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ELECTRICAL PROPERTIES OF STRUCTURES BASED ON NANOCRYSTALS CdS  
IN GELATIN MATRIX

The electrical characteristics of composite structures based on nanocrystals of cadmium sulfide in a gelatin matrix 
are studied. It is shown that in the freshly prepared structures, an electric field is formed, which irreversibly increases 
the electrical resistance of the structures. A complicated form of the temperature dependence of the current is obtained, 
which is associated with the participation in the current transport of H+ and OH– ions in the low-temperature region and 
electrons arising from rupture of π-bonds in the high-temperature region.

1. Introduction
The optical and electronic properties of semi-

conductor nanocrystals differ significantly from 
those for macrocrystalpic matter and depend on 
the particle size. Such semiconductors, due to 
the quantization effect [1], make it possible to 
control their optical, electrical and structural 
properties, changing only the particle sizes.

Polycrystalline semiconductor films lose 
their positions in electrical engineering and they 
are replaced by polymer films with nanocrystals 
embedded in them. One of the most suitable for 
use in creating such structures are semiconduc-
tor compounds of the  group and, in par-
ticular, cadmium sulfide. This material is prom-
ising for use in light-emitting devices, since all 
colors can be obtained by varying the size of the 
nanocrystal, which makes such structures uni-
versal. The literature contains information on 
the preparation of structures with CdS nanocrys-
tals in the gelatin matrix, their optical and lu-
minescence characteristics [2-4] are described. 
However, there is practically no information 
on the electrical properties of such structures. 
At the same time, in the excitation of lumines-
cence by an electric field, electronic processes 
play a decisive role in such structures. In this 
paper, a probable mechanism of electronic pro-
cesses that determine the electrical conductivity 
of composite structures with CdS nanocrystals 
in a gelatin matrix is   considered.

 

2. The film’s fabrication methods and 
experiment

The structures studied were prepared by 
chemical synthesis from aqueous solutions of 
cadmium nitrate (0.025 M) and sodium sul-
phide (0.25 M). The synthesis of nanocrystals of 
cadmium sulphide occurred at a temperature of  
+40 ° C in an aqueous solution of photographic 
gelatin. Gelatin has all the necessary qualities for 
its use as matrices for semiconductor nanocrys-
tals. Gelatin molecules consist of three polypep-
tide spiral chains. These chains are interconnect-
ed by a limited number of cross-links (so-called 
σ-bonds) that support the structure of the molecule 
[5]. Such a structure does not allow the formation 
of rigid crystalline blocks and is convenient for 
creating matrix systems, since it has many cells, 
where molecules of the most diverse substances 
can enter under suitable conditions. Thus, gela-
tin molecules in an aqueous solution form a kind 
of skeleton that divides the which nucleation of 
nanocrystals and their subsequent growth takes 
place. Obviously, the more the volume released 
(ie the less the gelatin concentration), the more 
reagents it will be in and the more likely will be 
the formation of nuclei of nanocrystals followed 
by their fusion. Therefore, the dimensions of CdS 
nanocrystals depend on the concentration of the 
gelatin solution.

At the end of the reaction, a solution of cad-
mium sulfide nanocrystals was deposited on 
glass substrates coated with a conductive SnO2 
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layer. After drying of the gelatin with the CdS 
nanocrystals embedded in their bulk, an upper 
electrode of the In-Ga alloy was deposited onto 
the films. Thus, the investigated composite struc-
tures located in the interelectrode space were 
packed chaotically located gelatin molecules, in 
the space between which CdS nanocrystals are 
located and also water molecules, ionic products 
of the chemical synthesis of , , formed 
as a result of hydrolysis of polymer molecules 
ions and . The films had a thickness of 
20-50 μm. The concentration of CdS nanocrys-
tals in the polymer matrix was about 5 wt%. 
Measurements of the optical absorption spectra 
showed that the with of the band gap Еg of the 
CdS nanocrystals studied is 2.68 eV, which is 
much higher than the value for single crystals 
(Eg ≈ 2.4 eV) and is due to the size-quantization 
effect. The obtained result allowed to calculate 
[1] the dimensions of nanocrystals of cadmium 
sulfide, which turned out to be within 12-14 nm.

