refs. [2,18-22] the fundamentals of the 

relativistic many-body PT formalism have 
been in detail presented, so further we are 
limited only by the novel elements.   Let us 
remind that the majority of complex atomic 
systems possess a dense energy spectrum of 
interacting states. In Refs. [10-12] there is 
realized a field procedure for calculating the 
energy shifts E of degenerate states, which 
is connected with the secular matrix M 
diagonalization. The whole calculation of the 
energies and decay probabilities of a non-
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atom is directly connected with the radiation 
decay possibility (transition probability). An 
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used in treating the relativistic atom. The 
total energy shift of the state is usually 
presented in the form: 
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where ij is the transition frequency; i ,j 
are the Dirac matrices. The separated terms 
of the sum in (1) represent the contributions 
of different channels and a probability of the 
dipole transition  
Naturally, the physical values should not 
depend on the calibration of the photonic 
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where the term DT is corresponding to 
exchange by transverse photons, DL — 
longitudinal ones, C is the gauge constant. 
contribution of the main exchange-
correlation (the second and higher orders of 
the atomic perturbation theory or fourth etc 
of the QED perturbation theory) diagrams to 
imaginary part of an electron energy shift 
looks like [11]: 
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method of differential equations. The index m 
numbers a finite number of states occupied in 
the core and the state of the real continuum. The 
continuum-related part describes the vacuum po-
larization of the electron field and leads to diver-
gent integrals in the non-renormalizable theory. 
Its contribution to the main contribution has an 
additional order of smallness (aZ2). The minimi-
zation of the density functional ImdE leads to the 
integral differential equation for the rc, that can 
be numerically solved. This step allows to deter-
mine the   optimization parameter b. In Ref. [11] 
the authors elaborated a simplified computational 
procedure.

The contribution of the main exchange-corre-
lation (the second and higher orders of the atomic 
perturbation theory or fourth etc ones of the QED 
perturbation theory) to imaginary part of an elec-
tron energy shift is determined by the polariz-
ability of an atomic core, which is related to the 
electronic core  density rс. The expression (6) can 
be represented an a functional of the density rс.

Under calculating the matrix elements (2) one 
should use the expansion for potential sin|w|r12/r12 
on spherical functions as follows [10,11]:

(8)

where J  is the Bessel function of first kind 
and (l)= 2l + 1. Substitution of the expansion (5) 
to matrix element of interaction gives as follows 
[14]: 
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where ji is the total single electron momen-
tums, mi – the projections; QQul is the Coulomb 
part of interaction, QBr - the Breit part. Their 
detailed definitions are presented in Refs. [10-
11,18,19]. The relativistic wave functions are 
calculated by solution of the Dirac equation 
with the potential, which includes the “outer 
electron- ionic core” potential and exchange-po-
larization potential [20]. In fact, we realize the 
procedure of optimization of relativistic orbitals 
base. The main idea is based on using ab ini-

tio optimization procedure, which  is reduced to 
minimization of the gauge dependent multielec-
tron contribution ImDEninv of the lowest QED 
PT corrections to the radiation widths of atomic 
levels. According to [11, 18], “in the fourth or-
der of QED PT (the second order of the atomic 
PT) there appear the diagrams, whose contribu-
tion to the ImDEninv accounts for correlation ef-
fects and this contribution is determined by the 
electromagnetic potential gauge (the gauge de-
pendent contribution)”. The accurate  procedure 
for minimization of the functional ImdEninv leads 
to the Dirac-Kohn-Sham-like equations for the 
electron density that are numerically solved by 
the Runge-Cutta standard method It is very im-
portant to know that the regular  realization of 
the total scheme allows to get an optimal set of 
the 1QP functions and more correct results in 
comparison with so called simplified one, which 
has been used in Refs. [11-13] and reduced to 
the functional minimization using the variation 
of the correlation potential parameter b. Other 
details can be found in Refs. [11,18,19,29]. 

The adequate, precise computation of radia-
tive parameters of the heavy Rydberg alkali-met-
al atoms within relativistic perturbation theory 
requires an accurate accounting for the multi-
electron exchange-correlation effects (including 
polarization and screening effects, a continuum 
pressure etc). These effects within our approach 
are treated as the effects of the perturbation theo-
ry second and higher orders. Using the standard 
Feynman diagrammatic technique one should 
consider two kinds of diagrams (the polarization 
and ladder ones), which describe the polariza-
tion and screening exchange-correlation effects. 
The detailed description of the polarization dia-
grams and the corresponding analytical expres-
sions for matrix elements of the polarization in-
terelectron interaction (through the polarizable 
core of an alkali atom) potential is presented in 
Refs. [2,18,19,29].

An effective approach to accounting for the 
polarization diagrams contributions is in add-
ing the effective two-quasiparticle polarizable 
operator into the perturbation theory first order 
matrix elements. In Ref. [10] the corresponding 
non-relativistic polarization functional has been 
derived. More correct relativistic expression has 

Expression (6) can be represented as an a 
sum:   
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with (4) different operator combinations W1, 
W2.  The sum over n can be calculated by the 
method of differential equations. The index 
m numbers a finite number of states occupied 
in the core and the state of the real 
continuum. The continuum-related part 
describes the vacuum polarization of the 
electron field and leads to divergent integrals 
in the non-renormalizable theory. Its 
contribution to the main contribution has an 
additional order of smallness (Z2). The 
minimization of the density functional ImE 
leads to the integral differential equation for 
the c, that can be numerically solved. This 
step allows to determine the   optimization 
parameter b. In Ref. [11] the authors 
elaborated a simplified computational 
procedure. 
     The contribution of the main exchange-
correlation (the second and higher orders of 
the atomic perturbation theory or fourth etc 
ones of the QED perturbation theory) to 
imaginary part of an electron energy shift is 
determined by the polarizability of an atomic 
core, which is related to the electronic core  
density с. The expression (6) can be 
represented an a functional of the density с. 
Under calculating the matrix elements (2) 
one should use the expansion for potential 
sinr12/r12 on spherical functions as follows 
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where J  is the Bessel function of first kind 
and ()= 2 + 1. Substitution of the 
expansion (5) to matrix element of 
interaction gives as follows [14]:  
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where ji is the total single electron 
momentums, mi – the projections; QQul is the 
Coulomb part of interaction, QBr - the Breit 
part. Their detailed definitions are presented 
in Refs. [10-11,18,19]. The relativistic wave 
functions are calculated by solution of the 
Dirac equation with the potential, which 
includes the “outer electron- ionic core” 
potential and exchange-polarization potential 
[20]. In fact, we realize the procedure of 
optimization of relativistic orbitals base. The 
main idea is based on using ab initio 
optimization procedure, which  is reduced to 
minimization of the gauge dependent 
multielectron contribution ImEninv of the 
lowest QED PT corrections to the radiation 
widths of atomic levels. According to [11, 
18], “in the fourth order of QED PT (the 
second order of the atomic PT) there appear 
the diagrams, whose contribution to the 
ImEninv accounts for correlation effects and 
this contribution is determined by the 
electromagnetic potential gauge (the gauge 
dependent contribution)”. The accurate  
procedure for minimization of the functional 
ImEninv leads to the Dirac-Kohn-Sham-like 
equations for the electron density that are 
numerically solved by the Runge-Cutta 
standard method It is very important to know 
that the regular  realization of the total 
scheme allows to get an optimal set of the 
1QP functions and more correct results in 
comparison with so called simplified one, 
which has been used in Refs. [11-13] and 
reduced to the functional minimization using 
the variation of the correlation potential 
parameter b. Other details can be found in 
Refs. [11,18,19,29].  
     The adequate, precise computation of 
radiative parameters of the heavy Rydberg 
alkali-metal atoms within relativistic 
perturbation theory requires an accurate 
accounting for the multi-electron exchange-
correlation effects (including polarization 
and screening effects, a continuum pressure 
etc). These effects within our approach are 
treated as the effects of the perturbation 
theory second and higher orders. Using the 
standard Feynman diagrammatic technique 
one should consider two kinds of diagrams 
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been presented in the Refs. [2,18] and used in 
our theory. 

The corresponding two-quasiparticle 
polarization potential looks as follows:                                                              
(10a)

                                    

where 0
cρ  is the core electron density (without 

account for the quasiparticle), X is numerical 
coefficient, c is the light velocity. The contribution 
of the ladder diagrams (these diagrams describe 
the immediate interparticle interaction) is 
summarized by a modification of the perturbation 
theory zeroth approximation mean-field central 
potential (look [2,18]), which includes the 
screening (anti-screening) of the core potential 
of each particle by the two others. All computing 
was performed with using the modified PC code 
“Superatom-ISAN” (version 93).

3. Results and conclusion

We applied the above described approach to 
compute the oscillator strengths (reduced dipole 
matrix elements) for a number of transitions 
in spectra of the heavy alkali atoms and 
corresponding ions.

As an illustration we present below the 
data for francium. In Table 1 there are listed 
the theoretical reduced dipole matrix elements 
for a number of transitions, computed within: 
i) relativistic Hartree-Fock (RHF) method 
[6], ii) the empirical relativistic model potential 

method (ERMP) [7], iii) the relativistic single-
double (SD) method in which single and double 
excitations of the Dirac-Hartree-Fock (DHF) 
wave function are included to all orders of 
perturbation theory [8] and iv) our data. 

Let us note that the precise experimental data 
for the francium 7p1/2,3/2-7s transition are as follows: 
7p1/2-7s=4.277 and 7p3/2-7s=5.898 [8]. The important 
features of the approach used are using the optimized 
one-particle representation and an effective taking 
into account the exchange-correlation (including the 
core polarization) effects (see Refs. [2,18-20,30]). 

Really, as it is indicated in Ref. [8], the semiem-
pirical values agree with the ab initio SD calcula-
tions to better than 1% with the exceptions of the 7s-
8p and 7s-9p transitions, where contributions from 
correlation corrections are very large. The most im-
portant conclusions relate to an effect of the gauge 
invariance on the transition amplitude values. 

An estimate of the gauge-non-invariant contribu-
tions (the difference between the oscillator strengths 
values calculated with using the transition opera-
tor in the form of “length” G1 and “velocity” G2) 
is about 0.1%. The theoretical data, obtained with 
using the different photon propagator gauges (Cou-
lomb and Babushkin ones) are practically equal. 

Table 1. 
Theoretical reduced dipole matrix elements 

for a set of Fr transitions

Transition i: RHF ii: ERMP
7p1/2-7s1/2 4.279   

4.304
-

8p1/2-7s1/2 0.291   
0.301

0.304

9p1/2-7s1/2 - 0.096
7p3/2-7s1/2 5.894  

5.927
-

8p3/2-7s1/2 0.924 0.908
9p3/2-7s1/2 - 0.420
Transition iii: SD-

DHF
iv: Our data

7p1/2-7s1/2 4.256 4.275 (G1)    
4.277 (G2)

(the polarization and ladder ones), which 
describe the polarization and screening 
exchange-correlation effects. The detailed 
description of the polarization diagrams and 
the corresponding analytical expressions for 
matrix elements of the polarization 
interelectron interaction (through the 
polarizable core of an alkali atom) potential 
is presented in Refs. [2,18,19,29]. 

An effective approach to accounting for 
the polarization diagrams contributions is in 
adding the effective two-quasiparticle 
polarizable operator into the perturbation 
theory first order matrix elements. In Ref. 
[10] the corresponding non-relativistic 
polarization functional has been derived. 
More correct relativistic expression has been 
presented in the Refs. [2,18] and used in our 
theory.  

The corresponding two-quasiparticle 
polarization potential looks as follows:                                                            
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where 0

c  is the core electron density 
(without account for the quasiparticle), X is 
numerical coefficient, c is the light velocity. 
The contribution of the ladder diagrams 
(these diagrams describe the immediate 
interparticle interaction) is summarized by a 
modification of the perturbation theory 
zeroth approximation mean-field central 
potential (look [2,18]), which includes the 
screening (anti-screening) of the core 

potential of each particle by the two others. 
All computing was performed with using the 
modified PC code “Superatom-ISAN” 
(version 93). 
 

3. Results and conclusion 
We applied the above described approach 

to compute the oscillator strengths (reduced 
dipole matrix elements) for a number of 
transitions in spectra of the heavy alkali 
atoms and corresponding ions. 

As an illustration we present below the 
data for francium. In Table 1 there are listed 
the theoretical reduced dipole matrix 
elements for a number of transitions, 
computed within: i) relativistic Hartree-Fock 
(RHF) method [6], ii) the empirical relativistic 
model potential method (ERMP) [7], iii) the 
relativistic single-double (SD) method in 
which single and double excitations of the 
Dirac-Hartree-Fock (DHF) wave function are 
included to all orders of perturbation theory 
[8] and iv) our data.  

Let us note that the precise experimental 
data for the francium 7p1/2,3/2-7s transition are 
as follows: 7p1/2-7s=4.277 and 7p3/2-
7s=5.898 [8]. The important features of the 
approach used are using the optimized one-
particle representation and an effective taking 
into account the exchange-correlation 
(including the core polarization) effects (see 
Refs. [2,18-20,30]).  

Really, as it is indicated in Ref. [8], the 
semiempirical values agree with the ab initio 
SD calculations to better than 1% with the 
exceptions of the 7s-8p and 7s-9p transitions, 
where contributions from correlation 
corrections are very large. The most 
important conclusions relate to an effect of 
the gauge invariance on the transition 
amplitude values.  

An estimate of the gauge-non-invariant 
contributions (the difference between the 
oscillator strengths values calculated with 
using the transition operator in the form of 
“length” G1 and “velocity” G2) is about 
0.1%. The theoretical data, obtained with 
using the different photon propagator gauges 
(Coulomb and Babushkin ones) are 
practically equal.  



94

8p1/2-7s1/2 0.327     
0.306

0.339 

9p1/2-7s1/2 0.110 0.092
7p3/2-7s1/2 5.851 5.891
8p3/2-7s1/2 0.934    

0.909
0.918

9p3/2-7s1/2 0.436 0.426
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A. S. Chernyshev, O. L. Mykhailov, A. V. Tsudik, I. S. Cherkasova 

RELATIVISTIC THEORY OF CALCULATION OF E1 TRANSITION AMPLITUDES, 
AND GAUGE INVARIANCE PRINCIPLE

Summary. The combined relativistic energy approach and relativistic many-body perturbation 
theory with the zeroth order Dirac-Kohn-Sham one-particle approximation are used for estimating 
the energies and the E1 radiative transitions amplitudes (oscillator strengths) for the low-excited 
states of the francium. The comparison with available theoretical and experimental (compillated) 
data is performed. The important point is linked with an accurate accounting for the complex 
exchange-correlation (polarization) effect contributions and using the optimized one-quasiparticle 
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representation in the relativistic many-body perturbation theory zeroth order that significantly pro-
vides a physically reasonable agreement between theory and precise experiment.

Key words: relativistic theory, radiative transitions, francium 
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А. С. Чернышoв, А. Л. Михайлов, А. В. Цудик, И. С. Черкасова

РЕЛЯТИВИСТСКАЯ ТЕОРИЯ РАСЧЕТА ПЕРЕХОДНЫХ АМПЛИТУД Е1 
ПЕРЕХОДОВ И ПРИНЦИП КАЛИБРОВОЧНОЙ ИНВАРИАНТНОСТИ

Резюме. Комбинированный релятивистский энергетический подход и релятивистская 
многочастичная теория возмущений с дирак-кон-шэмовским одночастичным нулевым 
приближением используются для для вычисления энергий и амплитуд Е1 радиационных 
переходов (сил осцилляторов) для низко возбужденных состояний франция. Проведено 
сравнение с имеющимися теоретическими и экспериментальными данными. Важный момент 
связан с аккуратным учетом вкладов сложных многочастичных обменных корреляционных 
(поляризационных) эффектов и с использованием оптимизированного одноквазичастичного 
представления в нулевом приближении релятивистской многочастичной теории возмущений, 
что определяет  определенное согласие теории и эксперимента. 

Ключевые слова: релятивистская теория, радиационные переходы, франций
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О. С. Чернишoв, О. Л. Михайлов, А. В. Цудік, І. С. Черкасова

РЕЛЯТИВІСТСЬКА ТЕОРІЯ РОЗРАХУНКУ АМПЛІТУД Е1 ПЕРЕХОДІВ І 
ПРИНЦИП КАЛІБРУВАЛЬНОЇ ІНВАРІАНТНОСТІ

Резюме. Комбінований релятивістський енергетичний підхід і релятивістська 
багаточастинкова теорія збурень з дірак-кон-шемівським одночастинковим наближенням 
нульового порядку використовуються для обчислення енергій та амплітуд Е1 радіаційних 
переходів (сил осцилляторов) для низько збуджених станів францію. Проведено порівняння 
з наявними теоретичними і експериментальними даними. Важливий момент пов’язаний 
з акуратним урахуванням вкладів складних багаточасткових обмінних кореляційних 
(поляризаційних) ефектів і з використанням оптимізованого одноквазічастічного уявлення в 
нульовому наближенні релятивістської багаточастинкової теорії збурень, що визначає певну 
згоду теорії та експерименту. 

Ключові слова: релятивістська теорія, радіаційні переходи, францій
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ADVANCED  PHOTOCHEMICAL BOX AND QUANTUM-KINETIC 

MODELS  FOR SENSING ENERGY, RADIATION EXCHANGE IN ATMOSPHERIC 
GASES MIXTURES AND LASER- MOLECULES INTERACTION

Abstract.    The aim of the work is to develop a set of optimal photochemical models with the inclusion of a sub-
model of the boundary layer using complex plane field methods and spectral algorithms and optimized blocks describ-
ing nonlinear radiation transfer and chemical conversion mechanisms, quantum-kinetic and photoelectronic models 
for describing nonlinear optical effects due to the interaction of infrared laser radiation with the gas atmosphere of an 
industrial city. An obvious consequence of the resonant interaction (in particular, absorption) of electromagnetic radia-
tion by atmospheric molecular gases is a quantitative redistribution of molecules by energy levels of internal degrees 
of freedom, which quantitatively changes the so-called gas absorption coefficient. A change in the population levels of 
the gas mixture causes a violation of the thermodynamic equilibrium between the vibrations of the molecules and their 
translational motion and causes a new nonlinear effect of the photokinetic cooling of the atmospheric environment.   