3. Results and discussion
Figure 1 shows the current-voltage character-

istics (I-V characteristic) freshly prepared struc-
tures measured at constant voltage. Curve 1 is 
measured in order of increasing applied voltage, 
and curve 2 is in order of decreasing voltage. 
When measuring curve 1 on the I-V character-
istic, significant instabilities and chaotic oscilla-
tions of the current were observed, which disap-
peared when the voltage applied to the structure 
was 600-700 V. After this, the I-V characteristic 
measured in order of decreasing applied voltage 
(curve 2) was stable and reproducible in subse-
quent measurements, regardless of whether they 
were made in order of increasing or decreasing 
the applied voltage. Thus, in the freshly pre-
pared structure, an electric field is formed, as a 
result of which the resistance of the composite 
layer increases by more than an order of mag-
nitude. The mechanism of current flow in simi-
lar polymer matrices can be determined both by 
transport of carriers by means of ions, and by 
“jumping” electrons through free radical bonds 
of the molecular skeleton of the matrix element 
in the direction corresponding to the polarity of 
the applied voltage [6]. Electric molding in fresh-

ly prepared samples can be caused by a reorienta-
tion and a change in the spatial arrangement of 
gelatin molecules under the action of an electric 
field. It is possible to polarize gelatin molecules 
as a result of hydrolytic destruction of some of 
the weak π-bonds and the formation of polar re-
gions with uncompensated electrons. A necessary 
condition for rupture of π-bonds is the folding of 
gelatin molecules in a strong electric field. This 
reduces the number of current-conducting ion 
channels by compaction of the gelatin layer and, 
as a consequence, leads to an increase in the re-
sistance of the matrix element.

A linear section is observed on the current-
voltage characteristic of the formed structure at 
low voltages, which, in the region of stresses 
exceeding 100 V, is replaced by a section of the 
power-law dependence of the current on the

Fig. 1. The current-voltage characteristics of a nano-
crystal structure CdS in the gelatin matrix.  (T = 295 K).

voltage described by the law 
, where n = 1,8-2. Since in the 

region of these stresses the average electric 
field strength in the composite layer reaches 

, this behavior of the I-V 
characteristic can be related to the establish-
ment of a current flow regime limited by the 
space charge [7] in the composite layer, as was 
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the case in polymer films of polydiphenylene-
phthalide, described in [8].

In Fig. 2 shows the current-voltage charac-
teristics of the molded structure measured at 
a constant (curve 1) and alternating (curve 2) 
voltage. It can be seen that the current-voltage 
characteristic measured at alternating voltage 
remains linear up to voltages of 600 V. This in-
dicates that the quadratic section of the current-
voltage characteristic measured at constant volt-
age is actually due to the flow in the composite 
of currents limited by the space charge, and is 
not related to the sample self-heating flowing 
current  [9]. 

Fig. 2. Current-voltage characteristics of a nanocrys-
tal structure CdS, measured at constant (1) and alter-

nating (2) voltages (T = 295 K).

In Fig. 3 shows the temperature dependence 
of the dark current (TDDC) of the structure 
under study. You can see that it has a complex 
view. At low temperatures, the current increases 
exponentially with an increase in temperature 
with an activation energy of   0.65 eV. When the 
temperature reaches about 340 K, a maximum 
is observed on the TDDC curve. Further, there 
is a tendency to an insignificant decrease in the 
current, which, with a further increase in tem-
perature, is again replaced by a segment of its 
exponential growth with an activation energy of 
0.2 eV. When the temperature reaches about 380 
K, a second maximum is observed on the TDDC 

curve. With further heating of the sample, the 
current begins to decrease randomly. The TDDC 
curve, measured in the order of cooling of the 
sample, shows that the current decrease also 
takes place exponentially. However, the activa-
tion energy of the conductivity turns out to be 
much larger and amounts to 1.2 eV. 