1. Introduction

At the present time laser systems for monitoring 
the environmental state of atmosphere have become 
widespread. The classical laser sensing methods is 
mainly based on the processes of linear interaction 
of radiation with the atmospheric gases and  aero-
sol components of the atmosphere [1-10].  Howev-
er, as it was shown in multiple investigations (c.g., 
[1-5,9]), there are  a number of important problems 
and tasks, where the linear methods of sensing are 
ineffective both due to technical difficulties arising 
due to small interaction cross sections and because 
of fundamental physical limitations when these ef-
fects do not contain information about the desired 
medium parameters. First of all, speech is about such 
tasks as remote elemental analysis of condensed 
matter of aerosols and underlying surface, determi-
nation of heavy metals and inert gas atoms content, 
detection of ultra-low concentrations of gas impuri-
ties and substance vapors with selective absorption 
coefficients cm-1, and a number of other problems 
related, in particular, to diagnostics industrial pollu-
tion etc [1]. It is very important to remember about 
some fundamental aspects of the interaction of elec-
tromagnetic radiation with atoms and molecules of 
the atmospheric environment , especially in a case 
of the intense external field. Here it should be not-

ed  a nonlinear response of atoms and molecules . 
The obvious consequence of resonant interaction (in 
particular, absorption) of electromagnetic radiation 
(hereinafter, as a rule, will be coherent, that is, laser 
radiation) by molecular gases of the atmosphere is 
the quantitative redistribution of molecules by the 
energy levels of internal degrees of freedom. In turn, 
this will change the so-called gas absorption coef-
ficient. Changing the population levels of the mix-
ture of gases causes a disturbance of thermodynamic 
equilibrium between the vibrations of molecules and 
their translational motion, resulting in kinetic cool-
ing of the environment. 
According to [4], the industrial city’s  air quality 
and the formation of photochemical oxidants (of 
which ozone is a major component) involves the 
interaction of source emissions and a series of 
different quite complex physical and chemical 
processes. Ozone is formed in the atmosphere 
as a result of a complex series of thermal and 
photochemical reactions involving nitrogen 
oxides and reactive hydrocarbons. The known 
photochemical box model (PBM) by Jin-Schere-
Demerjian [4] includes three main blocks: 
(1) a boundary-layer submodel, (2) a revised 
radiative transfer and photolytic rate constant 
calculation routine, and (3) two chemical 
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mechanisms of  different  complexity. In Refs. 
[7,11] it  is presented an advanced quantum-
kinetic model to describe the nonlinear-optical 
(spectroscopic) effect caused by the interaction 
of infrared laser radiation with a gas atmosphere. 
The  quantitative features of energy exchange 
in a mixture of CO2-N2-H20 atmospheric gases 
of atmospheric gases were determined and can 
be used in development of new technologies for 
observing a state of  atmosphere. The results of 
computing the relative absorption coefficient   
(normalized to linear absorption coefficient) 
are presented. In Refs. [11,12] it is presented 
a new generalized approach, including an 
improved theory of atmospheric circulation 
in combination with the hydrodynamic model 
(he Arakawa-Schubert method of calculation 
of cloud convection and theory of a  complex 
geophysical field is applied to the simulation of 
heat and air transfer in atmosphere of industrial 
region. In this paper we present a set of advanced  
photochemical box models (APBM) with the 
inclusion of a submodel of the boundary layer 
using complex plane field methods [2,13-
16]) and spectral algorithms with optimized 
blocks describing nonlinear radiation transfer 
and chemical conversion mechanisms [11,12], 
quantum-kinetic and photoelectronic models for 
describing nonlinear optical effects due to the 
interaction of infrared laser radiation with the 
gas atmosphere of an industrial city.. 

2. An advanced photochemical model

The APBM is based on the principle of 
an energy and mass conservation. As in the 
original version [4], we assume too that (1) the 
box volume is well mixed at all times and no 
spatial variations of concentration occur within 
it; (2) emission sources are homogeneously 
distributed across the bottom surface of the box; 
(3) entrainment of outside air occurs laterally by 
advective transport and vertically by the growth 
in mixed layer height. Under these assumptions, 
the chemical species conservation equation 
becomes:
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where Ci is the mean concentration of species 
“I” within the definite domain, u the mean 
advection speed, Qi the source emissions flux 
of species i in the domain, and Ri the rate of 
production and/or destruction of species i due 
to chemical reactions. The original model by 
Jin-Schere-Demerjian  [4] has a horizontal 
extension of 20 km and a vertical extension 
of the mixed-layer height. Our APBM model  
has a horizontal extension of 40 km and less 
significantly lower resolution (grid scale).  A 
schematic illustration and fl owchart of our  
APBM with the incorporated blocks is shown at 
Figure 1. The physical features of air ventilation 
predetermine the necessary modification of the 
well-known Arakawa-Schubert model. The 
model includes the budget equations for mass, 
moist static energy, total water content plus the 
equations of motion [2,13]: 

                                                           

                                  (2a)

         (2b)

                 (2c)

where  is an inflow,  is an outflow, 

 - vertical mass 
flow of air in the cloud; wi is an  average (on 
the cross-section) speed in the i-th  cloud, c - 
horizontal cross-section square for the i-th 
cloud; ,  is weighted

Fig. 1. Flowchart of the APBM with the 
incorporated blocks 
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verage values of vertical speed, statistical energy 
and the ratio of the mixture of water vapor;  
- average statistical energy and the ratio of the 
mixture of water vapor in the ambient air,  - 
air density; c is an amount  of the condensed 
moisture. If e is an amount of evaporated 
moisture,  - specific heat of phase transitions, 
then the equation of heat and moisture influx 
will be as follows [2,13]: 
                               

                   
                                                                      (3a)

                                   
                                                                     (3b)

Spectral representations in ensemble of clouds 

are:                    (4a)
                                                       

                (4b)
If А is a work of the convective cloud then it 
consists of  convection work and work of down 
falling streams in the neighbourhood of a cloud:

             (5a)

    (5b)

Here l is a speed of involvement, mB(l) is an 
air mass flux, K(l, l’) is the Arakawa-Schubert  
integral equation kernel [3], which determines 
the dynamical interaction between the 
neighbours clouds. In the case of air ventilation 
emergence, mass balance equation in the 
convective thermals is [13]: 
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Here β is parameter which determines disbalance 
of cloud work due to the return of part of the 
cloud energy to the organization of a wind 
field in their vicinity, and balance regulating 
its contribution to  the synoptic processes. The 

solution of the Eqs. (3)(-4) with accounting for 
air stream superposition of synoptic processes is 
given by a resolvent:  
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The key idea [2,13] is to determine the resolvent 
as an expansion to the Laurent series in a complex 
plane z. Its centre coincides with the centre of 
the city’s “heating” island and the internal cycle 
with the city’s periphery. The external cycle can 
be moved beyond limits of the urban recreation 
zone. The Laurent representation for resolvent 
is provided by the standard expansion: 
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where a is center of the Laurent series 
convergence ring. The method for calculating a 
turbulence spectra inside the urban zone should 
be based on solving the system of equations for 
the Reynolds tensions, moments of connection 
of the speed pulsations with entropy ones and 
the corresponding closure equations [2,13-
17]. The important parameter of the turbulent 
processes is the kinetic energy of turbulent 

vortices kkuub ′′=2 , which can be found from 
the equation [13]. The speed components, 
say, ux,uy, of an air flux can be determined in 
an approximation of “shallow water” [2]. In 
contrast to the standard difference methods of 
solution, here we use the spectral expansion 
algorithms [16]. The necessary solution, for 
example, for the vx-ivy component for the city’s 
heat island has the form of expansion into series 
on the Bessel functions.  From the other side, a 
air flux speed over a city’s periphery in a case of 
convective instability can be found by method 
of plane complex field theory (in analogy with 
the Karman vortices chain model) [2,13-16]. 

 
Fig. 1. Flowchart of the APBM with the incorporated blocks  

 
average values of vertical speed, statistical 
energy and the ratio of the mixture of water 
vapor;  - average statistical energy and 
the ratio of the mixture of water vapor in the 
ambient air,  - air density; c is an amount  
of the condensed moisture. If e is an amount 
of evaporated moisture,  - specific heat of 
phase transitions, then the equation of heat 
and moisture influx will be as follows [2,13]:  
                               

                                                                  (3a)                   

                                    
                                                              (3b) 

 
Spectral representations in ensemble of 
clouds are:                                                   

                   (4a) 
                                                        

                (4b) 
If А is a work of the convective cloud then it 
consists of  convection work and work of 
down falling streams in the neighbourhood of 
a cloud: 
 
            ,downstrconv dtdAdtAddtdA   

(5a) 

         


  dKmdtdA Bdownstr ),()(/
max

0
,              

                                                                  (5b) 

 
Here  is a speed of involvement, mB() is an 
air mass flux, K(, ’) is the Arakawa-
Schubert  integral equation kernel [3], which 
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regulating its contribution to  the synoptic 
processes. The solution of the Eqs. (3)(-4) 
with accounting for air stream superposition 
of synoptic processes is given by a resolvent 
:   
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The key idea [2,13] is to determine the 
resolvent as an expansion to the Laurent 
series in a complex plane . Its centre 
coincides with the centre of the city’s 
“heating” island and the internal cycle with 
the city’s periphery. The external cycle can 
be moved beyond limits of the urban 
recreation zone. The Laurent representation 
for resolvent is provided by the standard expansion:  
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where a is center of the Laurent series 
convergence ring. The method for 
calculating a turbulence spectra inside the 
urban zone should be based on solving the 
system of equations for the Reynolds 
tensions, moments of connection of the 
speed pulsations with entropy ones and the 
corresponding closure equations [2,13-17]. 
The important parameter of the turbulent 
processes is the kinetic energy of turbulent 
vortices kk uub 2 , which can be found 
from the equation [13]. The speed 
components, say, ux,uy, of an air flux can be 
determined in an approximation of “shallow 
water” [2]. In contrast to the standard 
difference methods of solution, here we use 
the spectral expansion algorithms [16]. The 
necessary solution, for example, for the vx-
ivy component for the city’s heat island has 
the form of expansion into series on the 
Bessel functions.  From the other side, a air 
flux speed over a city’s periphery in a case 
of convective instability can be found by 
method of plane complex field theory (in 
analogy with the Karman vortices chain 
model) [2,13-16].  

3. Advanced quantum-kinetic model 
The interaction of laser radiation with a 

mixture of atmospheric gases, leads to 
relatively complex processes of resonant 
excitation transfer, in particular, from CO2 
molecules to nitrogen molecules. As a result, 
the complex dielectric constant of the  
atmospheric medium will change, which will 
lead to a significant transformation of the 
energy of laser pulses in the gas atmosphere 
[1,3]. The dielectric constant depends on the 
intensity of the electromagnetic wave I: 
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where c is the speed of light, E is the electric 
field strength of the wave.  When laser 
radiation interacts with atoms and molecules 
of atmospheric gases, there is also the so-
called Kerr electronic effect, which arises 
due to the deformation of the electron density 
distributed by the field, almost immediately 
following the change of field, as well as the 
orientation effect of Kerr [3]. The relaxation 
time of this effect for atmospheric air under 
normal conditions is 10-13 s. This effect leads 
to the dependence of the dielectric constant 
on the field of the electromagnetic wave in 
the formula (11) of the form 
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For Gaussian beams and plateau beams, the 
Kerr effect leads to the self-focusing of light, 
described in detail, for example, in [3,8,9, 
11].  If the length of the nonlinear interaction 
(self-focusing) is a Gaussian beam with 
radius 0R  
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then the realization of the effect on distance 
L  is possible if the threshold intensity is 
defined  [3]:    
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ITHR~1010  W  cm-2  for R0=0.1  and 310L   
m. If  510L   m, then  ITHR~108   W  cm-2 . 
For infrared laser wavelength  =10.6 µm, 
the critical autofocus ( dL L ) power is: 
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One finds 91,7 10крP    W for  =1,06 µm.  
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One finds 91,7 10êðP = ⋅  W for l =1,06 µm. 
Further let us present  an advanced quantum-

kinetic model to describe the nonlinear-optical 
(spectroscopic) effect caused by the interaction 
of infrared laser radiation with a gas atmosphere 
and consider the quantitative features of energy 
exchange in a mixture of CO2-N2-H20 atmos-
pheric gases of atmospheric gases. The original 
version was presented in Refs. [11,12]. 

Typically, for the quantitative description 
of energy exchange and the corresponding re-
laxation processes in a mixture of CO2-N2-H20 
gases in the laser radiation field, one should first 
consider the kinetics of three levels: 10°0, 00°1 
(СО2) і v = 1 (N2). The system of differential 
equations of balance for relative populations is 
written in the following form:

(17)
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Here, x1 = N100/

2CON , x2 = N001/
2CON , x3 = 

22 / CON NN ; N100, N001 are the level 
populations 10°0, 00°1 (СО2); 2CON  is 
concentration of CO2 molecules; 

2NN is the 
level population v=1(N2); Q is the probability 
(s-1) of resonant transfer in the reaction СО2 
→ N2,ω is a probability (s-1) of СО2 light 
excitation, g = 3 is statistical weight of level 
02°0,  β=(1+g)-1= ¼; δ is ratio of common 
concentrations of СО2 and N2 in atmosphere 
(δ = 3.8510-4); FN (x) – additional nonlinear 
term;  0

1x , 0
2x  and 0

3x  are the equilibrium 
relative values of populations under gas 
temperature T: 
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Values E1 and E2 in (1) are the energies (K) 
of levels 10°0, 00°1 (consider the energy of 
quantum N2 equal to E2); P10, P20 and P30 are 
the probabilities (s-1) of the collisional 
deactivation of levels 10°0, 00°1 (СО2) and v 
= 1 (N2). 
       Note that having obtained the solution of 
the differential equation system (17), one can 
further calculate the absorption coefficient of 
radiation by CO2 molecules: 
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The  σ in Eq. (20) is dependent upon the 
thermodynamical medium parameters 
according to [1]. The different estimates 
(c.g., [3,11]) show that for emission of the 
СО2-laser the absorption coefficient:   
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CO2 and the rest – for water vapour (data are 
from ref. [3]) . The resonance absorption by 
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laser radiation is determined by the change in 
the population of the low-lying level 10°0 
(СО2), the population of the level 00°1 and 
vibration-translational relaxation (VT-
relaxation), as well as intergenerational 
vibration relaxation (VV'-relaxation). For the 
wavelength of infrared laser radiation (eg, 
СО2 laser of 10.6µm), the duration of the 
corresponding pulse will satisfy the 
inequality tR << ti < tVT,, where tR , tVT  are the 
values of time, respectively, of rotational and 
oscillatory relaxation. In Ref. [12] there are 
presented the results of an  accurate 
numerical calculations with using the 
accurately determined  probabilities of P10, 
P20 , P30 of deactivation due to the levels of 
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Values E1 and E2 in (1) are the energies (K) 
of levels 10°0, 00°1 (consider the energy of 
quantum N2 equal to E2); P10, P20 and P30 are 
the probabilities (s-1) of the collisional 
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The  σ in Eq. (20) is dependent upon the 
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according to [1]. The different estimates 
(c.g., [3,11]) show that for emission of the 
СО2-laser the absorption coefficient:   
 

              OHCO 2 2g .              (21) 
 
is equal in conditions, which are typical for 
summer mid-latitudes αg[H=0]=(1.1-2.6)·106 
сm-1, from which 0.8·106 сm-1 accounts for 
CO2 and the rest – for water vapour (data are 
from ref. [3]) . The resonance absorption by 
the molecules of the atmospheric mixture of 
laser radiation is determined by the change in 
the population of the low-lying level 10°0 
(СО2), the population of the level 00°1 and 
vibration-translational relaxation (VT-
relaxation), as well as intergenerational 
vibration relaxation (VV'-relaxation). For the 
wavelength of infrared laser radiation (eg, 
СО2 laser of 10.6µm), the duration of the 
corresponding pulse will satisfy the 
inequality tR << ti < tVT,, where tR , tVT  are the 
values of time, respectively, of rotational and 
oscillatory relaxation. In Ref. [12] there are 
presented the results of an  accurate 
numerical calculations with using the 
accurately determined  probabilities of P10, 
P20 , P30 of deactivation due to the levels of 
10°0, 00°1  (СО2) and v = 1 (N2), the 

Further let us present  an advanced quantum-
kinetic model to describe the nonlinear-
optical (spectroscopic) effect caused by the 
interaction of infrared laser radiation with a 
gas atmosphere and consider the quantitative 
features of energy exchange in a mixture of 
CO2-N2-H20 atmospheric gases of 
atmospheric gases. The original version was 
presented in Refs. [11,12].  
     Typically, for the quantitative description 
of energy exchange and the corresponding 
relaxation processes in a mixture of CO2-N2-
H20 gases in the laser radiation field, one 
should first consider the kinetics of three 
levels: 10°0, 00°1 (СО2) і v = 1 (N2). The 
system of differential equations of balance 
for relative populations is written in the 
following form: 
 

)()2

)2(

1
0
110

2110
1

xFxgP

xxgP
dt
dx

N






, 

 

),(

)(

2
0
2203

2201
2

xFxPQx

xPQx
dt

dx

N

 
(17)                       

                                                                    

)(

)(

3
0
330

3302
3

xFxP

xPQQx
dt

dx

N

 
. 

 
Here, x1 = N100/

2CON , x2 = N001/
2CON , x3 = 

22 / CON NN ; N100, N001 are the level 
populations 10°0, 00°1 (СО2); 2CON  is 
concentration of CO2 molecules; 

2NN is the 
level population v=1(N2); Q is the probability 
(s-1) of resonant transfer in the reaction СО2 
→ N2,ω is a probability (s-1) of СО2 light 
excitation, g = 3 is statistical weight of level 
02°0,  β=(1+g)-1= ¼; δ is ratio of common 
concentrations of СО2 and N2 in atmosphere 
(δ = 3.8510-4); FN (x) – additional nonlinear 
term;  0

1x , 0
2x  and 0

3x  are the equilibrium 
relative values of populations under gas 
temperature T: 
 

                  TEx 1
0
1 exp  ,                 (18) 

 
                   TExx 2

0
3

0
2 exp           (19)                                                 

 
Values E1 and E2 in (1) are the energies (K) 
of levels 10°0, 00°1 (consider the energy of 
quantum N2 equal to E2); P10, P20 and P30 are 
the probabilities (s-1) of the collisional 
deactivation of levels 10°0, 00°1 (СО2) and v 
= 1 (N2). 
       Note that having obtained the solution of 
the differential equation system (17), one can 
further calculate the absorption coefficient of 
radiation by CO2 molecules: 
 

          22 )( 21 COCO Nxx  .           (20) 
 
The  σ in Eq. (20) is dependent upon the 
thermodynamical medium parameters 
according to [1]. The different estimates 
(c.g., [3,11]) show that for emission of the 
СО2-laser the absorption coefficient:   
 

              OHCO 2 2g .              (21) 
 
is equal in conditions, which are typical for 
summer mid-latitudes αg[H=0]=(1.1-2.6)·106 
сm-1, from which 0.8·106 сm-1 accounts for 
CO2 and the rest – for water vapour (data are 
from ref. [3]) . The resonance absorption by 
the molecules of the atmospheric mixture of 
laser radiation is determined by the change in 
the population of the low-lying level 10°0 
(СО2), the population of the level 00°1 and 
vibration-translational relaxation (VT-
relaxation), as well as intergenerational 
vibration relaxation (VV'-relaxation). For the 
wavelength of infrared laser radiation (eg, 
СО2 laser of 10.6µm), the duration of the 
corresponding pulse will satisfy the 
inequality tR << ti < tVT,, where tR , tVT  are the 
values of time, respectively, of rotational and 
oscillatory relaxation. In Ref. [12] there are 
presented the results of an  accurate 
numerical calculations with using the 
accurately determined  probabilities of P10, 
P20 , P30 of deactivation due to the levels of 
10°0, 00°1  (СО2) and v = 1 (N2), the 



101

population v=1(N2); Q is the probability (s-1) of 
resonant transfer in the reaction СО2 → N2,ω is 
a probability (s-1) of СО2 light excitation, g = 3 
is statistical weight of level 02°0,  β=(1+g)-1= 
¼; δ is ratio of common concentrations of СО2 
and N2 in atmosphere (δ = 3.85×10-4); FN (x) – 

additional nonlinear term;  0
1x , 0

2x  and 0
3x  are 

the equilibrium relative values of populations 
under gas temperature T:
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quantum N2 equal to E2); P10, P20 and P30 are the 
probabilities (s-1) of the collisional deactivation 

of levels 10°0, 00°1 (СО2) and v = 1 (N2).
Note that having obtained the solution of the 

differential equation system (17), one can fur-
ther calculate the absorption coefficient of radia-
tion by CO2 molecules:
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The  σ in Eq. (20) is dependent upon the ther-
modynamical medium parameters according to 
[1]. The different estimates (c.g., [3,11]) show 
that for emission of the СО2-laser the absorption 
coefficient:  
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absorption coefficient   2COa  (normalized to 
linear absorption coefficient) based on the so-
lutions of the system (17) have been presented 
for  the distribution of pressure altitude and tem-
perature within the model of atmosphere of the 
middle latitudes (Odessa) [2,13]. It is clear that 
the time dependence of the relative resonance 
absorption coefficient of laser radiation by CO2 
molecules for different laser pulses differs. Us-
ing these data we determine that the effect of 
kinetic cooling of the CO2 is determined by the 
condition (for Odessa region):
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Note that Eq. (22) is sufficiently significantly 
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The numerical parameters obtained allow us to 
further quantify the effects of the kinetic cool-
ing of CO2, depending on the parameters of the 
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laser radiation [3]. 
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values of time, respectively, of rotational and 
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numerical calculations with using the 
accurately determined  probabilities of P10, 
P20 , P30 of deactivation due to the levels of 
10°0, 00°1  (СО2) and v = 1 (N2), the 

probability of Q resonance energy transfer 
СО2 → N2, the excitation probability ω pulse 
of СО2 laser and other constants. The  results 
of computing the relative absorption 
coefficient   2CO  (normalized to linear 
absorption coefficient) based on the solutions 
of the system (17) have been presented for  
the distribution of pressure altitude and 
temperature within the model of atmosphere 
of the middle latitudes (Odessa) [2,13]. It is 
clear that the time dependence of the relative 
resonance absorption coefficient of laser 
radiation by CO2 molecules for different 
laser pulses differs. Using these data we 
determine that the effect of kinetic cooling of 
the CO2 is determined by the condition (for 
Odessa region): 
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51.1))/((   EEE .                
                                       (22) 
Note that Eq. (22) is sufficiently significantly 
different from early qualitative estimates 
[3,11]. The numerical parameters obtained 
allow us to further quantify the effects of the 
kinetic cooling of CO2, depending on the 
parameters of the model of the atmosphere 
and the parameters of laser radiation [3].  