This behavior of TDDC can be explained as 
follows. In gelatin molecules along polypeptide 
chains, there are a large number of weak hydro-
gen bonds (π-bonds), which, in the main, retain 

 ions and also hydroxyl groups

Fig.3. The temperature dependence of the dark cur-
rent of the investigated structure. (V= 50 B).

[5]. With an increase in temperature due to 
the energy of thermal motion, these bonds are 
destroyed, as a result of which the concentra-
tion of current carriers, which are  and   
ions, increases. Then the regions on TDDC with 
activation energies of 0.65 eV and 0.2 eV can be 
associated with the liberation of  and  
ions, respectively. At a temperature of about 420 
K most of the π-bonds are destroyed. However, 
the broken bonds (as a result of the escape of 
the ion) acquire a negative charge, since un-
compensated, so-called π-electrons remain on 
them. Further, in the gelatin, the conjugation 
effect can be manifested, consisting in the fact 
that the «clouds» of π-electrons of all atoms that 
form double bonds on a certain section of the 
molecular chain are established in one plane 
and overlap [10]. In this case, the π-electrons 
are no longer localized, but belong to the entire 
conjugate system. In the presence of conjuga-
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tion, the length of the bonds is aligned. There-
fore, such systems are characterized by higher 
stability than non-conjugated systems. With an 
increase in the length of the conjugation chain, 
the electrical conductivity of the polymer as a 
whole increases, since now within the conjuga-
tion chain the π-electrons of the macromolecule 
move both in a single potential well with a pe-
riodic potential determined by the structure of 
the chain. However, the motion of an electron 
along the conjugation chain is not a sufficient 
condition for the conductivity of the polymer. 
It is required that charge carriers can pass from 
one molecule to another, i.e. from one interface 
system to another. Such intermolecular transi-
tions are realized by means of activation over-
coming of potential barriers between molecules 
and require energy expenditure. If we assume 
that during the cooling of the sample from 440 
K to room temperature, the predominant cur-
rent flowing mechanism is the above, then the 
value of the activation energy of conductivity 
obtained from TDDC characterizes the height of 
potential barriers between molecules overcome 
by π-electrons. 

4. Conclusions
The electric molding of freshly prepared 

structures, leading to an irreversible increase 
in the resistance of the composite layer, is due 
to the spatial reorientation of gelatin molecules 
under the action of an electric field. The elec-
trical conductivity with CdS nanocrystals and 
its change with increasing temperature are de-
termined by the free  and  ions, which 
result from the destruction of π-bonds in gela-
tin molecules. At high temperatures, conductiv-
ity is determined by π-electrons, which freely 
move along the conjugation chains of gelatin 
molecules and perform activation transitions 
between molecules with the overcoming of in-
termolecular potential barriers.
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A. P. Chebanenko, A. V. Polischuk

ELECTRICAL PROPERTIES OF STRUCTURES BASED ON NANOCRYSTALS 
CdS  IN GELATIN MATRIX

Abstract. The electrical characteristics of composite structures based on nanocrystals of cad-
mium sulfide in a gelatin matrix are studied. It is shown that in the freshly prepared structures, an 
electric field is formed, which irreversibly increases the electrical resistance of the structures. A 
complicated form of the temperature dependence of the current is obtained, which is associated 
with the participation in the current transport of H+ and OH−  ions in the low-temperature region and 
electrons arising from rupture of π-bonds in the high-temperature region.

Keywords: cadmium sulphide, nanocrystals, gelatin films, electrical conductivity.

PACS 73.61.Le, 73.63.Bd

А. П. Чебаненко, А. В. Полищук

ЭЛЕКТРИЧЕСКИЕ СВОЙСТВА СТРУКТУР НА ОСНОВЕ НАНОКРИСТАЛЛОВ  
CdS  В ЖЕЛАТИНОВОЙ МАТРИЦЕ

Резюме. Исследованы электрические характеристики композитных структур на основе 
нанокристаллов сульфида кадмия в желатиновой матрице. Показано, что в свежеприготов-
ленных структурах имеет место формовка электрическим полем, которая необратимо по-
вышает електрическое сопротивление структур. Получен сложный вид температурной за-
висимости тока, который связывается с участием в токопереносе ионов  и   в области 
низких температур и электронов, возникающих в результате разрыва π-связей, в области 
высоких температур.

Ключевые слова: сульфид кадмия, нанокристаллы, пленки желатина, электропровод-
ность.

PACS 73.61.Le, 73.63.Bd

А. П. Чебаненко, А. В. Поліщук

ЕЛЕКТРИЧНІ ВЛАСТИВОСТІ СТРУКТУР НА ОСНОВІ
НАНОКРИСТАЛІВ  CdS  В ЖЕЛАТИНОВІЙ МАТРИЦІ

Резюме. Досліджено електричні характеристики композитних структур на основі нано-
кристалів сульфіду кадмію в желатиновій матриці. Показано, що у свіжовиготовлених струк-
турах має місце формовка електричним полем, яка необоротно підвищує електричний опір 
структур. Отримано складний вигляд температурної залежності струму, який пов’язується 
з участю у струмопереносі іонів Н+  та ОН− в області низьких температур і електронів, ви-
никаючих в результаті руйнування π-зв’язків в області високих температур.

Ключові слова: сульфід кадмію, нанокристали, плівки желатину, електропровідність.
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RELATIVISTIC MANY-BODY PERTURBATION THEORY

The hyperfine structure and electric quadrupole moment of the mercury isotope   are estimated within the relativistic 
many-body perturbation theory formalism with a correct and effective taking into account the exchange-correlation, 
relativistic, nuclear and radiative corrections. Analysis of the data shows that an account of the interelectron correlation 
effects is crucial in the calculation of the hyperfine structure parameters.  The fundamental reason of physically 
reasonable agreement between theory and experiment is connected with the correct taking into account the inter-
electron correlation effects, nuclear (due to the finite size of a nucleus), relativistic and radiative corrections. The key 
difference between the results of the RHF, RMPT methods calculations is explained by using the different schemes of 
taking into account the inter-electron correlations. 

1.  Introduction
The research on the hyperfine structure char-

acteristics  of the heavy neutral and highly ion-
ized atoms is of a great  fundamental importance 
in many fields of atomic physics (spectroscopy, 
spectral lines theory), astrophysics, plasma 
physics, laser physics and so on  (see, for exam-
ple, refs. [1-37]). The experiments on the defini-
tion of hyperfine splitting also enable to refine 
the deduction of nuclear magnetic moments of 
different isotopes and to check an accuracy of 
the various calculational models employed for 
the theoretical description of the nuclear effects. 
The multi-configuration relativistic Hartree-
Fock (RHF) and Dirac-Fock (DF) approaches 
(see, for example, refs. [1,2]) are the most re-
liable versions of calculation for multi-electron 
systems with a large nuclear charge. Usually, in 
these calculations the one- and two-body rela-
tivistic effects are taken into account practically 
precisely. It should be given the special atten-
tion to three very general and important comput-
er systems for relativistic and QED calculations 
of atomic and molecular properties developed 
in the Oxford and German-Russian groups etc 
(“GRASP”, “Dirac”; “BERTHA”, “QED”, “Di-
rac”) (see refs. [1-4] and references there). 

In the present paper we present the calcu-
lational results for the hyperfine structure and 

electric quadrupole moment of the isotope Ra223
88 , 

estimated within the relativistic many-body per-
turbation theory formalism with a correct and 
effective taking into account the exchange-cor-
relation, relativistic, nuclear and radiative cor-
rections [3,4,10-20]. Analysis of the data shows 
that an account of the interelectron correlation 
effects is crucial in the calculation of the hyper-
fine structure parameters.