4. Conclusions 
To conclude, we presented an advanced 

photochemical box model with the 
incorporation of a boundary-layer complex 
plane field submodel [2,13-17], advanced 
quantum-kinetic and photoelectronic models 
to describe the nonlinear-optical 
(spectroscopic) effect caused by the 
interaction of infrared laser radiation with a 
gas atmosphere, and an advanced nonlinear 
radiative transfer and chemical mechanisms 
blocks.  From physical viewpoint, it is clear 
that because of the resonant interaction (in 
particular, absorption) of electromagnetic 
radiation with atmospheric molecular gases 
there is the quantitative redistribution of 
molecules by the energy levels of internal 
degrees of freedom. The  radiative and 
energy flux that causes the gas to be heated 
through the absorption by the water vapour, 
is proportional to the intensity of the laser 

radiation. When the critical value is reached, 
the heating of the steam will prevail over its 
cooling for any moment of time. In such a 
physical situation, the effect of kinetic 
cooling will cease to exist. The quantitative 
manifestation of the kinetic effect may vary 
for different atmospheric conditions, laser 
radiation parameters, and different values of 
atomic-molecular parameters.  
 

References 
1. Gubanova E.R., Glushkov A.V., 

Khetselius O.Yu., Bunyakova Yu.Ya., 
Buyadzhi V.V., Pavlenko E.P.,  New 
methods in analysis and project 
management of environmental activity: 
Electronic and radioactive waste. FOP: 
Kharkiv, 2017.  

2. Bunyakova, Yu.Ya.; Glushkov, A.V. 
Analysis and forecast of the impact of 
anthropogenic factors on air basein of an 
industrial city. Ecology: Odessa, 2010. 

3. Zuev V., Zemlyanov A., Kopytin Y., 
Kuzikovsky А The laser radiation in 
atmospheric aerosol. Novosybirsk, 1984 

4. Jin, S., Demerjian, K. A photochemical 
box model for urban air quality study.  
Atm. Envir.B. Urban Atm. 1993, 27, 371 

5. Glushkov, A., Safranov, T., Khetselius, 
O., Ignatenko, A., Buyadzhi, V., 
Svinarenko, A. Analysis and forecast of 
the environmental radioactivity dynamics 
based on methods of chaos theory: 
General conceptions. Environm. 
Problems. 2016, 1(2), 115-120.   

6. Khetselius, O. Optimized perturbation 
theory for calculating the hyperfine line 
shift and broadening of heavy atoms in a 
buffer gas. Frontiers in quantum methods 
and applications in Chem. and Phys.; 
Cham: Springer, 2015, 29, 55-76. 

7. Glushkov, A., Buyadzhi, V., Kvasikova, 
A., Ignatenko, A., Kuznetsova, A., 
Prepelitsa G., Ternovsky, V. Non-linear 
chaotic dynamics of quantum systems: 
Molecules in an electromagnetic field 
and laser systems. In: Quantum Systems 
in Physics, Chemistry, and Biology.  
Springer, Cham. 2017, 30, 169-180 



102

spheric molecular gases there is the quantitative 
redistribution of molecules by the energy levels 
of internal degrees of freedom. The  radiative 
and energy flux that causes the gas to be heat-
ed through the absorption by the water vapour, 
is proportional to the intensity of the laser ra-
diation. When the critical value is reached, the 
heating of the steam will prevail over its cooling 
for any moment of time. In such a physical situ-
ation, the effect of kinetic cooling will cease to 
exist. The quantitative manifestation of the ki-
netic effect may vary for different atmospheric 
conditions, laser radiation parameters, and dif-
ferent values   of atomic-molecular parameters. 
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Yu. Ya. Bunyakova, E. T. Vitovskaya 

ADVANCED  PHOTOCHEMICAL BOX AND QUANTUM-KINETIC 
MODELS  FOR SENSING ENERGY, RADIATION EXCHANGE IN ATMOSPHERIC 

GASES MIXTURES AND LASER- MOLECULES INTERACTION

Summary. The aim of the work is to develop a set of optimal photochemical models with the 
inclusion of a submodel of the boundary layer using complex plane field methods and spectral 
algorithms and optimized blocks describing nonlinear radiation transfer and chemical conversion 
mechanisms, quantum-kinetic and photoelectronic models for describing nonlinear optical effects 
due to the interaction of infrared laser radiation with the gas atmosphere of industrial city. The 
resonant interaction of electromagnetic radiation with molecular gases leads to redistribution of 
molecules by energy levels of freedom internal degrees, which  changes the gas absorption coef-
ficient. A change in the population levels causes a violation of thermodynamic equilibrium between 
the vibrations of molecules and their translational motion, providing a new nonlinear effect of the 
photokinetic cooling of  atmosphere.

Key words: energy exchange kinetics, atmospheric gases, laser radiation, photochemical mod-
el, quantum kinetic model
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ОПТИМАЛЬНЫЕ ФОТОХИМИЧЕСКАЯ И КВАНТОВО-КИНЕТИЧЕСКАЯ
МОДЕЛИ ДЛЯ ДЕТЕКТИРОВАНИЯ ЭНЕРГО-РАДИАЦИОННО-ОБМЕННЫХ ПРО-
ЦЕССОВ В СМЕСИ АТМОСФЕРНЫХ ГАЗОВ И ВЗАИМОДЕЙСТВИЯ ЛАЗЕРНОГО 

ИЗЛУЧЕНИЯ С АТМОСФЕРНЫМИ МОЛЕКУЛАМИ 

Резюме. Цель работы состоит в разработке комплекса оптимальной фотохимической мо-
дели (с включением субмодели пограничного слоя и использованием методов комплексного 
плоского поля) и спектральных моделей c  оптимизированными блоками, описывающими 
нелинейный перенос излучения и химические преобразовательные механизмы, квантово-
кинетической и фотоэлектронной моделей для описания нелинейно-оптических эффектов, 
обусловленных взаимодействием инфракрасного лазерного излучения с газовой атмосферой 
промышленного города. Резонансное взаимодействия  электромагнитного излучения с моле-
кулярными газами атмосферы приводит к количественному перераспределению молекул по 
энергетическим уровням внутренних степеней свободы, что изменяет называемый коэффи-
циент поглощения газа. Изменение уровней заселенности смеси газов вызывает нарушение 
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термодинамического равновесия между колебаниями молекул и их поступательным движе-
нием и обуславливает новый нелинейный эффект фотокинетического охлаждения атмос-
ферной среды.  

Ключевые слова: кинетика энергообмена, атмосферные газы, лазерное излучение, фото-
химическая модель, квантово-кинетическая модель
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ОПТИМАЛЬНІ ФОТОХІМІЧНА І КВАНТОВО-КІНЕТИЧНА
МОДЕЛІ ДЛЯ ДЕТЕКТУВАННЯ ЕНЕРГО-РАДІАЦІЙНО-ОБМІННИХ 

ПРОЦЕСІВ В СУМІШІ АТМОСФЕРНИХ ГАЗІВ І ВЗАЄМОДІЇ ЛАЗЕРНОГО 
ВИПРОМІНЮВАННЯ З АТМОСФЕРНИМИ МОЛЕКУЛАМИ

Резюме. Мета роботи полягає в розробці комплексу оптимальної фотохімічної моделі (з 
включенням субмоделі прикордонного шару і використанням методів комплексного плоского 
поля)  і спектральних моделей з оптимізованими блоками, що описують нелінійний перенос 
випромінювання і хімічні перетворюючі механізми, квантово-кінетичної і фотоелектронної 
моделей для опису нелінійно-оптичних ефектів, обумовлених взаємодією інфрачервоного 
лазерного випромінювання з газової атмосферою промислового міста. Резонансна взаємодія 
електромагнітного випромінювання з молекулярними газами атмосфери веде до кількісного 
перерозподілу молекул по енергетичним рівням внутрішніх ступенів свободи, що змінює 
званий коефіцієнт поглинання газу. Зміна рівнів заселеності суміші газів викликає порушен-
ня термодинамічної рівноваги між коливаннями молекул і їх поступальним рухом і обумов-
лює новий нелінійний ефект фотокінетичного охолодження атмосферного середовища.

Ключові слова: кінетика енергообміну, атмосферні гази, лазерне випромінювання, фото-
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RELATIVISTIC SPECTROSCOPY OF MULTICHARGED IONS 
IN PLASMAS:  Li-LIKE IONS

The transition probabilities and lifetimes for different excited states in spectrum of the Li-like calcium are computed 
within the consistent relativistic many-body approach for different values of the plasmas screening parameter 
(correspondingly, electron density and temperature) and compared with available alternative data.  The approach is 
based on the generalized relativistic energy approach combined with the optimized relativistic many-body perturbation 
theory with the Dirac-Debye shielding model as zeroth approximation, adapted for application to study of the spectral 
parameters of ions in plasmas. An electronic Hamiltonian for N-electron ion in plasmas is added by the Yukawa-type 
electron-electron and nuclear interaction potential.

1. Introduction

The properties of laboratory, thermonuclear 
(tokamak), laser-produced, astrophysical 
plasmas have drawn considerable attention 
over the last decades [1-14]. It is known that 
multicharged ions play an important role in the 
diagnostics of a wide variety of plasmas [1-
10]. Electron-ion collisions involving multiply 
charged ions, as well as various radiation and 
radiation-collisional processes, predetermine the 
quantitative characteristics of the energy balance 
of the plasmas [1-6,15-20]. For this reason, the 
plasmas modelers and diagnosticians require 
absolute cross sections for these processes. The 
cross sections for electron-impact excitation 
of ions are needed to interpret spectroscopic 
measurements and for simulations of plasmas 
using collisional-radiative models. The 
electron-ion collisions play a major role in the 
energy balance of plasmas.  ([1-6]). Different 
theoretical methods were employed along with 
the Debye screening to study plasma medium. 
Earlier we have developed a new version of a 
relativistic energy approach combined with 
the many-body perturbation theory (RMBPT) 
for multi-quasiparticle (QP) systems to study 
spectra of plasma of the multicharged ions, 
electron-ion collisional parameters [15-20]. The 
method is based on the Debye shielding model 
and energy approach [21-23]. A new element 

of this paper is in using the effective optimized 
Dirac-Kohn-Sham method in general relativistic 
energy approach to collision processes in the 
Debye plasmas. 

In this paper, which goes on our work  
[15-20], we present the results of computing 
the transition probabilities and lifetimes for 
different excited states in spectrum of the Li-
like calcium for different values of the plasmas 
screening (Debye) parameter (respectively, 
electron density, temperature) and compared 
with available alternative spectroscopic data. 
The approach used is based on the generalized 
relativistic energy approach combined with 
the optimized RMBPT with the Dirac-Debye 
shielding model as zeroth approximation, 
adapted for application to study the spectral 
parameters of ions in plasmas. An electronic 
Hamiltonian for N-electron ion in plasmas is 
added by the Yukawa-type electron-electron and 
nuclear interaction potential. 

2. Optimized relativistic perturbation 
theory formalism for ions in plasmas

The detailed description of our approach 
was earlier presented (see, for example, Refs.  
[15-20]). Therefore, below we are limited only 
by the key points. The generalized relativistic 
energy approach combined with the RMBPT 
has been in detail described in Refs. [6,24-29]. It 
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generalizes earlier developed energy approach. 
The key idea is in calculating the energy shifts 
DE of degenerate states that is connected with 
the secular matrix M diagonalization [6,24,25]. 
To construct M, one should use the Gell-Mann 
and Low adiabatic formula for DE. The secular 
matrix elements are already complex in the PT 
second order. The whole calculation is reduced 
to calculation and diagonalization of the com-
plex matrix M  and definition of matrix of the 

coefficients with eigen state vectors IK
ivieB , [6,25]. 

To calculate all necessary matrix elements one 
must use the bases of the 1QP relativistic func-
tions. Within an energy approach the total ener-
gy shift of the state is usually presented as [24]:

                   DE = ReDE + i Г/2               (1)                                                   

where Г is interpreted as the level width 
and decay (transition) possibility P = Г. The 
imaginary part of electron energy of the system, 
which is defined in the lowest PT order as [6]: 
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for vacancy. 
The separated terms of the sum in (2) represent 
the contributions of different channels. 

According to the definition, a lifetime of some 
excited state f is defined as follows (included all 
possible transition channels): 
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for the transition rate A
ifP − due to a radiative 

operator A. The transition rates via various 
multipole channels are determined as follows: 
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where λ is the wavelength (Å), Jf is the total 

angular momentum of the f state, A
ifS −  ~ ImDE is 

a line strength due to the corresponding transition 
operator A (the decay channels E1, M1 and E2 
represent the electric dipole, magnetic dipole, 
and electric quadrupole transition channels 
respectively). It is known [3,4,25] that the matrix 
elements computed with using the length gauge 
expressions converge faster than the velocity 
ones with respect to the configuration space 
of the orbital bases; the authors [3] considered 
the length gauge expressions for evaluating the 
foregoing transition properties.
This fact is directly linked with correct 
accounting for the correlation effects and using 
the optimized basis of wave functions. In [25] 
it has been proposed “ab initio” optimization 
principle for construction of cited basis. It 
uses a minimization of the gauge dependent 
multielectron contribution of the lowest 
QED PT corrections to the radiation widths 
of atomic levels. This contribution describes 
collective effects and it is dependent upon the 
electromagnetic potentials gauge (the gauge non-
invariant contribution dEninv). The minimization 
of ImdEninv leads to integral differential equation, 
that is numerically solved. In result one can get 
the optimal one-electron basis of the PT [24-26]. 
It is worth to note that this approach was used 
while solving multiple problems of modern 
atomic, nuclear and molecular physics (see [30-
38]).
Further let us firstly consider the Debye shielding 
model according to Refs. [15,16]. What is known 
from the classical theory of plasmas developed 
by Debye-Hückel, the interaction potential 
between two charged particles  is modeled by 
the Yukawa-type potential, which contains 
the shielding parameter μ. The parameter μ is 
connected with the plasma parameters such as 
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ivieB , [6,25]. To calculate 
all necessary matrix elements one must use 
the bases of the 1QP relativistic functions. 
Within an energy approach the total energy 
shift of the state is usually presented as [24]: 
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where λ is the wavelength (Å), Jf is the total 
angular momentum of the f state, A

ifS   ~ 
ImE is a line strength due to the 
corresponding transition operator A (the 
decay channels E1, M1 and E2 represent the 
electric dipole, magnetic dipole, and electric 
quadrupole transition channels respectively). 
It is known [3,4,25] that the matrix elements 
computed with using the length gauge 
expressions converge faster than the velocity 
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of the orbital bases; the authors [3] 
considered the length gauge expressions for 
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This fact is directly linked with correct 
accounting for the correlation effects and 
using the optimized basis of wave functions. 
In [25] it has been proposed “ab initio” 
optimization principle for construction of 
cited basis. It uses a minimization of the 
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of the lowest QED PT corrections to the 
radiation widths of atomic levels. This 
contribution describes collective effects and 
it is dependent upon the electromagnetic 
potentials gauge (the gauge non-invariant 
contribution Eninv). The minimization of 
ImEninv leads to integral differential 
equation, that is numerically solved. In result 
one can get the optimal one-electron basis of 
the PT [24-26]. It is worth to note that this 
approach was used while solving multiple 
problems of modern atomic, nuclear and 
molecular physics (see [30-38]). 
Further let us firstly consider the Debye 
shielding model according to Refs. [15,16]. 
What is known from the classical theory of 
plasmas developed by Debye-Hückel, the 
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where λ is the wavelength (Å), Jf is the total 
angular momentum of the f state, A

ifS   ~ 
ImE is a line strength due to the 
corresponding transition operator A (the 
decay channels E1, M1 and E2 represent the 
electric dipole, magnetic dipole, and electric 
quadrupole transition channels respectively). 
It is known [3,4,25] that the matrix elements 
computed with using the length gauge 
expressions converge faster than the velocity 
ones with respect to the configuration space 
of the orbital bases; the authors [3] 
considered the length gauge expressions for 
evaluating the foregoing transition properties. 
This fact is directly linked with correct 
accounting for the correlation effects and 
using the optimized basis of wave functions. 
In [25] it has been proposed “ab initio” 
optimization principle for construction of 
cited basis. It uses a minimization of the 
gauge dependent multielectron contribution 
of the lowest QED PT corrections to the 
radiation widths of atomic levels. This 
contribution describes collective effects and 
it is dependent upon the electromagnetic 
potentials gauge (the gauge non-invariant 
contribution Eninv). The minimization of 
ImEninv leads to integral differential 
equation, that is numerically solved. In result 
one can get the optimal one-electron basis of 
the PT [24-26]. It is worth to note that this 
approach was used while solving multiple 
problems of modern atomic, nuclear and 
molecular physics (see [30-38]). 
Further let us firstly consider the Debye 
shielding model according to Refs. [15,16]. 
What is known from the classical theory of 
plasmas developed by Debye-Hückel, the 
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the temperature T and the charge density n  as 

follows:  eBe TknZe /)1(~ 2 +m . Here, as 
usually, е is the electron charge and кБ is the 
Boltzman constant.  The density n is given as a 
sum of the electron density Ne and ion density Nk 
of the k-th ion species having the nuclear charge 

                 qk : ∑+=
k

kke Nq Nn 2 .            (6)

It is very useful to remind the simple 
estimates for the shielding parameter. For 
example, under typical laser plasmas conditions 
of T~ 1keV and n~ 1022 cm-3  the parameter 
μ is of the order of 0.1 in atomic units; in the 
EBIT plasmas T~ 0.05keV, n~1018 cm-3  and  
μ~10-3. We are interested in studying the 
spectral parameters of ions in plasmas with 
the temperature T~ 0.1-1keV (106-107K) and 
n~1014-1026 cm-3 (μ~10-5-100). It should be 
noted that indeed the Debye screening for the 
atomic electrons in the Coulomb field of nuclear 
charge is well understood due to the presence 
of the surrounding plasma electrons with high 
mobility. On the other hand, the contribution 
due to the Debye screening between electrons 
would be of smaller magnitude orders. Majority 
of the previous works on the spectroscopy study 
have considered the screening effect only in the 
electron-nucleus potential where the electron-
electron interaction potential is truncated at its 
first term of the standard exponential expansion 
for its dominant contribution [3]. However, it is 
also important to take into account the screening 
in the electron- electron interactions for large 
plasma strengths to achieve more realistic 
results in the search for stability of the atomic 
structure in the plasma environment. 