2. Relativistic method to computing hyperfine 
structure parameters of atoms and ions

Let us describe the key moments of the ap-
proach (more details can be found in refs. 
[3,4,10-20]). The electron wave functions (the 
PT zeroth basis) are found from solution of the 
relativistic Dirac equation with potential, which 
includes ab initio mean-field potential, electric, 
polarization potentials of a nucleus. The charge 
distribution in the Li-like ion is modelled within 
the Gauss model. The nuclear model used for 
the Cs isotope is the independent particle model 
with the Woods-Saxon and spin-orbit potentials 
(see refa. [3,4]). Let us consider in details more 
simple case of the Li-like ion. We set the charge 
distribution in the Li-like ion nucleus ρ(r) by the 
Gaussian function: 
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deduction of nuclear magnetic moments of 
different isotopes and to check an accuracy 
of the various calculational models employed 
for the theoretical description of the nuclear 
effects. The multi-configuration relativistic 
Hartree-Fock (RHF) and Dirac-Fock (DF) 
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formalism with a correct and effective taking 
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relativistic, nuclear and radiative corrections 
[3,4,10-20]. Analysis of the data shows that 
an account of the interelectron correlation 
effects is crucial in the calculation of the 
hyperfine structure parameters. 
 

2. Relativistic method to computing 
hyperfine structure parameters of atoms 

and ions 
 

Let us describe the key moments of the 
approach (more details can be found in refs. 
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Consider the DF type equations. Formally 
they fall into one-electron Dirac equations for 
the orbitals with the potential V(r|R) which in-
cludes the electrical and the polarization poten-
tials of the nucleus; the components of the Har-
tree potential (in the Coulomb units):
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density in the state | i >, Vex is the exchange in-
ter-electron interaction. The main exchange and 
correlation effects will be taken into account in 
the first two orders of the PT by the total inter-
electron interaction [3,4]. 

A procedure of taking into account the radia-
tive QED corrections is in details given in the 
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where g=r/(αZ). In our calculation we use more 
exact approach [3]. The Uehling potential, deter-
mined as a quadrature (6), may be approximated 
with high precision by a simple analytical func-
tion. The use of new approximation of the Ue-
hling potential permits one to decrease the calcu-
lation errors for this term down to 0.5 – 1%. 

A method for calculation of the self-energy 
part of the Lamb shift is based on an idea by 
Ivanov-Ivanova et al [38-41], which generalizes 
the known hydrogen-like method by Mohr and 
radiation model potential method by Flambaum-
Ginges (look details in Refs. [4,44,45]). The ra-
diative shift and the relativistic part of energy in 

an atomic system are, in principle, defined by 
one and the same physical field [38]. One could 
suppose that there exists some universal func-
tion that connects the self-energy correction and 
the relativistic energy.  Its form and properties 
are in details analyzed in Refs.[4,45]. Unlike 
usual purely electronic atoms, the Lamb shift 
self-energy part in the case of a pionic atom is 
not significant and much inferior to the main 
vacuum-polarization effect. 

The energies of electric quadruple and mag-
netic dipole interactions are defined by a stand-
ard way with the hyperfine structure constants, 
usually expressed through the standard radial 
integrals: 
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Here gI  is the Lande factor, Q is a quadruple 
momentum of nucleus (in Barn); (RA)-2, (RA)-3 
are the radial integrals usually defined as fol-
lows:
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The radial parts F and G of  the Dirac func-
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by solution of the Dirac equations. To define the 
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further more general ab initio gauge-invariant  
relativistic approach has been presented in [42], 
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numeral code Superatom-ISAN (version 93).  

[3,4,10-20]). The electron wave functions 
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potential, which includes ab initio mean-field 
potential, electric, polarization potentials of a 
nucleus. The charge distribution in the Li-
like ion is modelled within the Gauss model. 
The nuclear model used for the Cs isotope is 
the independent particle model with the 
Woods-Saxon and spin-orbit potentials (see 
refa. [3,4]). Let us consider in details more 
simple case of the Li-like ion. We set the 
charge distribution in the Li-like ion nucleus 
(r) by the Gaussian function:  
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for the orbitals with the potential V(r|R) 
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polarization potentials of the nucleus; the 
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where g=r/(Z). In our calculation we use 
more exact approach [3]. The Uehling 
potential, determined as a quadrature (6), 
may be approximated with high precision by 
a simple analytical function. The use of new 
approximation of the Uehling potential 
permits one to decrease the calculation errors 
for this term down to 0.5 – 1%.  

A method for calculation of the self-
energy part of the Lamb shift is based on an 
idea by Ivanov-Ivanova et al [38-41], which 
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by Mohr and radiation model potential 
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in Refs. [4,44,45]). The radiative shift and 
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correction and the relativistic energy.  Its 
form and properties are in details analyzed in 
Refs.[4,45]. Unlike usual purely electronic 
atoms, the Lamb shift self-energy part in the 
case of a pionic atom is not significant and 
much inferior to the main vacuum-
polarization effect.  
The energies of electric quadruple and 
magnetic dipole interactions are defined by a 
standard way with the hyperfine structure 
constants, usually expressed through the 
standard radial integrals:  
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[3,4,10-20]). The electron wave functions 
(the PT zeroth basis) are found from solution 
of the relativistic Dirac equation with 
potential, which includes ab initio mean-field 
potential, electric, polarization potentials of a 
nucleus. The charge distribution in the Li-
like ion is modelled within the Gauss model. 
The nuclear model used for the Cs isotope is 
the independent particle model with the 
Woods-Saxon and spin-orbit potentials (see 
refa. [3,4]). Let us consider in details more 
simple case of the Li-like ion. We set the 
charge distribution in the Li-like ion nucleus 
(r) by the Gaussian function:  
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where g=r/(Z). In our calculation we use 
more exact approach [3]. The Uehling 
potential, determined as a quadrature (6), 
may be approximated with high precision by 
a simple analytical function. The use of new 
approximation of the Uehling potential 
permits one to decrease the calculation errors 
for this term down to 0.5 – 1%.  

A method for calculation of the self-
energy part of the Lamb shift is based on an 
idea by Ivanov-Ivanova et al [38-41], which 
generalizes the known hydrogen-like method 
by Mohr and radiation model potential 
method by Flambaum-Ginges (look details 
in Refs. [4,44,45]). The radiative shift and 
the relativistic part of energy in an atomic 
system are, in principle, defined by one and 
the same physical field [38]. One could 
suppose that there exists some universal 
function that connects the self-energy 
correction and the relativistic energy.  Its 
form and properties are in details analyzed in 
Refs.[4,45]. Unlike usual purely electronic 
atoms, the Lamb shift self-energy part in the 
case of a pionic atom is not significant and 
much inferior to the main vacuum-
polarization effect.  
The energies of electric quadruple and 
magnetic dipole interactions are defined by a 
standard way with the hyperfine structure 
constants, usually expressed through the 
standard radial integrals:  
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(the PT zeroth basis) are found from solution 
of the relativistic Dirac equation with 
potential, which includes ab initio mean-field 
potential, electric, polarization potentials of a 
nucleus. The charge distribution in the Li-
like ion is modelled within the Gauss model. 
The nuclear model used for the Cs isotope is 
the independent particle model with the 
Woods-Saxon and spin-orbit potentials (see 
refa. [3,4]). Let us consider in details more 
simple case of the Li-like ion. We set the 
charge distribution in the Li-like ion nucleus 
(r) by the Gaussian function:  
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where g=r/(Z). In our calculation we use 
more exact approach [3]. The Uehling 
potential, determined as a quadrature (6), 
may be approximated with high precision by 
a simple analytical function. The use of new 
approximation of the Uehling potential 
permits one to decrease the calculation errors 
for this term down to 0.5 – 1%.  
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system are, in principle, defined by one and 
the same physical field [38]. One could 
suppose that there exists some universal 
function that connects the self-energy 
correction and the relativistic energy.  Its 
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Refs.[4,45]. Unlike usual purely electronic 
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constants, usually expressed through the 
standard radial integrals:  
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3. Results and Conclusions

In this subsection we present experimental 
data and the results of the calculation of the 
HFS constants and the nuclear quadrupole mo-
ment for the radium isotope. In Table 1 we list 
the experimental and calculational  data on the 
magnetic dipole constant HFS A (MHz) for the 

Ra223
88  7s7p 1P1, 

3P1, 
3P2  states. The data are ob-

tained on the basis of  calculations in the frame-
work of the standard uncorrelated DF method, 
MKDF method with taking into account for the 
Breit and standard QED corrections, the relativ-
istic configuration interaction method with  tak-
ing into account for the correlation corrections 
within the random phase approximation (RCI-
RPA) [6], as well as our results (Gaussian model 
for charge distribution in the core) [2,3,6,7].