By introducing the Yukawa-type e-N and e-e 
interaction potentials, an electronic Hamiltonian 
for N-electron ion in a plasma is in atomic units 
as follows [15,16]:

      

(7)

To generate the wave functions basis we use 
the optimized Dirac-Kohn-Sham potential 
with one parameter [15], which is calibrated 
within the special ab initio procedure within the 
relativistic energy approach [24]. The modified 
PC numerical code ‘Superatom” is used in all 
calculations. Other details can be found in Refs. 
[15-20,22,23,38]. 

3. Results and conclusion

Firstly, we present our results on the transi-
tion probabilities and lifetimes for some ex-
cited states of the Li-like ion of calcium. The 
spectroscopic properties for plasma-isolated ion 
with m=0 have been considered. In Tables 1 and 
2 there are listed probabilities values for transi-
tions (E1, M1, and E2 channels) from the ex-
cited states to the low-lying states of   Ca XVIII. 
Using these values, one could calculate the cor-
responding lifetimes of the excited states.

Table 1. 
The transition probabilities (P) for some 
transitions in spectrum of Ca XVIII: RCC 
- relativistic coupled-cluster (RCC) method 

[3]; This - this work

Transition Pf→i Pf→i

f-i RCC This
2p1/2-(E1)-2s1/2 1.31[9] 1.33[9]
2p3/2-(E1)-2s1/2 2.00[9] 2.02[9]
      -(M1)-2p1/2 7.00[2] 7.03[2]
       -(E2)-2p1/2 2.54[-2] 2.57[-2]
3s1/2- M1 -2s1/2 2.04[4] 2.06[4]
      -(E1)-2p1/2 3.01[11] 3.02[11]
      -(E1)-2p3/2 6.22[11] 6.24[11]

The analysis shows that the presented data are in 
physically reasonable agreement with the NIST 
experimental data and theoretical
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To generate the wave functions basis we use 
the optimized Dirac-Kohn-Sham potential 
with one parameter [15], which is calibrated 
within the special ab initio procedure within 
the relativistic energy approach [24]. The 
modified PC numerical code ‘Superatom” is 
used in all calculations. Other details can be 
found in Refs. [15-20,22,23,38].  
 

3. Results and conclusion 
     Firstly, we present our results on the 
transition probabilities and lifetimes for some 
excited states of the Li-like ion of calcium. 
The spectroscopic properties for plasma-
isolated ion with =0 have been considered. 
In Tables 1 and 2 there are listed 
probabilities values for transitions (E1, M1, 
and E2 channels) from the excited states to 
the low-lying states of   Ca XVIII. Using 
these values, one could calculate the 
corresponding lifetimes of the excited states. 
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The analysis shows that the presented data 
are in physically reasonable agreement with 
the NIST experimental data and theoretical 
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Table 2. 
The transition probabilities (P) for some 
transitions in spectrum of Ca XVIII (our 

data)

Transition Pf→i

f-i This

3p1/2 - E1-2s1/2 2.37[12]

         - M1-2p1/2 1.48[3]

         - M1-2p3/2 6.78[4]

         - E2-2p3/2 8.45[8]

        - E1-3s1/2 1.72[8]

3p3/2 - E1-2s1/2 2.32[12]

          - M1-2p1/2 1.24[4]

          - E2-2p3/2 4.25[8]

           - M1-2p3/2 2.78[4]

          - E2-2p3/2 4.22[8]

           - E1-3s1/2 2.66[8]

            - M1-3p1/2 1.83[1]

            - E2-3p1/2 2.13[-3]

results by relativistic coupled-cluster (RCC) 
method calculation [3]. However, some differ-
ence between the corresponding results can be 
explained by using different relativistic orbital 
bases and by difference in the model of account-
ing for the screening effect as well as some nu-
merical differences. In Tables 3 and 4 we list the 
numerical variations in the lifetimes of the 2p1/2, 
3s1/2, 3p1/2, 3d3/2, and 4s1/2 states in Ca XVIII for 
different µ values. It is worth to  note that our 
computing oscillator strengths within energy

Table 3. 
The dependence of the lifetimes (ps) of the 
2p1/2 state in the Ca XVIII spectrum upon 
the screening parameter µ: RCC - relativistic 
coupled-cluster (RCC) method [3]; This - this 

work

µ 2p1/2 2p 1/2

RCC This

0.133 741 738

0.667 494 492

1.000 334 332

1.250 242 241

1.429 192 190

0.60 140 138

Table 4. 
The dependence of the lifetimes (ps) of the 
3lj,4lj states in the Ca XVIII spectrum upon 

the parameter µ (this work)

µ 3s1/2 3p1/2 3d3/2 4s1/2

0.133 1.07 0.428 0.143 1.62
0.667 1.26 0.518 0.688 2.54
1.000 1.53 0.658 0.206 4.81
1.250 1.85 0.849 0.262 12.48
1.429 2.20 1.072 0.336 82.77

approach with different forms of transition op-
erator (i.e. using the photon propagators in the 
form of Coulomb, Feynman or Babushkin) 
gives very close results. 
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energy approach combined with the optimized relativistic many-body perturbation theory with 
the Dirac-Debye shielding model as zeroth approximation, adapted for application to study of the 
spectral parameters of ions in plasmas. An electronic Hamiltonian for N-electron ion in plasmas is 
added by the Yukawa-type electron-electron and nuclear interaction potential.

Key words: spectroscopy of ions in plasmas, relativistic energy approach, radiative transition 
probabilities
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РЕЛЯТИВИСТСКАЯ СПЕКТРОСКОПИЯ МНОГОЗАРЯДНЫХ ИОНОВ В 
ПЛАЗМЕ: Li-ПОДОБНЫE ИОНЫ

Резюме. Вероятности переходов и времена жизни для различных возбужденных состоя-
ний в спектре Li-подобного кальция вычисляются в рамках последовательного релятивист-
ского многочастичного подхода для различных значений параметра экранирования плазмы 
(соответственно, электронной плотности и температуры) и сравниваются с имеющимися 
альтернативными данными. Подход основан на обобщенном релятивистском энергетиче-
ском подходе, совмещенном с формализмом оптимизированной релятивистской многоча-
стичной теории возмущений с приближением Дирака-Дебая в качестве нулевого приближе-
ния, адаптированной для применения при изучении спектральных параметров ионов в плаз-
ме. Электронный гамильтониан для иона N-электронов в плазме добавляется потенциалом 
электрон-электронного и ядерного взаимодействия типа Юкавы.

Ключевые слова: спектроскопия ионов в плазме, энергетический подход, вероятности 
радиационных переходов

PACS 31.15.-p 

Є  В. Терновський

РЕЛЯТИВІСТСЬКА СПЕКТРОСКОПІЯ БАГАТОЗАРЯДНИХ ІОНІВ 
В ПЛАЗМІ: Li-ПОДІБНІ ІОНИ

Резюме. Ймовірності переходів і часи життя для різних збуджених станів в спектрі Li-
подібного кальцію обчислюються в рамках послідовного релятивістського багаточастинко-



112

вого підходу для різних значень параметра екранування плазми (відповідно, електронної 
щільності і температури) і порівнюються з наявними альтернативними даними. Підхід 
ґрунтується на узагальненому релятивістському енергетичному підході, поєднаному з фор-
малізмом оптимізованої релятивістської багаточастинкової теорії збурень  з наближенням 
Дірака-Дебая в якості нульового наближення, адаптованого для застосування при вивченні 
спектральних параметрів іонів у плазмі. Електронний гамільтоніан для іона N-електронів 
в плазмі додається потенціалом електрон-електронного та ядерного взаємодії типу Юкави.

Ключові слова: спектроскопія іонів в плазмі, енергетичний підхід, ймовірності радіацій-
них переходів
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HYPERFINE STRUCTURE PARAMETERS FOR Li-LIKE MULTICHARGED IONS 
WITHIN RELATIVISTIC MANY-BODY PERTURBATION THEORY

Abstract.  The relativistic many-body perturbation theory with the optimized Dirac-Kohn-Sham zeroth 
approximation is applied to calculation of the hyperfine structure parameters for some Li-like multicharged ions. The 
relativistic, exchange-correlation and other corrections are accurately taken into account. The optimized relativistic 
orbital basis set is generated in the optimal many-body perturbation theory approximation with fulfilment of the gauge 
invariance principle. The obtained data  on the hyperfine structure parameters of the Li-like multicharged ions are 
analyzed and compared with alternative theoretical and experimental results.

1. Introduction

In last years a studying the spectra of heavy 
and superheavy elements atoms and ions is of a 
great interest for further development as atomic 
and nuclear theories (c.f.[1-12]). Theoretical 
methods used to calculate the spectroscopic 
characteristics of heavy and superheavy ions 
may be divided into three main groups: a) the 
multi-configuration Hartree-Fock method, in 
which relativistic effects are taken into account 
in the Pauli approximation, gives a rather rough 
approximation, which  makes it possible to get 
only a qualitative idea on the spectra of heavy 
ions. b) The multi-configuration Dirac-Fock 
(MCDF) approximation (the Desclaux program, 
Dirac package) [1-4] is, within the last few 
years, the most reliable version of calculation 
for multielectron systems with a large nuclear 
charge; in these calculations one- and two-
particle relativistic effects are taken into account 
practically precisely. 

The calculation program of Desclaux is 
compiled with proper account of the finiteness of 
the nucleus size; however, a detailed description 
of the method of their investigation of the role of 
the nucleus size is lacking. 

In the region of small Z (Z is a charge 
of the nucleus)  the calculation error in the 
MCDF approximation is connected mainly 
with incomplete inclusion of the correlation 
and exchange effects which are only weakly 

dependent on Z; c) In the study of lower states 
for ions with Z≤40 an expansion into double 
series of the PT on the parameters 1/Z, aZ (a 
is the fine structure constant) turned out to be 
quite useful. It permits evaluation of relative 
contributions of the different expansion terms: 
non-relativistic, relativistic, QED contributions 
as the functions of Z.  

Nevertheless,  the serious problems in 
calculation of the heavy elements spectra are 
connected with developing new, high exact 
methods of account for the QED effects, in 
particular, the Lamb shift (LS), self-energy (SE) 
part of the Lamb shift, vacuum polarization (VP) 
contribution, correction on the nuclear finite 
size for superheavy elements and its account for 
different spectral properties of these systems, 
including calculating the energies and constants 
of the hyperfine structure, deriviatives of the 
one-electron characteristics on nuclear radius,  
nuclear electric quadrupole, magnetic dipole 
moments etc  (c.f.[1-10]). 

In this paper the relativistic many-body 
perturbation theory with the optimized Dirac-
Kohn-Sham zeroth approximation [11-19] is 
applied to calculation of the hyperfine structure 
parameters for Li-like multicharged ions. The 
relativistic, exchange-correlation and nuclear 
effects corrections are accurately taken into 
account with using the consistent and high 
precise procedures (c.g. [11-17]). 



114

2. Relativistic many-body perturbation 
theory with optimized zeroth approximation 
and energy approach

The theoretical basis of the RMBPT with the 
Dirac-Kohn-Sham zeroth approximation was 
widely discussed [11-17], and here we will only 
present the essential features. As usually, we use 
the charge distribution in atomic (ionic) nucleus 
r(r) in the Gaussian approximation:  

         ( ) ( ) ( )223 exp4 rRr g−pg=ρ           (1)

where γ=4/pR2 and R is the effective nucleus 
radius. The Coulomb potential for the spherically 
symmetric density r( r ) is:
   

(2)
Further consider the Dirac-like type 

equations for the radial functions F and G 
(components of the Dirac spinor) for a three-
electron system 1s2nlj. Formally a potential 
V(r|R) in these equations  includes electric and 
polarization potentials of the nucleus, VX is the 
exchange inter-electron interaction (in the zeroth 
approximation). The standard Kohn-Sham (KS) 
exchange potential is [13]:    
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relativistic potential is [33]:
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where [ ( )]XE rρ is the exchange energy of 
the multielectron system corresponding to the 
homogeneous density ( )rρ , which is obtained 
from a Hamiltonian having a transverse vector 
potential describing the photons. In this theory 
the exchange potential is [3,4]:
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where 2 1/3[3 ( )] /r cb p ρ= , c is the velocity 

of light. The corresponding one-quasiparticle 
correlation potential 

1/3[ ( ), ] 0.0333 ln[1 18.3768 ( ) ]CV r r b rρ ρ= − ⋅ ⋅ + ⋅ ,     (6)

(here  b is the optimization parameter; see 
below). 

The perturbation operator contains the rela-
tivistic potential of the interelectron interaction 
of the form: 
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(here ai ,aj are the Dirac matrices, wij is the 
transition frequency) with the subsequent sub-
traction of the exchange and correlation poten-
tials. The rest of the exchange and correlation 
effects is taken into account in the first two or-
ders of the PT (c.g.[3-5].  

In Refs. [20-29] it was presented the effec-
tive relativistic formalism with ab initio optimi-
zation principle for construction of the optimal 
relativistic orbital basis set. The minimization 
condition of the gauge dependent multielectron 
contribution of the lowest QED PT corrections 
to the radiation widths of the atomic levels is 
used. The alternative versions are proposed in 
refs. [30-37]. 

The general scheme of treatment of the spec-
tra for Li-like ion is as follows. Consider the 
Dirac-type equations for a three-electron sys-

tem nljs21 . Formally they fall into one-electron 

Dirac equations for the orbitals s1 1s and nlj  
with the potential:
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( )RrV  includes the electrical and the 
polarization potentials of the nucleus; the 
components of the self-consistent Hartree-like  

potential, exV is the exchange inter-electron 
interaction (look below). The main exchange 
effect will be taken into account if in the equation 
for the s1 orbital we assume
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potentials. The rest of the exchange and 
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optimization principle for construction of the 
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                 ( ) ( )srVrV 12=                      (10)

The rest of the exchange and correlation ef-
fects will be taken into account in the first two 
orders of the PT by the total inter-electron inter-
action [13-17]. 

The used expression for ( )sr 1ρ  coincides 
with the precise one for a one-electron relativ-
istic atom with a point nucleus. The finiteness 
of the nucleus and the presence of the second 1s 
electron are included effectively into the energy 

sE1 . 
Actually, for determination of the properties 

of the outer nlj electron one iteration is suffi-
cient. Refinement resulting from second itera-
tion (by evaluations) does not exceed correla-
tion corrections of the higher orders omitted in 
the present calculation. 

The relativistic potential of core (the “screen-

ing” potential) ( )( ) scrVsrV =12 1  has correct as-
ymptotic at zero and in the infinity. The proce-
dures for accounting of the nuclear, radiative 
QED corrections are in details presented in 
Refs. [3-5,14, 39-42]. 

 
3. Results and Conclusions

Energies of the quadruple (Wq) and magnetic 
dipole (Wm ) interactions, which define a hyper-
fine structure, are calculated as follows [4]:

Wq=[D+C(C+1)]B,

                           Wm=0,5 AC,

              D=-(4/3)(4c-1)(I+1)/[i(I-1)(2I-1)],

              C=F(F+1)-J(J+1)-I(I+1).         (16)

Here I is a spin of nucleus, F is a full 
momentum of system, J is a full electron 
momentum. Constants of the hyperfine splitting 
are expressed through the standard radial 
integrals: 

 A={[(4,32587)10-4Z2cgI]/(4c2-1)}(RA)-2,    (17)

    B={7.2878 10-7 Z3Q/[(4c2-1)I(I-1)} (RA)-3,

Here gI  is the Lande factor, Q is a quadruple 
momentum of nucleus (in Barn); radial integrals 
are defined as follows:

      (18)

and calculated in the Coulomb units (=3,57 
1020Z2m-2; = 6,174 1030Z3m-3 for valuables of the 
corresponding dimension). The radial parts F 
and G of two components of the Dirac function 
for electron, which moves in the potential 
V(r,R)+U(r,R), are determined by solution of the 
Dirac equations (look above). 

We have carried out the calculation of 
constants of the hyperfine interaction: the 
electric quadruple constant B, the magnetic 
dipole constant A with inclusion of nuclear 
finiteness and the Uehling potential for Li-like 
ions (c.g. [3-5]).

In table 4 the calculation results for the 
constants of the hyperfine splitting for the lowest 
excited states of  Li-like ions are presented.  

Analogous data for other states have 
been presented earlier (see ref. [5,20]). Our 
calculation showed also that a variation of the 
nuclear radius on several persents could lead to 
to changing the transition energies on dozens of 
thousands 103cm-1. 

Table 1. 
Constants of the hyperfine electron-nuclear 

interaction: A=Z3gI A cm-1,     B= B
II
QZ

)12(

3

−
 

cm-1 

nlj Z 69 79 92

2s
A

176 -02 215 -02 314 
-02

3s
A

51 –03 63 –03 90 –03

4s
A

19 –03 24 –03 36 –03
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3. Results and Conclusions 
Energies of the quadruple (Wq) and 
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finiteness and the Uehling potential for Li-
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presented earlier (see ref. [5,20]). Our 
calculation showed also that a variation of 
the nuclear radius on several persents could 
lead to to changing the transition energies on 
dozens of thousands 103cm-1.  

 
 

exchange effect will be taken into account if 
in the equation for the s1 orbital we assume 

                                        
                      nljrVsrVrV  1              (9) 
 
and in the equation for the nlj  orbital 
 
                       srVrV 12                      (10) 
 
The rest of the exchange and correlation 
effects will be taken into account in the first 
two orders of the PT by the total inter-
electron interaction [13-17].  

The used expression for  sr1  coincides 
with the precise one for a one-electron 
relativistic atom with a point nucleus. The 
finiteness of the nucleus and the presence of 
the second 1s electron are included 
effectively into the energy sE1 .  

Actually, for determination of the 
properties of the outer nlj electron one 
iteration is sufficient. Refinement resulting 
from second iteration (by evaluations) does 
not exceed correlation corrections of the 
higher orders omitted in the present 
calculation.  

The relativistic potential of core (the 
"screening" potential)    scrVsrV 12 1  has 
correct asymptotic at zero and in the infinity. 
The procedures for accounting of the nuclear, 
radiative QED corrections are in details 
presented in Refs. [3-5,14, 39-42].  
  

3. Results and Conclusions 
Energies of the quadruple (Wq) and 

magnetic dipole (W ) interactions, which 
define a hyperfine structure, are calculated as 
follows [4]: 
 

Wq=[+C(C+1)]B, 
 

                           W=0,5 AC, 
 
              =-(4/3)(4-1)(I+1)/[i(I-1)(2I-1)], 
  
 
 

                    C=F(F+1)-J(J+1)-I(I+1).                                      
                                                                  (16) 
Here I is a spin of nucleus, F is a full 
momentum of system, J is a full electron 
momentum. Constants of the hyperfine 
splitting are expressed through the standard 
radial integrals:  
 
      A={[(4,32587)10-4Z2gI]/(42-1)}(RA)-2, 
                                                                  (17) 
    B={7.2878 10-7 Z3Q/[(42-1)I(I-1)} (RA)-3, 
 
Here gI  is the Lande factor, Q is a quadruple 
momentum of nucleus (in Barn); radial 
integrals are defined as follows: 
 

              



0

22
2- ),,/1()()()( RrUrGrFdrrRA                                                                     

                      (18)            

           



0

3222
3- ),/1()]()([)( RrUrGrFdrrRA                                     

 
and calculated in the Coulomb units (=3,57 
1020Z2m-2; = 6,174 1030Z3m-3 for valuables of 
the corresponding dimension). The radial 
parts F and G of two components of the 
Dirac function for electron, which moves in 
the potential V(r,R)+U(r,R), are determined 
by solution of the Dirac equations (look 
above).  
      We have carried out the calculation of 
constants of the hyperfine interaction: the 
electric quadruple constant B, the magnetic 
dipole constant A with inclusion of nuclear 
finiteness and the Uehling potential for Li-
like ions (c.g. [3-5]).  
    In table 4 the calculation results for the 
constants of the hyperfine splitting for the 
lowest excited states of  Li-like ions are 
presented.   

Analogous data for other states have been 
presented earlier (see ref. [5,20]). Our 
calculation showed also that a variation of 
the nuclear radius on several persents could 
lead to to changing the transition energies on 
dozens of thousands 103cm-1.  

 
 



116

2p1/2 A
56 –03 71 –03 105 

–02

3p1/2 A
16 –03 20 –03 31 –03

4p1/2 A
72 –04 91 –04 11 –03

2p3/2 A
67 –04 71 –04 72 –04

B
13 –04 15 –04 17 –04

3p3/2 A
19 –04 21 –04 22 –04

B
51 –05 55–05 62 –05

4p3/2 A
89 –05 92 –05 8 –04

B
20 –05 22 –05 26 –05

3d3/2 A
10 –04 11 –04 12 –04

B
 9 –05 10 –05 11 –05

4d3/2 A
51 –05 55 –05 58 –05

B
44 –06 50 –06 56 –06

3d5/2 A
48 –05 50 –05 52 –05

B
38 –06 39 –06 40 –06

4d5/2 A
19 –05 20 –05 21 –05

B
15 –06 16 –06 17 –06
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O. L. Mykhailov, E. A. Efimova, E. V. Ternovsky, R. E. Serga

HYPERFINE STRUCTURE PARAMETERS FOR Li-LIKE MULTICHARGED IONS 
WITHIN RELATIVISTIC MANY-BODY PERTURBATION THEORY

Summary. The relativistic many-body perturbation theory with the optimized Dirac-Kohn-Sh-
am zeroth approximation is applied to calculation of the hyperfine structure parameters for some 
Li-like multicharged ions. The relativistic, exchange-correlation and other corrections are accu-
rately taken into account. The optimized relativistic orbital basis set is generated in the optimal 
many-body perturbation theory approximation with fulfilment of the gauge invariance principle. 
The obtained data  on the hyperfine structure parameters of the Li-like multicharged ions are ana-
lyzed and compared with alternative theoretical and experimental results.  

Keywords: Relativistic many-body perturbation theory – Optimal one-quasiparticle representa-
tion – Oscillator strengths –Energy approach – Correlation corrections
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А. Михайлов, Э. А. Ефимова, Е. В. Терновский, Р. Э. Серга

ПАРАМЕТРЫ СВЕРХТОНКОЙ СТРУКТУРЫ ДЛЯ Li-ПОДОБНЫХ 
МНОГОЗАРЯДНЫХ ИОНОВ В РАМКАХ РЕЛЯТИВИСТСКОЙ 

МНОГОЧАСТИЧНОЙ ТЕОРИИ ВОЗМУЩЕНИЙ

Резюме. Релятивистская многочастичная теория возмущений с оптимизированным ну-
левым приближением Дирака-Кона-Шэма применена  для расчета параметров сверхтонкой 
структуры Li-подобных многозарядных ионов. Релятивистские, обменно-корреляционные 
и другие поправки учитываются в рамках последовательных процедур. Оптимизированный 
базис релятивистских орбиталей  генерируется в последовательном нулевом приближении 
релятивистской многочастичной теории возмущений, исходя из условия выполнения прин-
ципа калибровочной инвариантности. Полученные данные для параметров сверхтонкой 
структуры для Li-подобных многозарядных ионов анализируются и сравниваются с альтер-
нативными теоретическими и экспериментальными результатами.

Ключевые слова:  Релятивистская многочастичная теория возмущений.,  сверхтонкая 
структура, литий-подобные ионы
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ПАРАМЕТРИ НАДТОНКОЇ СТРУКТУРИ ДЛЯ Li-ПОДІБНИХ БАГАТОЗАРЯДНИХ 
ІОНІВ В РАМКАХ РЕЛЯТИВІСТСЬКОЇ БАГАТОЧАСТИНКОВОЇ ТЕОРІЇ ЗБУРЕНЬ

Резюме. Релятивістська багаточастинкова  теорія збурень з оптимізованим нульовим на-
ближенням Дірака-Кона-Шема застосована для розрахунку параметрів надтонкої структури 
для Li-подібних багатозарядних іонів. Релятивістські, обмінно-кореляційні та інші поправки 
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враховуються в рамках послідовних процедур. Оптимізований базис релятивістських орбі-
талей генерується в послідовному нульовому наближенні релятивістської багаточастинкової 
теорії збурень, виходячи з умови виконання принципу калібрувальної інваріантності. Отри-
мані дані параметрів надтонкої структури для Li-подібних багатозарядних іонів порівню-
ються з альтернативними теоретичними і експериментальними результатами.

Ключові слова: Релятивістська багаточастинкова теорія збурень, надтонка структура, лі-
тій-подібні іони
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DYNAMICAL AND TOPOLOGICAL INVARIANTS OF PbO DYNAMICS 
IN A RESONANT ELECTROMAGNETIC FIELD 

Nonlinear chaotic dynamics of the PbO molecule interacting with a resonant linearly polarized electromagnetic 
field is computed within the quantum model, based on the numerical solution of the Schrödinger equation and model 
potential method. To calculate the system dynamics in a chaotic regime the known chaos theory and non-linear analysis 
methods such as a correlation integral algorithm, the Lyapunov’s exponents and  Kolmogorov entropy analysis are 
used. There are listed the data of computing dynamical and topological invariants such as the correlation, embedding 
and Kaplan-Yorke dimensions, Lyapunov’s exponents, Kolmogorov entropy etc..

1. Introduction

At present time theoretical and experimental 
studying regular and chaotic dynamics of 
nonlinear processes in the different classes 
of quantum systems (in particular, atomic 
and molecular systems in an external 
electromagnetic field) attracts a great interest 
that is of a significant importance for multiple 
scientific and technical applications etc [1-9]. 
     Some of the beauty of quantum chaos 
is that it has developed a set of tools which 
have found applications in a large variety 
of different physical contexts, ranging from 
atomic, molecular and nuclear physics optical) 
or resonators and mesoscopic physics and 
others (see [1-16]).  According to Refs. [1-3], 
under the definite conditions, such systems are 
described by the corresponding model, when 
Hamiltonians are possessing only a few degrees 
of freedom. For the low-dimensional chaotic 
case the corresponding conditions of transition 
to deterministic chaos in the system dynamics 
are quite well understood at the classical level 
[1-4]. 
     Under quantum treatment of the problem, 
the similar systems (in particular, the diatomic 
molecules in a resonant electromagnetic field) 
are studied with using the known quasiclassical 
approach [2]. At the theoretical level, the 
majority of studies, devoted to chaos phenomena 

in molecular dynamics, is carried out with the 
using simple tools of dynamical systems theory 
and  qualitative theory of differential equations. 
New field of investigations of the quantum and 
other systems has been provided by the known  
progress in a development of a nonlinear analysis 
and chaos theory methods [1-12,17-30]. 

In Refs. [11,27-33] the authors applied 
different approaches to quantitative studying 
regular and chaotic dynamics of atomic and 
molecular systems interacting with a strong 
electromagnetic field and laser systems. The 
most popular approach includes the combined 
using the advanced non-linear analysis and a 
chaos theory methods such as the autocorrelation 
function method, multi-fractal formalism, mutual 
information approach, correlation integral 
analysis, false nearest neighbour algorithm, 
Lyapunov exponent’s analysis, surrogate 
data method, stochastic propagators method, 
memory and Green’s functions approaches etc 
(see details in Refs. [17-24]). 

In Ref. [1-3,5-7] the authors performed a 
study of deterministic chaos in a number of 
diatomic molecules (GeO, ZrO etc) using as the 
quasiclassical method as quantum ones. 
In this paper we present the corresponding results 
of computing the characteristic dynamical and 
topological invariants of the chaotic dynamics 
of the PbO molecule interacting with a linearly 
polarized resonant electromagnetic field. 
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2. Quantum-dynamical and chaos-
geometric approach

As the main ideas of the quantum-
dynamic approach to diatomic molecule in an 
electromagnetic field are in details presented 
in the Refs. [5-7], here we will restrict yourself 
only by some key elements. The  quantum-
dynamic approach to a diatomic molecule in an 
electromagnetic field is based on the solution 
of the time-dependent Schrödinger equation, 
optimized operator perturbation theory and 
realistic model potential (density functional) 
method (see more details in Ref. [5]). 
The problem of dynamics of diatomic molecules 
in an infrared field is reduced to solving the 
Schrödinger equation:

                    
Y−+=∂Y∂ )]cos()()()([/ 0 ttExdxUHti LM wε                    
(1)

where EM - the maximum field strength, 
ε(t)=E0cos(ωt) corresponds the pulse envelope 
(chosen equal to one at the maximum value of 
electric field). 

     A molecule in the field gets the induced 
polarization and its high-frequency component 
can be defined as [3,5].  It is important to remind 
that in the regular case of molecular dynamics, 
a spectrum will consist of a small number of 
the well resolved lines. In the case of chaotic 
dynamics of molecule in a field situation 
changes essentially. The corresponding energy 
of interaction with the field is much higher than 
anharmonicity constant . It is obvious 
that a spectrum in this case become more 
complicated [5,6]. 

The main output data of the quantum-
dynamical approach application are the 
corresponding theoretical temporal  dependence 
of polarization of a molecule in a resonant 
electromagnetic field the field in a chaotic 
regime.

In order to perform the detailed analysis 
of the chaotic regime polarization time series,   
further a total dynamics of the quantum system 
in an electromagnetic field and to calculate 
the fundamental topological and dynamical 

invariants of the system in a chaotic regime we 
used the universal chaos-geometric approach, 
presented earlier (see, c.g., [5-7,19-20]). 

Generally speaking, the approach includes 
a set of such non-linear analysis and a chaos 
theory methods as the correlation integral 
approach, multi-fractal and wavelet analysis, 
average mutual information, surrogate data, 
Lyapunov’s exponents and Kolmogorov entropy 
approach, spectral methods, nonlinear prediction 
(predicted trajectories, neural network etc) 
algorithms. 

One of the important tasks here is to determine 
the corresponding embedding dimension and to 
reconstruct a Euclidean space Rd large enough so 
that the set of points dA can be unfolded without 
ambiguity. In accordance with the embedding 
theorem, the embedding dimension, dE, must be 
greater, or at least equal, than a dimension of 
attractor, dA, i.e. dE > dA. 

Usually one should use several standard 
approaches to reconstruction of the attractor 
dimension (see, e.g., [17-20]). The correlation 
integral analysis is one of the widely used 
techniques to investigate the signatures of chaos 
in a time series. The analysis uses the correlation 
integral, C(r), to distinguish between chaotic 
and stochastic systems. 

To compute the correlation integral, the 
algorithm of Grassberger and Procaccia is the 
most commonly used approach. According to 
this algorithm, the correlation integral is 
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where H is the Heaviside step function with 
H(u) = 1 for u > 0 and H(u) = 0 for u ≤ 0, r is the 
radius of sphere centered on yi or yj, and N is the 
number of data measurements. 

     In order to perform the verification of the  
results obtained by means of the correlation 
integral analysis, one could use so called known 
surrogate data method. This approach makes use 
of the substitute data generated in accordance 
to the probabilistic structure underlying the 
original data.

The important dynamical invariants of a 
chaotic system are the Lyapunov’s exponents 
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(see, c.g., [17-20]). These characteristics can 
be  defined as asymptotic average rates, they 
are independent of the initial conditions, and 
therefore they do comprise an invariant measure 
of attractor. Saying simply, the Lyapunov’s 
exponents are the parameters to detect whether 
the system is chaotic or not.  

Another important characteristics, namely, 
the  Kolmogorov entropy  Kent  measures the 
average rate at which information about the state 
is lost with time. According to the definition, the  
Kolmogorov entropy  can be determined as the 
sum of the positive Lyapunov’s exponents. 

The estimate of the dimension of the attractor 
is provided by the Kaplan and York conjecture:
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and the Lyapunov’s exponents la are taken in 
descending order. 

There are a few approaches to computing the 
Lyapunov’s exponents. One of them computes 
the whole spectrum and is based on the Jacobi 
matrix of system.  In this  work we use an 
advanced algorithm  with fitted map with higher 
order polynomials.  To calculate the spectrum 
of the Lyapunov’s exponents, one could 
determine the time delay t and embed the data 
in the four-dimensional space. In this point it is 
very important to determine the Kaplan-York 
dimension and compare it with the correlation 
dimension, defined by the Grassberger-
Procaccia algorithm]. 

As a rule, the calculational  results of the 
state-space reconstruction are highly sensitive to 
the length of data set (i.e. it must be sufficiently 
large) as well as to the time lag and embedding 
dimension correctly determined. 

Indeed, there are limitations on the 
applicability of chaos theory for observed (finite) 
dynamical variable series arising from the basic 
assumptions that these series must be infinite. 
A finite and small data set may probably result 

in an underestimation of the actual dimension 
of the process. The details of the procedures 
and algorithms used are presented in Refs. 
[5,7,19-26].

3. Some results and conclusions
Here we present the results of numerical 

simulation of the time dynamics for diatomic 
molecule PbO in the electromagnetic field. The 
parameter W of interaction of an electromagnetic 
radiation with a molecule is as follows: 

            
1 1/2

0 0[ ] 120.3( / )( / )ecm d rW S Mw− =     (4) 

where, as usually, an electromagnetic 
field caan be  characterized by the following 
parameter: S = cE /8p (c is the velocity of light 
and E is a field strength), an interatomic distance 
r0 in Å, dipole moment do in D, ωe in cm-1, M 
in a.u.m., and the field parameter S  in GW/
cm2. The set of the PbO molecular constants 
and electromagnetic field parameters is listed 
in Table 1 [27]. The corresponding Chirikov 
parameter in this case is as:  
                                       (5)

The typical theoretical time dependence of 
polarization for PbO molecule in the field in 
a chaotic regime is presented in Ref. [5]. The 
concrete step is an analysis of the corresponding  
time series with  the n=7.6×103 and Dt=5×10-14s. 

In Table 2 we present the calculational values 
of the correlation dimension d2, the Kaplan-
York attractor dimension (dL), the Lyapunov’s 
exponents (li), Kolmogorov entropy (Kentr),

Table 1. 
Set of the PbO molecular constants and 

electromagnetic field parameters

Parameters PbO

we= Ω (cm-1) 721.0

wexe= x Ω (cm-1) 3.54

Be (cm-1) 0.3073
De (cm-1) 2.23×10-7
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d0 (D) 4.65
r0 (Å) 1.92

M (a.u.m) 14.86
W (cm-1) 4.45-14.08

the Gottwald-Melbourne parameter. It is very 
important to declare that the dynamics of the 
PbO molecule in a resonant linearly polarized 
electromagnetic field has the elements of a 
deterministic chaos (the strange attractor).

Table 2. 
Correlation dimension d2, Lyapunov’s 
exponents (λi, i=1,2),  Kaplan-York attractor 
dimension (dL), Kolmogorov entropy (Kentr),  

Gottwald-Melbourne  parameter KGW

d2 l1 l2

2.87 0.151 0.0184
dL Kentr KGW

2.64 0.169 0.84

     From one side, this conclusion is entirely 
agreed with the results of modelling for other 
diatomic molecules [3,7-11]. From the other 
side, one should fix the increasing of the spectral 
chaos   in the molecule studied in comparison with 
other diatomics such as GeO and similar ones. 
To conclude, the values of the dynamical and 
topological invariants (the correlation, Kaplan-
York dimensions, the Lyapunov’s exponents 
etc) for the PbO molecule interacting with the 
resonant linearly polarized electromagnetic 
field are computed. In particular, the first two 
Lyapunov’s exponents are positive. These data 
indicate on emerging dynamical chaos elements 
(indeed the low-dimensional attractor) in 
behaviour of diatomic molecule interacting with 
electromagnetic field.
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E. V. Pavlov, A. V. Ignatenko, S. V. Kirianov, A. A. Mashkantsev

DYNAMICAL AND TOPOLOGICAL INVARIANTS OF PbO DYNAMICS 
IN  A RESONANT ELECTROMAGNETIC FIELD 

Summary. Nonlinear chaotic dynamics of the PbO molecule interacting with a resonant linearly 
polarized electromagnetic field is computed within the quantum model, based on the numerical so-
lution of the Schrödinger equation and model potential method. To calculate the system dynamics 
in a chaotic regime the known chaos theory and non-linear analysis methods such as a correlation 
integral algorithm, the Lyapunov’s exponents and  Kolmogorov entropy analysis are used. There 
are listed the data of computing dynamical and topological invariants such as correlation, embed-
ding, Kaplan-Yorke dimensions, Lyapunov’s exponents etc. 

Key words: Chaotic dynamics, diatomic molecule, electromagnetic field

PACS 31.15.-p; 33.20.-t

Е. В. Павлов, А. В. Игнатенко, С. В. Кирьянов,  А. А. Машканцев

ДИНАМИЧЕСКИЕ И ТОПОЛОГИЧЕСКИЕ ИНВАРИАНТЫ ДИНАМИКИ 
МОЛЕКУЛЫ PbO В РЕЗОНАНСНОМ ЭЛЕКТРОМАГНИТНОМ ПОЛЕ

Резюме. Нелинейная хаотическая динамика молекулы PbO в резонансном линейно по-
ляризованным электромагнитным поле рассчитывается в рамках квантовой модели, базиру-
ющейся на численном решении уравнения Шредингера и методе модельного потенциала. 
Для моделирования динамики в хаотическом режиме используются известные методы не-
линейного анализа и теории хаоса,  в т.ч., метод корреляционного интеграла, анализ на ос-
нове показателей Ляпунова, энтропии Колмогорова и др. Представлены данные вычисления 
динамических и топологических инвариантов, в т.ч.,  размерностей вложения, корреляцион-
ной, Каплана-Йорка, показателей Ляпунова, др. 

Ключевые слова: хаотическая динамика, 2-атомная молекула, электрическое  поле
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Є. В. Павлов, Г. В. Ігнатенко, С. В. Кір’янов,  О. А. Машканцев,

ДИНАМІЧНІ І ТОПОЛОГІЧНІ ІНВАРІАНТИ ДИНАМИКИ МОЛЕКУЛИ 
PbO У РЕЗОНАНСНОМУ ЕЛЕКТРОМАГНІТНОМУ ПОЛІ

Резюме. Нелінійна хаотична динаміка молекули PbO, взаємодіючей з резонансним 
лінійно-поляризованим електромагнітним полем, розраховується в рамках квантової 
моделі на основі рішення рівняння Шредінгера і методу модельного потенціалу. Для 
аналізу динаміки системи в хаотичному режимі використані методи нелінійного аналізу та 
теорії хаосу, у т.ч., метод кореляційного інтеграла, аналіз на основі показників Ляпунова, 
ентропії Колмогорова т.і. Надані  дані обчислення динамічних і топологічних інваріантів: 
розмірностей  кореляційної, вкладення, Каплана-Йорка,  показників Ляпунова, та інших.

Ключові слова: хаотична динаміка, 2-атомна молекула, електромагнітне поле
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FEATURES OF APPLICATION OF THE THERMOLUMINESCENT METHOD FOR 
DATING

To determine the age of geological rocks, we studied the thermoluminescence of the natural light sum stored as a 
result of uncontrolled radioactive radiation, as well as after annealing and exposure to a controlled irradiation dose. The 
magnitude of the stored light sum was determined from the area under the curve of thermoluminescence. It is shown 
that the thermoluminescent method allows to accurately determine the age of geological objects and can find practical 
application for creating sensors of dating.

1. INTRODUCTION

Thermally stimulated luminescence (TSL) is 
used in radiation dosimetry to determine the age 
of archaeological ceramics and geological rocks 
[1-3]. Since the luminescence is very sensitive 
to the defects in a solid, it can also be used in 
material research. The TSL method of dating 
ceramics and geological objects is based on the 
fact that, under the action of radioactive radia-
tion of a number of elements in the earth’s crust, 
the light sum is accumulated by the objects un-
der study. The process of storing non-equilibri-
um charge carriers occurs at local capture levels 
in dielectrics under the action of ionizing radia-
tion from natural radionuclides contained in the 
dating object [1,4]. During heat treatment of ce-
ramics (880–980 K), quartz contained in it loses 
all its previously accumulated light sum, the ac-
cumulation of which occurred since the forma-
tion of quartz as a mineral. Thus, when dating 
by the thermoluminescent method, a zero-mo-
ment is realized, which is undoubtedly the main 
advantage of this method.

After storing the light sum with the subse-
quent heating, this energy is released in the form 
of TSL. The magnitude of the stored light sum 
is determined by the properties of the samples 
investigated: porosity, the content of quartz in 
them, and the dose power received by them. 
The content of quartz is fundamentally impor-

tant, therefore, the application of this method 
is limited only to those periods, the geological 
history of which is inherent to quartz-stone. The 
technique and interpretation of the results of the 
thermoluminescent method differ for different 
groups of researchers, that is, they are under 
development, so the research topic is very rel-
evant.

2. THERMOLUMINESCENCE EXCITED 
BY INTERACTION WITH WATER VAPOR

The use of the TSL method is based on the 
assumption that the accumulation of the light 
sum occurs only as a result of the exposure of 
the test samples to the elements of the geologi-
cal environment by radiation of the natural ra-
diation background. However, as is well known, 
the accumulation of a light sum by a number of 
solids can occur without exposure to ionizing 
radiation as a result of their interaction with wa-
ter [5–7]. In this case, the accumulation of the 
light sum occurs near the surface of a solid. The 
value of the stored light sum is determined by 
the value of its specific surface, its state and the 
nature of the substance itself.

The storage process of the light sum is due 
to the formation of radical ions, in particular, 
during the dissociation of water, and their ad-
sorption on the catalytically active centers of the 
solid surface [7]. Radical ions can come to the 
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surface from the environment, or form on the 
catalytically active surface of a solid as a result 
of dissociation of the adsorbent. The amount of 
stored light sum is determined mainly by the 
number of centers on the surface of a solid on 
which radical ions can adsorb, creating com-
plexes of adsorption nature that perform the 
functions of traps filled with electrons. 

 The process of storing the light sum often 
ends within a few days, but sometimes it takes 
much longer to complete. The light sum stored 
in this way is determined only by the proper-
ties and state of the solid surface, while the light 
sum accumulated under the action of radioac-
tive radiation is due to the processes occurring 
in its bulk and is determined by the presence of 
both emission centers and electron traps in the 
substance under study. Therefore, “surface” lu-
minescence can also manifest itself in the case 
when the usual “bulk” thermoluminescence is 
absent. Obviously, the existence of both types of 
thermoluminescence is also possible. The ratio 
of their intensities is determined by the nature 
of the substance, the impurities in it, the value of 
the specific surface and its properties, the condi-
tions of its keeping, the magnitude of the radia-
tion dose received and its nature.

The presence of such a “surface” thermolu-
minescence should lead to overestimated values 
of the rock age, however, it is not taken into ac-
count in any way when dating geological ob-
jects. It is precisely because of the presence of 
“surface” thermoluminescence that, apparently, 
the age of rocks, determined by the authors in 
the work by the thermoluminescent method [8], 
is often 1,5÷2 times their age, determined by 
the radiocarbon method. It is the “surface” com-
ponent of thermoluminescence that is apparent-
ly due to the course of “natural” thermolumines-
cence of granite in [9], the position of the maxi-
mum of which on the temperature scale differs 
significantly from the position of the maxima of 
“artificial” thermoluminescence stimulated by 
X-rays and irradiation in a nuclear reactor. This 
difference was interpreted by the author in favor 
of assuming that thermoluminescent dating is 
not applicable in this case. In our opinion, this 
fact is a manifestation of the influence of vari-

ous types of centers (surface and bulk) on TSL. 
Obviously, the presence of “surface” thermo-

luminescence is largely due to the large differ-
ence observed in [10] in the intensities of the 
“natural” thermoluminescence peaks of apatite 
within the same array. Indeed, the intensity of 
“surface” thermoluminescence is determined by 
the state of the surface, which, in turn, depends 
significantly on the conditions of the sample, 
which, of course, within the same array in dif-
ferent parts of it. It is precisely the accumulation 
of the light sum by the surface of the samples 
that apparently caused the spontaneous recovery 
observed in the same work with the thermolumi-
nescence time of the samples after their calcina-
tion. 

Thermoluminescent dating method is also 
used in archeology to determine the age of ce-
ramics [1,2,10,11]. The method is based on the 
application for dating quartz, extracted from or 
contained in ceramics. As with dating in geolo-
gy, it is believed that the light sum is stored only 
as a result of irradiation of samples with radio-
active radiation. However, usually on quartz, as 
well as on ceramics, the surface is very strongly 
developed. The specific surface is often tens and 
hundreds of square meters per 1 g of substance. 
Since there are usually 1013 centers per 1 cm2 
of the surface of a solid, capable of perform-
ing the functions of traps filled with electrons 
(complexes of adsorption nature), there will be 
1019 in 1g of such centers. Provided that impuri-
ties capable of performing the functions of deep 
electron traps in the bulk of a solid body are ~ 
10–2, we find that the number of such centers per 
gram of substance is 1019.

Thus, the numbers of both types of centers 
can be commensurate, and in some cases the 
number of surface centers can significantly ex-
ceed the number of bulk centers. Accordingly, 
the intensity of the “surface” luminescence is 
commensurate with the intensity of the “bulk”. 
Since the use of the thermoluminescent method 
assumes the presence of only “bulk” thermo-
luminescence, while the total is recorded, it is 
obvious that a significant error is possible when 
dating in this way, and therefore, just like when 
dating geological objects, it is necessary to take 
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into account the “surface” component of lumi-
nescence.

The given examples testify to the manifesta-
tion of the “surface” component of thermolumi-
nescence in a number of geological objects and 
indicate the need to take it into account when 
dating by the thermoluminescent method. The 
spectral composition of the luminescence that 
arises when the light sum stored as a result of 
exposure to water is determined by the lumi-
nescence centers located near the surface of the 
samples. These centers can also be largely asso-
ciated with the adsorption of water. The spectral 
composition of the luminescence arising from 
the thermoluminescence of the light sum stored 
during radioactive irradiation is determined 
mainly by the luminescence centers located in 
the sample volume. Such centers can be impuri-
ties of a number of metals, lattice structure de-
fects, etc.

Thus, since the nature of the centers respon-
sible for the emission of “surface” and “vol-
ume” luminescence may be different, the spec-
tra of these two types of luminescence may also 
differ. The aim of the work was to study the 
spectral composition of “natural” thermolumi-
nescence induced by radioactive radiation and 
thermoluminescence excited when interacting 
with water. Such information may provide ad-
ditional information for determining the age of 
geological rocks.

3. EXPERIMENTAL

Taking into account the above considerations 
on the role of water and the surface component 
of luminescence, the method [8–14] of thermo-
luminescent dating can be somewhat changed. 
At the first stage, the curve of thermolumines-
cence of a prepared archaeological or mineral-
ogical object should be removed. The area un-
der the curve of thermoluminescence gives the 
value of the natural light sum, accumulated as a 
result of uncontrolled radioactive radiation.

At the second stage, the previously high-
lighted sample is heated at a temperature of 
970-1070 K to erase the remnants of the pro-
genetic amount, which could remain unreleased 

as a result of the previous measurement. Since 
thermostimulated luminescence associated 
with surface states is strongly influenced by the 
products of the dissociation of water and some 
other inorganic substances, such a measurement 
should be carried out in a vacuum, atmosphere 
of dry air or inert gases. At the third stage, the 
sample is exposed to a controlled dose of radia-
tion, after which thermoluminescence is again 
performed. All studies known to us at this stage 
were carried out without isolating the samples 
from moisture, as a result of which the latter, to-
gether with the irradiation, stored the light sum. 
It gave the overestimated value of the total light 
sum and, as a result, the overestimated age of 
the rocks. Comparing the light sum, obtained 
under the action of natural uncontrolled irradia-
tion and controlled dose, you can determine the 
age of the sample.

It is known that the intensity of thermolumi-
nescence is proportional to the radiation dose 
[15]: 

1P – natural dose power (natural background), 

1t  - age of geological rocks, C -  constant, in-
dependent of the power and time of exposure. 
Similarly, the intensity of the TSL, which is ob-
served as a result of irradiation with a controlled 
dose of radiation, is induced by the TSL: 

where 2P is the dose power control, 2t  is 
the exposure time C  – constant, which does 
not depend on the power and time of exposure. 
Hence the age of the rocks: 
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The accuracy of dating is determined by both 
the accuracy of the method and the possibility of 
the temporary separation of various geological 
rocks. The accuracy of the TSL method is 
quite high [16]. The possibility of temporary 
separation of various rocks is determined by 
geological laws and is not less than 200-300 
years.

when the light sum stored as a result of 
exposure to water is determined by the 
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We carried out thermoluminescent dating of 
quartz samples. Quartz was chosen for the reason 
that, being a mineral, it is also present in archaeo-
logical samples and, moreover, as can be seen from 
the previous one, due to the presence of quartz, 
the thermally stimulated dating of archaeological 
rocks is possible.

By the method of wet sieve analysis, fractions 
of 100–140 µm in size were determined from 
quartz rock sediments previously identified by 
radiocarbon analysis with different periods of the 
quaternary period. Quartz was extracted by min-
eral separation in heavy liquids (bromoform). De-
gree of purity is 98-99%. Surface cleaning from 
contamination was carried out by processing in a 
10% HClHF +  solution for 10 minutes. The ob-
tained samples were pressed into tablets with a di-
ameter of 12 mm and a thickness of 2 mm. 

Fig.1. Curves of thermoluminescence of sam-
ples: 1) the intensity of the natural light sum 
stored as a result of uncontrolled radioactive 
radiation; 2) the intensity of the light sum af-
ter heating at a temperature of 970-1070 K and 

the effects of a controlled dose of radiation.

For measurements, a standard thermolumines-
cent installation was used in the integral sensitivity 
mode (the signal was amplified by an IMT-005 di-
rect current meter and fed to one of the coordinates 
of the recording device). The temperature was 
measured using a copper - constantan thermocou-
ple with an accuracy of 10K and was fed to anoth-
er coordinate of the recording device (PDP-001). 
The heating rate was 0,3 K/min. The working vol-
ume of the chamber in which the thermolumina-
tion was carried out was hermetically sealed and 

purged with vapors of dry air, the humidity level in 
which did not exceed 0.05%. The source of expo-
sure was cobalt 60 Co  (power 0,15 x-ray / s). The 
measurements were carried out in the temperature 
range from 320-600 К. The curves of thermolumi-
nescence are shown in fig. 1.

4. RESULTS AND DISCUSSION

It can be seen that all samples are character-
ized by peaks in the range of 500–525 K and 
about 580 K, which correspond to peaks of 
quartz and calcite. For samples exposed to a 
controlled dose of radiation, the intensity of the 
light sum increased and an additional peak ap-
peared at a temperature of 400 K. The total val-
ue of the stored light sum was determined by the 
area under the curve of thermoluminescence. 
The age of the rocks was determined similarly 
to the formula given above:
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The annual dose of radioactive radiation in-
cluded in this formula  Dan was determined by 
the value of the natural background radiation. 
The accumulated dose Dacwas determined tak-

ing into account the power of the source.  icdI  
– the  intensity controlled radiation dose rate 

(induced TSL), incI  – the intensity of the un-
controlled radiation dose (natural background). 

The age estimate taking into account the ex-
perimental data obtained is 2,6∙104 years. The 
radiocarbon analysis of the same sample gives 
2,1∙104 the age of years. A good agreement of 
the results obtained by two different methods 
may indicate the validity of the assumption that 
the coefficient of proportionality is constant be-
tween the intensity of the TSL and the radiation 
dose power. This circumstance indicates the 
possibility of practical application of the sam-
ples under study to create dating sensors.

To determine the age of geological rocks, we 
studied the thermoluminescence of the natural 
light sum stored as a result of uncontrolled ra-
dioactive radiation, as well as after warming up 

HF
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and exposure to a controlled irradiation dose. A 
good agreement was obtained between the re-
sults obtained by thermoluminescent and radio-
carbon methods. It is shown that the discrepancy 
between the results obtained by these methods is 
less than that given by other authors. Obvious-
ly, this improvement was due to the inclusion 
of the “surface” component of thermolumines-
cence. The above dating method allows you to 
accurately determine the age of geological and 
archaeological objects and can find practical ap-
plication for creating dating sensors.
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FEATURES OF APPLICATION OF THE THERMOLUMINESCENT METHOD FOR 

DATING

To determine the age of geological rocks, we studied the thermoluminescence of the natural 
light sum stored as a result of uncontrolled radioactive radiation, as well as after warming up and 
exposure to a controlled irradiation dose. The magnitude of the stored light sum was determined 
from the area under the curve of thermoluminescence. It is shown that the thermoluminescent 
method allows one to accurately determine the age of geological objects and can find practical ap-
plication for creating dating sensors.
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ОСОБЕННОСТИ ПРИМЕНЕНИЯ ТЕРМОЛЮМИНЕСЦЕНТНОГО МЕТОДА ДЛЯ 
ДАТИРОВАНИЯ

Для определения возраста геологических пород проведено изучение термовысвечивания 
естественной светосуммы, запасенной в результате неконтролируемого радиоактивного из-
лучения, а также после прогрева и воздействия контролируемой дозы облучения. Величи-
на запасенной светосуммы определялась по площади под кривой термовысвечивания. По-
казано, что термолюминесцентный метод позволяет достаточно точно определять возраст 
геологических объектов и может найти практическое применение для создания сенсоров 
датирования.

Ключевые слова: термолюминесцентный метод, датирование, запасание светосуммы, 
термовысвечивание.
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ОСОБЛИВОСТІ ЗАСТОСУВАННЯ ТЕРМОЛЮМИНЕСЦЕНТНОГО МЕТОДУ ДЛЯ 
ДАТУВАННЯ

Для визначення віку геологічних порід проведено вивчення термовисвітлення природної 
світлосуми, що запасена в результаті неконтрольованого радіоактивного випромінювання, а 
також після прогріву і впливу контрольованої дози опромінення. Величина запасеної світ-
лосуми  визначалася за площею під кривою термовисвітлення. Показано, що термолюмі-
несцентний метод дозволяє досить точно визначати вік геологічних об’єктів і може знайти 
практичне застосування для створення сенсорів датування.

Ключові слова: термолюмінесцентний метод, датування, запасання світлосуми, термо-
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THE STUDY OF HOMOGENEOUS AND HETEROGENEOUS SENSITIZED CRYSTALS 
OF CADMIUM SULFIDE. PART III. OSCILLATIONS OF EXCITED CARRIERS

The processes at short-wave limit of the quenching of the photocurrent were  studied. The possibility of creating 
a new type of device - a sensitive photometer (not on the intensity of light, but on its wavelength), and the combined 
temperature–voltage tester.

The process of hole oscillation under photoexcitation from R-centers is investigated. The quantum yield for infra-
red light is determined. The effect of the applied voltage on the form of the spectral distribution curves of the photocur-
rent quenching was found and explained. The concentration of R-centers in the samples is calculated.

This publication is a continuation of the reviews [1– 2]. For the sake of preservation of generality of work continu-
ous numbering of sections is chosen. Numbers of formulas and figures are presented by sections. References in each 
article are given individually.

Cadmium sulfide crystals are used in our studies as a convenient model material. Obtained results and constructed 
models are also applied to other semiconductors. 

4. Research of processes in the field of short-
wave threshold of infrared quenching of 
photocurrent

Lets consider, that in a sensitive crystal under 
the action of light, the wavelength of which does 
not change from the maximum of its own exci-
tation (520 nm), a photocurrent Iexcit is formed. If 
at the same time the monochromatic light with 
controlled wavelength, hereinafter referred to as 
the main, is sent to sample, the quenching re-
gion of the flowing photocurrent Imain  is less than 
the original:  Iexcit >Imain. With a decrease in the 
wavelength of the main light, it will also be in-
tristic. Then, in the conditions of additional ex-
citation  Imain > Iexcit.

As in the long-wave part of the spectrum  
Iexcit >Imain , and in the shortwave Imain > Iexcit. then, 
according to the Bolzano-Cauchy theorem, 
there must be a point when Imain = Iexcit.. Let’s call 
this wavelength as shortwave threshold for the 
effect of IR-quenching of photocurrent or the 
point of bifurcation. The switching-on of basic 
light in this point of spectrum does not change 
photocurrent  Iexcit  being already formed (see 
Fig. 4.1.B).

Fig. 4.1. The spectral distribution of the photo-
current under the action of only exciting light 
with λ=520 nm (A) and together the main and 

exciting light(B).

The processes occurring in the crystal have 
not been studied before and are studied for the 
first time [3,4].
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4.1. On the balance of processes of excita-
tion–quenching at the bifurcation point

There are two options. Exposure by the main 
light at the bifurcation point does not cause 
any changes. Its wavelength is too far from the 
field of its intristic excitation and does not lead 
to an increase in the concentration of the main 
charge carriers. At the same time, it is too small 
to change the concentration of minority carriers 
and does not cause the IR-quenching process.

Or both processes, although to a weak degree, 
are activated, but are equal to each other. In the 
latter case, as usual, when exposed to competing 
mechanisms, the current must be very sensitive 
to changes in external conditions – temperature, 
applied voltage, changes in the intensity of the 
main and excitation light.

Figure 4.1.B shows the change in photocur-
rent Imain under the action of the main light of dif-
ferent wavelengths. Here, for convenience, the 
photocurrent Iexcit generated by the action of only 
light with a wavelength of 520 nm is shown.

In the direction of large wavelengths, photo-
sensitivity was observed up to the boundary of 
the infrared part of the spectrum (~ 900 – 940 
nm). In the region of wavelengths 600 – 850 nm, 
we observed almost a tabular part of the graph. 
Obviously, this area is formed due to emptying 
of the deep traps. These traps are also respon-
sible for the relatively long relaxation of the 
photocurrent (up to 20 minutes at each point) 
described in chapter 3.1–3.2. All the results de-
scribed below were obtained in stationary con-
ditions. The kinetics of setting the values cor-
responded to [5–8].

The optimal intensity of the main and the ex-
citation light to the curves of Fig. 4.1 in accor-
dance with the data of  Chapter 1, were selected 
as a baseline in the study of the effect of light 
fluxes on the spectral position of the bifurcation 
point (see below). At selected light intensities, 
the bifurcation point is shown in Fig. 4.1 hit at a 
wavelength of 930 nm.

1. If the processes of photoexcitation ended 
with a wavelength earlier than the bifurcation 
point, and the IR-quenching effect began later 
than it, the graph Imain (λ) would have the form 

shown in Fig. 4.1.B dotted line. In this case, 
in the vicinity of *D we would observe a more 
or less pronounced plateau coinciding with the 
value of Iexcit. It is the absence of such a plateau 
that indicates that another possibility is being 
realized. In the bifurcation region, the sample 
is simultaneously excited by the main light and 
IR-quenching. At point D, these two processes 
are exactly compensated.

2. Figure 4.1.A at the same scale as 4.1.B 
the spectral distribution of the photocurrent 
is shown. As can be seen from the graph, the 
sample showed photosensitivity, though insig-
nificant, up to wavelengths of ~ 1000 nm. The 
appearance of a longer-wave sensitivity relative 
to *D is explained as follows. The wavelength 
of the exciting light is too long. It is poorly ab-
sorbed and the number of photoexcited carriers 
is small. Obviously, in these circumstances, the 
filling of the R-centers by holes is minimal. The 
IR-quenching process is difficult. We observe 
long-wavelength edge of photo-excitation in 
absence of quenching. But in this case, at the 
point of bifurcation, photoexcitation is more 
pronounced.

3. To the left of the point D curve Imain (λ) 
changes the smoothness. Starting with wave-
lengths of about 880 nm, the Imain (λ) graph de-
creases more sharply to the bifurcation point. 
This can occur if the distribution of the photo-
current is already stepped in by infrared quench-
ing.

It is impossible to measure the quenching 
curve in the area of the CE without excitation 
(similar to paragraph 2), since the quenching 
process essentially requires the participation of 
two light streams. However, this dependence can 
be calculated, assuming that the curve AB is a 
change in the photocurrent Iexcit (λ) under the ac-
tion of excitation only (see Fig. 4.1.A), whereas 
the ADE curve is the result of the combined ac-
tion of excitation and quenching. Then IСЕ(λ) = 
IAB(λ) – IADE (λ). The CE part of the graph in Fig. 
4.1.B obtained by this method reflects the be-
havior of the curve I(λ) to the left of the point D, 
if there was no excitation process of the crystal. 

We got the same result by another calculation 
method. This plot was selected EH curve Imain (λ) 
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Fig. 4.1.B. This plot was selected EH curve Imain 
(λ) Fig. 4.1.For this area is no longer affected 
by the excitation of the main light (curve AB, 
the end of the curve Fig. 4.1.A), but the mecha-
nisms forming the minimum current behind the 
H-point are not yet essential. The expression for 
the trend line was used for calculations. On the 
site of the EH function Imain (λ) is approximated 
by the expression I (λ) = a λ3 + b λ2 + c λ + d, 
where a = 0,0002; b = – 0,5; c = 499,08; d = 
–165663. By extrapolating this dependence to 
the intersection with the value of  Imain, we again 
obtain the curve CE (dotted line Fig.4.1.B). 

Practically coinciding curves on the SE site 
indicate the existence of quenching in the spec-
tral region of  900 – 920 nm even before the 
short-wave boundary of the IR effect.

4. In some cases, in the region of the bifurca-
tion point, we observed a complex dependence 
of the Imain (λ) curve with one or even two inflec-
tion points. This can be easily explained by the 
fact that the simultaneous processes of quench-
ing and excitation depend on the color of the 
light in different ways, both of which are nonlin-
ear. The predominance of one of them for each 
wavelength of the incident light and generates a 
change in the nonlinearity of the graph.

Thus, all four of these arguments indicate 
that the region of the beginning of the infrared 
quenching of the photocurrent is characterized 
by a competition of excitation and quenching, 
and at the very point D the intensity of these 
processes are the same.

4.2. Dependence of the spectral position of 
the short–wave boundary of infrared quench-
ing on external factors

With increasing temperature, the boundary 
of the effect of infrared quenching of the pho-
tocurrent λ0 shifted towards large wavelengths  
(Fig. 4.2.A).

The operating temperature range was chosen 
in such a way that at the selected light intensi-
ties the effect of temperature quenching of the 
photocurrent was not affected. A noticeable de-
crease in the photocurrent was observed, start-
ing with temperatures ~ 50 – 55 ОС. Using sub-

threshold values of temperatures for this effect, 
the emission of holes from R-centers into the 
valence band was excluded from consideration.

Fig. 4.2. The dependence of the coordinate of the 
bifurcation point on the operating temperature at 
high (2) and low (1) intensity of natural light (A) 
and the change of its position with the increase 

in the applied voltage (B).

However, thermal transitions occur. By ab-
sorbing phonons, equilibrium holes can pass 
from the basic levels of R -centers with an en-
ergy of 1.1 eV to excited R´- centers with an en-
ergy of 0.9 eV. In this case, the population of 
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R–states by holes decreases, and R´- states natu-
rally increases. It has already been noted above 
that this process is responsible for the fact that 
the first maximum of optical quenching of the 
photocurrent with a wavelength of about ~1100 
nm is always lower than the second, located at a 
wavelength of 1380–1400 nm.

The first minimum current (Fig. 4.1.B) as 
closer to the bifurcation point, has a major influ-
ence on the spectral position of the onset of the 
photocurrent IR-quenching effect. Moreover, in 
accordance with [9], with the change in temper-
ature, the spectral position of this maximum did 
not change.

As the temperature increases from room tem-
perature and above, the concentration of holes cap-
tured on the ground States of R-centers decreases. 
With a constant number of photons incident on 
them per unit time, a decrease in the population of 
these levels is accompanied by a decrease in the 
transitions of holes in the free state.

As a result, due to the weakening of the 
quenching mechanism, the equilibrium at the 
bifurcation point is disturbed, and it moves to-
wards large wavelengths. Here, a new balance 
is achieved for less intensity of photoexcita-
tion, but increased intensity of quenching. The 
shift will occur until the increase in the quench-
ing rate compensates for the losses associated 
with the effect of temperature. The processes 
are nonlinear. This explains the deceleration of 
the wavelength increment at the point of branch-
ing with increasing temperature. The growth in 
terms of absolute values, the increment is affect-
ed to a lesser degree. Light intensity in the mea-
surement of the dependence λо (T) (curve 1 Fig. 
4.2.A) selected by us according to the figure. 1.1 
chapter 1 [1]. With more significant illumina-
tions, the step-like nature of the transition disap-
peared with additional light. The curve slightly 
increased (graph 2 Fig. 4.2.A) when values λо in 
the lower shelves. We explain this by changing 
the mechanism of emptying the ground state of 
R-centers.

At high intensities of its intristic light creates 
a lot of free holes. The filling of R-centers is 
significant. Their emission, and accordingly, the 
intensity of the quenching process is controlled 

only by the flow of IR photons. And the popula-
tion remains stable. The flow of nonequilibrium 
holes on R-centers compensates for their knock-
ing out by phonons.

On the contrary, at low light Lexcit. and, hence, 
weak filling of R-centers, the quenching process 
is determined by the concentration of trapped 
holes, since their number is less than the density 
of the photon flux.

Thus, the form of the curve λо (T) is an indica-
tor of the change of the described mechanisms.

The investigated samples had a linear cur-
rent-voltage characteristic in displacements 
from 10 to 50 V over the whole range of the 
used intensities of the light of its own. Within 
these values, with increasing voltage, the bi-
furcation point shifted almost linearly towards 
short wavelengths.

The results obtained correspond to the model 
developed in [10].

Since the intensities of the main and addi-
tional light did not change during the experi-
ment, the processes of photoexcitation of both 
the main (electrons through the forbidden zone) 
and non-main (holes from the R-centers) remain 
the same. Accordingly, the concentration of the 
captured charge on the R-centers remains un-
changed.

If the applied voltage has almost no effect on 
the concentration of the free charge responsible for 
the formation of the current, it changes the speed 
of its movement, which is reflected in the current 
in accordance with the dependence  j = env. It is 
taken into account that the current is formed by the 
main carriers, in our case – electrons.

However, this is not enough to change the 
balance of excitation and quenching processes 
at the bifurcation point. The current electrical 
voltage not only accelerates the free electrons, 
(the recorded current increases), but also the 
photoexcited holes (by increasing the recom-
bination at the S-centers, the current must de-
crease). For these reasons, the coordinate of the 
bifurcation point with the change of voltage 
should not change.

But the processes overlaps with another one. 
Photoexcited holes are located in the vicinity of 
the original R-centers and have the ability to re-
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turn there. The greater the applied voltage, the 
more effectively they get carried away from their 
traps (see chapter 5.1). This increases the quan-
tum yield for IR light (See chapter 5.2) [11].

This process breaks the symmetry. The re-
combination at the S-centers is enhanced due to 
the additional charge. Due to enhanced quench-
ing, the bifurcation point shifts to shorter wave-
lengths, where equilibrium is restored by a high-
er level of photoexcitation.

The behavior of the bifurcation point can 
serve as a criterion for changing the quantum 
yield from R-centers.

Note that the reasoning is valid only in the re-
gion of small intensities of light fluxes, when the 
number of absorbed light quanta at R-centers is 
less than the number of holes captured on them. 
In the opposite case, for example, the very large 
quenching of the light and a little exciting, Lexcit 
<< Lmain, the observed pattern may be substantial-
ly adjusted by the rate of occupation of R-centers. 
The limits of applicability of light flux intensities 
are discussed in more detail in [10,11].

Changes in the position of the short-wave 
boundary of the IR effect with an increase in the 
intensity of the main color (horizontal columns 

Table. 4.1.  
Wavelength  λ0  branch points under various lighting conditions

quenching boundary shifted towards shorter 
wavelengths [12,13]. These changes are easy to 
interpret for geometric reasons. The graph  Fig. 
4.1. would the increase in light intensity 
corresponds to an increase Lexcit. horizontal line 
Iexcit. The dependence of the Imain (λ) does not 
change. Therefore, the bifurcation point should 
move to the left. 

Physically, this means that with the 
increase of the initial intensity of the natural 
light, the balance of excitation and quenching 
processes at the short-wave boundary of the 
effect is disturbed. There is an additional 
generation of electrons, while the number of 
holes knocked out from the R-centers remains 
the same, since the number of absorbed infrared 
photons has not changed. Since the intensity of 
the main light does not change, it is possible to 
restore the equilibrium only by shifting the 
bifurcation point to the short-wave part of the 
spectrum, where the light is better absorbed and 
the process of photoexcitation is greater. 

Note that the reasoning is valid only in 
the region of small intensities of light fluxes, 
when the number of absorbed light quanta at R-

centers is less than the number of holes captured 
on them. In the opposite case, for example, the 
very large quenching of the light and a little 
exciting, Lexcit << Lmain, the observed pattern may 
be substantially adjusted by the rate of 
occupation of R-centers. The limits of 
applicability of light flux intensities are 
discussed in more detail in [10,11]. 

Changes in the position of the short-wave 
boundary of the IR effect with an increase in the 
intensity of the main color (horizontal columns 
of table 4.1) are not amenable to simple 
interpretation [12,13]. In this case, the horizontal 
line in Fig. 4.1.B remains unchanged, while the 
dependence of the Imain (λ) is nonlinearly 
modified. In the short–wave part of the graph, it 
increases due to additional absorption of photons 
of its own light, whereas in the long-wave part, 
where interband transitions do not occur, the 
photocurrent should decrease due to an increase 
in the number of infrared photons absorbed at the 
R-centers. 
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At the bifurcation point, the intensity of 

both processes-excitation and quenching-
increases, but in different ways. The increase in 
the number of photons of its own light causes a 
direct increase in the concentration of electrons, 
and with it more or less a linear increase in the 
photocurrent. 

The increase in the number of photons 
absorbed at the R-centers can affect the 
photocurrent only when the knocked holes fall 
on the S-centers and cause additional 
recombination of electrons. As shown in [13], 
this process may be affected by the return of 
holes to the initial center immediately after 
excitation. At the same time, the quantum yield 

is generally reduced, and the process of exposure 
to IR photons is not so effective. As a result, the 
intensity of the quenching growth lags behind 
the growth of excitation. In addition, the number 
of incident photons is already greater than the 
number of holes on the centers at the used IR 
light intensities. Further increase in their number 
cannot cause an increase in the number of 
transitions. The resumption of the balance is 
possible in the longer wavelength region, when 
the process of photoexcitation is less, but the rate 
of quenching increases. Indeed, the shift of the 
bifurcation point to the right was observed 
experimentally. 

With increasing intensity of the exciting light 
(horizontal lines of table 4.1), the IR quenching 
boundary shifted towards shorter wavelengths 
[12,13]. These changes are easy to interpret for 
geometric reasons. The graph  Fig. 4.1. would 
the increase in light intensity corresponds to an 
increase Lexcit. horizontal line Iexcit. The depen-
dence of the Imain (λ) does not change. Therefore, 
the bifurcation point should move to the left.

Physically, this means that with the increase 
of the initial intensity of the natural light, the 
balance of excitation and quenching processes 
at the short-wave boundary of the effect is dis-
turbed. There is an additional generation of elec-
trons, while the number of holes knocked out 
from the R-centers remains the same, since the 
number of absorbed infrared photons has not 
changed. Since the intensity of the main light 
does not change, it is possible to restore the equi-
librium only by shifting the bifurcation point to 
the short-wave part of the spectrum, where the 
light is better absorbed and the process of pho-
toexcitation is greater.

of table 4.1) are not amenable to simple inter-
pretation [12,13]. In this case, the horizontal 
line in Fig. 4.1.B remains unchanged, while the 
dependence of the Imain (λ) is nonlinearly modi-
fied. In the short–wave part of the graph, it in-
creases due to additional absorption of photons 
of its own light, whereas in the long-wave part, 
where interband transitions do not occur, the 
photocurrent should decrease due to an increase 
in the number of infrared photons absorbed at 
the R-centers.

At the bifurcation point, the intensity of both 
processes-excitation and quenching-increases, 
but in different ways. The increase in the num-
ber of photons of its own light causes a direct 
increase in the concentration of electrons, and 
with it more or less a linear increase in the pho-
tocurrent.

The increase in the number of photons ab-
sorbed at the R-centers can affect the photocur-
rent only when the knocked holes fall on the 
S-centers and cause additional recombination of 
electrons. As shown in [13], this process may 
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be affected by the return of holes to the initial 
center immediately after excitation. At the same 
time, the quantum yield is generally reduced, 
and the process of exposure to IR photons is 
not so effective. As a result, the intensity of the 
quenching growth lags behind the growth of 
excitation. In addition, the number of incident 
photons is already greater than the number of 
holes on the centers at the used IR light inten-
sities. Further increase in their number cannot 
cause an increase in the number of transitions. 
The resumption of the balance is possible in the 
longer wavelength region, when the process of 
photoexcitation is less, but the rate of quench-
ing increases. Indeed, the shift of the bifurcation 
point to the right was observed experimentally.

Studies have shown that the very bound-
ary of the beginning of the infrared quenching 
of the photocurrent carries important informa-
tion about the nuances of the processes [20]. 
Previously, this aspect remained unexplored.

It is found that this spectral region is charac-
terized by a competition of photoexcitation and 
photocurrent quenching. It is because of this that 
the wavelength of the short-wave edge of the IR 
quenching is sensitive to external influences.

In particular, its change with the applied volt-
age indicates that IR photons knocking holes 
from R-centers occurs in two stages-part of the 
photoexcited carriers can return to the original 
center, not participating in the effect of infrared 
quenching.

As the intensity of the additional light in-
creases, the effect boundary shifts towards 
shorter wavelengths due to an increase in the 
concentration of the main carriers. On the con-
trary, the increase in the main light leads to the 
movement of the boundary to the right due to 
the predominance of the photoexcitation rate 
over the quenching due to the insufficiently ef-
fective ejection of holes from the R-levels.

Similar changes occur with increasing temper-
ature. This is caused by a decrease in the popula-
tion of the R-centers ground state holes [14].

The spectral position of the region of the in-
frared quenching can be the indicator of the oc-
currence of these processes.

Changing the position of the IR quenching 
edge can be used to create a new type of spec-

tral-sensitive sensor [12,13,15]. Depending on 
the calibration applied, it can be used simulta-
neously to measure temperature and/or voltage 
and light intensity in the visible and IR region.

At the same time, since the difference cur-
rent at the bifurcation point is zero, the sensi-
tivity of such a device can be very significant. 
Depending on the doping of the initial crystal, it 
is possible to control the spectral position of the 
bifurcation point.

A more flexible option is also possible – since 
the spectral position of the bifurcation depends 
on the applied voltage, this point of increased 
sensitivity can be adjusted electrically in the fin-
ished sensor directly during operation.

The inverse problem is also feasible – with 
fixed parameters of external action, the coordi-
nate of the point D can be used to calibrate the 
wavelength of radiation.

5. Experimental evidence of the holes os-
cillations under R-centers photoexcitation 

The reason for the sliding of the short-wave 
threshold of the beginning of infrared quenching 
with external voltage (Chapter 4) is the possibil-
ity of repeated captures of holes knocked out by 
infrared photons from the centers of slow recom-
bination. This is a natural assumption, since the 
newly activated hole is spatially in the area of the 
trap, the capture section of which has not changed. 
But with the departure of the hole changed the 
charge on the trap, and there were electric forces 
that contribute to the reverse capture of the al-
ready free hole. In addition, it is, as usual, benefi-
cial to reduce their energy. Moreover, the prob-
ability of this event in these holes is much greater 
than that of other free charges of non-main car-
riers, which in the course of chaotic motion still 
need to meet with R-centers.

The possibility of re-capturing, as described 
In section 1.2, may significantly limit the ap-
plicability of the expression (1.9) to Q (Lquench.; 
Lexcit) , especially in the region of low light in-
tensities. For a small level of exciting light, the 
concentration of captured holes on the R-centers 
is too small, and with insufficient intensity of in-
frared radiation, they are too little knocked out. 
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Repeated captures begin to play a decisive role. 
Until the disappearance of the General effect of 
infrared quenching photocurrent, although both 
lights still continue to operate.

The existence of similar, probably multiple, 
oscillations of holes and the impact of these pro-
cesses on the observed photovoltaic properties 
of the samples in the literature up to the present 
time was not considered. Although this issue has 
a wider importance, because it fundamentally 
applies to any emission from the traps.

The effect of infrared quenching in this case 
acts only as a convenient and sensitive tool to 
confirm this phenomenon. It is the combination 
of inherently effective hole traps and effective 
recombination S-centers that makes this pro-
cess convex. The measured current consists of 
the main carriers – electrons. Holes knocked 
out from R-centers carry electrons to recombi-
nation, which is reflected in the magnitude of 
the flowing current. If there were only hole traps 
in the crystal and the current was determined 
only by free holes, then they could take part in 
the current transfer only up to the moment of 
repeated captures to the neighboring R-centers. 
Since the usual concentration of these centers is 
high ((~ 1015 сm-3)  and comparable, and at low 
light intensities even more concentration of free 
holes, such phenomena would be hardly notice-
able due to the small free path.

5.1. Dependence of the spectral distribu-
tion of photocurrent quenching on the ap-
plied voltage

External voltage, on the contrary, prevents 
re-capture, because it helps to remove holes 
from the parent centers. Therefore, we used this 
parameter to test the assumption of oscillation.

For Fig. 5.1. the curve (b) is measured at the 
best ratio of the intensities of the exciting light 
to the quenching light (See chapter 1.1, Fig. 1.1), 
when the infrared quenching coefficient reached 
the highest value [9,16,17]. The sample was ap-
plied with 20 V. the range of voltages used was 
selected from the linearity of the current-voltage 
characteristics to avoid the additional influence 
of pre-breakdown phenomena.

As can be seen from the figure, the rise in 
voltage increases both the maximum Q(λ). 
Moreover, this behavior was typical for all com-
binations Lquench  and  Lexcit  so far the effect of 
IR-quenching of the photocurrent was well ob-
served.

Fig. 5.1. Spectral distribution of the quench-
ing value on the applied electric field: a) - 50 
V is applied to the sample; b) - 20 V is applied 

to the sample.

In both cases, the second maximum was 
higher than the first one due to the thermal re-
distribution of holes between the centers of slow 
recombination. With an increase in the applied 
voltage, an increase in this difference was ob-
served. But in different ways. For the maximum 
in the range of 1080–1100 nm it was more sig-
nificant.

This is explained as follows. Since the tem-
perature has not changed, the intensity of the 
hole transitions from R to R' - levels remains 
fixed. An increase in the applied voltage reduces 
the number of re-captured holes for both levels. 
Moreover, judging by the quantum yield (see 
chapter 5.2), it is an essential channel for the 
steady-state population of the centers. However, 
the decrease of this flow for the ground and 
excited States of R-centers affects differently. 
From the ground state (at a depth of 1.1 eV) 
holes are knocked out thermally and with an in-
crease in voltage less return. Both mechanisms 
are aimed at reducing their concentration at this 
center.  On the contrary, for R' -levels (0.9 eV), 
these mechanisms compete. If the stress reduces 
their population, the thermal swap still increas-

consists of the main carriers – electrons. Holes 
knocked out from R-centers carry electrons to 
recombination, which is reflected in the 
magnitude of the flowing current. If there were 
only hole traps in the crystal and the current was 
determined only by free holes, then they could 
take part in the current transfer only up to the 
moment of repeated captures to the neighboring 
R-centers. Since the usual concentration of these 
centers is high ((~ 1015 сm-3)  and comparable, 
and at low light intensities even more 
concentration of free holes, such phenomena 
would be hardly noticeable due to the small free 
path. 

5.1. Dependence of the spectral 
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1.1), when the infrared quenching coefficient 
reached the highest value [9,16,17]. The sample 
was applied with 20 V. the range of voltages 
used was selected from the linearity of the 
current-voltage characteristics to avoid the 
additional influence of pre-breakdown 
phenomena. 

As can be seen from the figure, the rise in 
voltage increases both the maximum Q(λ). 
Moreover, this behavior was typical for all 
combinations Lquench  and  Lexcit  so far the effect 
of IR-quenching of the photocurrent was well 
observed. 

 
Fig. 5.1. Spectral distribution of the 

quenching value on the applied electric field: a) - 
50 V is applied to the sample; b) - 20 V is 
applied to the sample. 

In both cases, the second maximum was 
higher than the first one due to the thermal 
redistribution of holes between the centers of 
slow recombination. With an increase in the 
applied voltage, an increase in this difference 
was observed. But in different ways. For the 
maximum in the range of 1080–1100 nm it was 
more significant. 

This is explained as follows. Since the 
temperature has not changed, the intensity of the 
hole transitions from R to R - levels remains 
fixed. An increase in the applied voltage reduces 
the number of re-captured holes for both levels. 
Moreover, judging by the quantum yield (see 
chapter 5.2), it is an essential channel for the 
steady-state population of the centers. However, 
the decrease of this flow for the ground and 
excited States of R-centers affects differently. 
From the ground state (at a depth of 1.1 eV) 
holes are knocked out thermally and with an 
increase in voltage less return. Both mechanisms 
are aimed at reducing their concentration at this 
center.  On the contrary, for R -levels (0.9 eV), 
these mechanisms compete. If the stress reduces 
their population, the thermal swap still increases. 
This camouflages the field effect on the 
population of the excited state of the R-centers. 
This is reflected in a smaller change in the long-
wave maximum in Fig. 5.1. 

It should be noted that with an increase in 
voltage, due to the movement of free holes, the 
hole component of the photocurrent increases. 
And after the capture in S-centres they are in 
accordance with the Bube-Rose mechanism 
needs to call it blanking out. Thus, the reduction 
of repeated hole captures and their participation 
in the current transfer is a competing mechanism 
with respect to the value of Q. Since the capture 
cross sections for holes and electrons at the 
centers of the first class are equal, the 
appearance of additional holes should cause an 
equal decrease in the concentration of electrons 
in the conduction band and a corresponding 
decrease in the photocurrent. At the same time, 
due to the increase in the drift velocity of both 
electrons and holes, as well as the increase in the 
concentration of free holes, the photocurrent 
should increase slightly. The degree of 
quenching, i.e. the value of the coefficient Q, 
decreases slightly. 

Of course, removing the hole from the 
original R-center, the applied voltage contributes 
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es. This camouflages the field effect on the pop-
ulation of the excited state of the R-centers. This 
is reflected in a smaller change in the long-wave 
maximum in Fig. 5.1.

It should be noted that with an increase in 
voltage, due to the movement of free holes, the 
hole component of the photocurrent increases. 
And after the capture in S-centres they are in ac-
cordance with the Bube-Rose mechanism needs 
to call it blanking out. Thus, the reduction of re-
peated hole captures and their participation in 
the current transfer is a competing mechanism 
with respect to the value of Q. Since the cap-
ture cross sections for holes and electrons at the 
centers of the first class are equal, the appear-
ance of additional holes should cause an equal 
decrease in the concentration of electrons in the 
conduction band and a corresponding decrease 
in the photocurrent. At the same time, due to the 
increase in the drift velocity of both electrons 
and holes, as well as the increase in the concen-
tration of free holes, the photocurrent should in-
crease slightly. The degree of quenching, i.e. the 
value of the coefficient Q, decreases slightly.

Of course, removing the hole from the origi-
nal R-center, the applied voltage contributes to 
its capture at the S-levels. Then the quenching 
value and, accordingly, the value of Q increase. 
However, during the drift, the holes can be cap-
tured at the other R centers. Moreover, the capture 
cross-sections for holes on the S- and R-centers 
are the same and the charge state of the R-centers 
(See chapter 2.1) contributes to this.

If the value of the quantum yield for infrared 
radiation would be about the same as the quan-
tum yield for its own light, these two processes 
would compensate each other. However, the 
abnormally low β value for IR light [10,11,18] 
makes the inverse oscillation of the holes de-
cisive for the useless absorption of long-wave 
photons. The application of external voltage 
breaks this mechanism and is effective, even if 
some part of the holes and returns to the other 
R-levels and again take part in the oscillations.

Thus, both changes in the spectral distribu-
tion of the infrared quenching coefficient – both 
the total increase in the value of Q with the ap-
plied voltage and the relatively larger jumps of 
the short-wave maximum-indicate in favor of 

the mechanism of repeated captures of holes on 
the R-centers.

Note in conclusion that in some situations the 
effect of repeated captures in the crystal can be 
eliminated automatically. Thus, when consider-
ing the migration–dependent relaxation of the 
photocurrent (chapters 3.1 and 3.2), the oscil-
lation phenomenon was not manifested. In this 
case, it was due to the fact that R-centers accu-
mulated in the area of spatial charge at the con-
tacts. Inner field in SCR had contributed to the 
outflow of the embossed holes from the centers. 
The opposite is true. The fact that repeated cap-
tures didn't affect, serves as the proof of correct-
ness of the constructed models, both relaxation, 
and re-capture.

5.2. Determination of quantum yield for 
infrared light

Oscillation of the release of capture did not 
occur in the externally recorded electric current, 
such as the coordinate of the charge carriers is 
not changed. For this reason, these stages of ex-
citation remained unexplored.

In our case, the effect of infrared photocurrent 
quenching was chosen as a measurement tool. 
The quantum yield   for monochromatic long-
wave light was directly determined by experi-
ment. It should be assumed that this parameter 
determines on the one hand the number of free 
media, and on the other – the number of photons 
spent on it. The difference is precisely related to 
the media returns to the original center, which 
are useless for current generation.

To determine the quantum yield of IR quench-
ing, we applied the formula (1.9), [10,11] derived 
under the condition of significant light fluxes of 
exciting and suppressing light. Moreover, the 
intensity of the quenching is greater than the in-
tensity of the excitation.

It means the number of quants trapped on 
the front surface of the crystal absorbed in the 
sample and created free carriers. Taking into ac-
count the quantum outputs for light fluxes, the 
expression for the quenching coefficient has the 
form
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 (5.1)

which assumes a linear Q-lux dependence in 
the infrared region.

Figure 5.2 shows the experimental depen-
dence of Q factor on the intensity of the quench-
ing light of a wavelength of 1100 nm with the 
fixed threads of the excitation light. The view 
of figure 5.2 corresponds to the section of the 
graph 1.1.b along the vertical line. The short-
wave maximum of quenching is chosen as more 
sensitive to external influences (see Fig. 5.1).

As can be seen from the figure, in the case 
where the intensity of the exciting light is too 
small (curve 1) or too large (curve 5) compared 
to the intensity of the quenching light, the graphs 
did not contain linear sections. Obviously, for 
these curves the conditions of derivation of the 
formula (1.9) were not observed. Thus, these de-
pendencies, (1) and (5) Fig. 5.2, define the limits 
of applicability of the expression for Q (Lquench; 
Lexcit) (see also Section 1.2 and Fig.1.2).

The region of linear dependence was found 
for curves 2-4 in the range of dampening light 
intensities (12–25)·1015 s-1·mm-2 at exciting 
light intensities from 2.6 to 9,8  lx.

 

It can be seen that as the intensity of the ex-
citing light increases, the slope of the graphs 2-4 
in the linear region decreases. Extrapolation of 
the linear sections of curves 2-4 fell into the ori-
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this means that the first term in square brackets, 
with values,  Lquench =0 is also equal  . In such 
a case, at least for straight sections, it should  . 
That is, the lifetime of free holes approximately 
corresponds to the lifetime of free electrons. 
This is the expected result, since recombination 
is mainly carried out through S-centers with the 
same capture cross-section for electrons and 
holes. Unfortunately, the details of changes in 
the relationship of the times of life at different 
intensities of own and exciting light have not 
been studied. At further calculations it was ac-
cepted 

The type of denominator of the second term 
in (5.1) is not convenient for experimental pro-
cessing. So he was transformed, given n = Lexcit 
α´β´τn,, where n is the concentration of the charge 
created by their own light.  Then j=(enµ)E was 
used. Taking into account:                               where 
Iexcit –current flowing under the action of excit-
ing light only, and l=1,2 mm – length of the 
sample between the contacts  S=1 mm2  –  cross 
section of the sample, we obtain:

       (5.2)

where the constant 

The value of the voltage U=20 V was chosen 
as the minimum of those used to make the effect 
brighter, since a small voltage at least interferes 
with the oscillation (see section 5.1). The mo-
bility value is taken              Thus, under the 
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It can be seen that as the intensity of the 
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Unfortunately, the details of changes in the 
relationship of the times of life at different 
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The coefficient   was determined by a 
spectrophotometer СФ-26 at a wavelength of 
1100 nm. In the range of output slots of the 
spectrophotometer from 0.4 to 0.6 mm was 

obtained 0.96  . The lifetime of carriers 
was determined in two ways - by modulation of 
illumination and by the phase shift method [19-
21], and was 8·10-4 с. 

With this in mind, it is determined: for 
curve 2 of figure 5.2 – β2=0,026; for curve 3 – 
β3=0,049; for curve 4 – β4=0,072. 

It is seen that the value   remains 
abnormally low in the entire region of the 
applied photoexcitation intensities. Moreover, 
the absorption coefficient of long-wave light is 
close to 1. This means that for the final release of 
each hole from the R-center, several tens of IR 
photons are consumed (in our case, from about 
40 to 15). The hole repeatedly returns to the 
original level until the applied field drags it 
beyond the capture section. Indirectly, this is 
also evidenced by the changes in Q with the 
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                                                                (5.4)

The coefficient  α was determined by a 
spectrophotometer СФ-26 at a wavelength of 
1100  nm. In the range of output slots of the spec-
trophotometer from 0.4 to 0.6 mm was obtained 
ᾱ=0.96. The lifetime of carriers was determined 
in two ways - by modulation of illumination and 
by the phase shift method [19], and was 8·10-4 с.

With this in mind, it is determined: for curve 2 
of figure 5.2 – β2=0,026; for curve 3 – β3=0,049; 
for curve 4 – β4=0,072.

It is seen that the value  β  remains abnormal-
ly low in the entire region of the applied photo-
excitation intensities. Moreover, the absorption 
coefficient of long-wave light is close to 1. This 
means that for the final release of each hole from 
the R-center, several tens of IR photons are con-
sumed (in our case, from about 40 to 15). The 
hole repeatedly returns to the original level un-
til the applied field drags it beyond the capture 
section. Indirectly, this is also evidenced by the 
changes in Q with the intensities of both light 
fluxes and the field considered above.

Some increase β with increasing photocur-
rent, and hence the intensity of their own light 
is associated with an increase in the population 
of R-centers. This increases the likelihood of 
media ejection and reduces the possibility of re-
seizures.

Thus, it is shown that within the limits of the 
applied combination of exciting factors – tem-
perature, field and intensities of self and quench-
ing light – when the lifetimes of nonequilibrium 
carriers of both signs were approximately equal, 
the calculated value of the quantum yield is in 
the range [0,026 – 0,072]. This, along with the 
Lux-ampere and field dependence Q, indicates 
the presence of a previously unexplored phase 
of charge excitation from deep traps – before 
taking part in the current transfer, they can re-
peatedly return to the initial center [15,18].

The proposed model allows estimating the 
concentration of the second class centers. For 
this purpose, the parameters of curve 4 were 
used at an extremely large, but still working, in-

tensity of own light, or, what is the same, the 
maximum of the observed quantum yields. The 
abscissa of its deviation from linearity (taken 
Lquench =27·1015 с-1·mm-2),  the change of the 
growth mechanism β, is treated as the number 
of photons comparable to the concentration of 
R-centers. Then the calculation was carried out 
according to the same algorithm as in section 
1.1. First, the proportion of photons from the 
whole beam that fall on the crystal surface was 
determined. This was done by the proportion 
between the light spot and the geometric dimen-
sions of the front surface of the sample. Then it 
was assumed that the absorbed photons in the 
crystal are distributed uniformly and their den-

sity was calculated                                         The 
concentration of recombination R-centers in the 
investigated crystal is thus of order 9∙1014 cm-3.
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photons are consumed (in our case, from about 
40 to 15). The hole repeatedly returns to the 
original level until the applied field drags it 
beyond the capture section. Indirectly, this is 
also evidenced by the changes in Q with the 

intensities of both light fluxes and the field 
considered above. 

Some increase   with increasing 
photocurrent, and hence the intensity of their 
own light is associated with an increase in the 
population of R-centers. This increases the 
likelihood of media ejection and reduces the 
possibility of re-seizures. 

Thus, it is shown that within the limits of 
the applied combination of exciting factors – 
temperature, field and intensities of self and 
quenching light – when the lifetimes of 
nonequilibrium carriers of both signs were 
approximately equal, the calculated value of the 
quantum yield is in the range [0,026 – 0,072]. 
This, along with the Lux-ampere and field 
dependence Q, indicates the presence of a 
previously unexplored phase of charge excitation 
from deep traps – before taking part in the 
current transfer, they can repeatedly return to the 
initial center [15,18]. 

The proposed model allows estimating 
the concentration of the second class centers. For 
this purpose, the parameters of curve 4 were 
used at an extremely large, but still working, 
intensity of own light, or, what is the same, the 
maximum of the observed quantum yields. The 
abscissa of its deviation from linearity (taken 
Lquench =27·1015 с-1·mm-2),  the change of the 
growth mechanism β, is treated as the number of 
photons comparable to the concentration of R-
centers. Then the calculation was carried out 
according to the same algorithm as in section 
1.1. First, the proportion of photons from the 
whole beam that fall on the crystal surface was 
determined. This was done by the proportion 
between the light spot and the geometric 
dimensions of the front surface of the sample. 
Then it was assumed that the absorbed photons 
in the crystal are distributed uniformly and their 

density was calculated 14 3108,64 сmN    . 
The concentration of recombination R-centers in 
the investigated crystal is thus of order 

14 39 10 сm  . 
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