It is important to note that the key quantita-
tive factor in the agreement of the theory with 
experiment is associated with a correct allow-
ance for interelectronic correlations, an amend-
ment to the finite size of the nucleus, and Breit 
and QED radiation effects [3,4].

Table 1 
The experimental and calculational  data on 
the magnetic dipole constant HFS A (MHz) 

for the Ra223
88  7s7p 1P1, 3P1, 3P2  states (see text) 

Method/
State

1P1 
3P1 

3P2

DF -226.59 803.97 567.22
MCDF

(Breit+QED)
-330.3 1251.9 737.1

RCI-RPA -242.4 - -
Our data -339.1 1209 704.5

Exp. -344.5
(0.9)

1201.1
(0.6)

699.6
(3.3)

The analysis shows that the contribution due 
to the electron – electron correlations to the val-
ues   of the HFS constants is ~ 100–500 MHz for 
various states. This circumstance explains the 
low degree of consistency in accuracy of the 
data provided, obtained in the framework of 

different versions of the DF method. The key 
difference between the results of the calcula-
tion in the framework of our approach and the 
MCDF is due to different methods of taking into 
account the electron-electron correlations. The 
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Our final data lie between the latest experi-
mental values of the Wendt group (ISOLDE 
Collaboration), but have less error definitions. 

The fundamental reason of physically rea-
sonable agreement between theory and experi-
ment is connected with the correct taking into 
account the inter-electron correlation effects, 
nuclear (due to the finite size of a nucleus), rela-
tivistic and radiative corrections. 

 The key difference between the results 
of the RHF, RMPT methods calculations is ex-
plained by using the different schemes of taking 
into account the inter-electron correlations. The 
contribution of the PT high order effects and nu-
clear contribution may reach the units and even 
dozens of MHz and should be correctly taken 
into account. So, it is necessary to take into ac-
count more correctly the spatial distribution 
of the magnetic moment inside a nucleus (the 
Bohr-Weisskopf effect), the nuclear-polariza-
tion corrections etc too. These topics require the 
separated accurate treatment.
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THE HYPERFINE STRUCTURE OF HEAVY ELEMENTS ATOMS WITHIN RELA-
TIVISTIC MANY-BODY PERTURBATION THEORY

Summary
The hyperfine structure and electric quadrupole moment of the isotope Ra223

88  are estimated 
within the relativistic many-body perturbation theory formalism with a correct and effective taking 
into account the exchange-correlation, relativistic, nuclear and radiative corrections. Analysis of 
the data shows that an account of the interelectron correlation effects is crucial in the calculation 
of the hyperfine structure parameters.  The fundamental reason of physically reasonable agreement 
between theory and experiment is connected with the correct taking into account the inter-electron 
correlation effects, nuclear (due to the finite size of a nucleus), relativistic and radiative corrections. 
The key difference between the results of the RHF, RMPT methods calculations is explained by 
using the different schemes of taking into account the inter-electron correlations. 

Keywords: Hyperfine structure –Heavy atoms – Relativistic perturbation theory – Correlation, 
nuclear, radiative corrections
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О. А. Антошкина, О. Ю. Хецелиус, М. П. Макушкина, А. В. Смирнов

СВЕРХТОНКАЯ СТРУКТУРА ТЯЖЕЛЫХ АТОМОВ В РАМКАХ 
РЕЛЯТИВИСТСКОЙ МНОГОЧАСТИЧНОЙ ТЕОРИИ ВОЗМУЩЕНИЙ

Резюме
Параметры сверхтонкой структуры и электрический квадрупольный момент изотопа ра-

дона рассчитаны на основе релятивистской многочастичной теории возмущений с эффек-
тивным аккуратным учетом обменно-корреляционных, релятивистских, ядерных и радиаци-
онных поправок. Анализ данных показывает, что учет эффектов межэлектронной корреля-
ции имеет критическое значение при вычислении параметров сверхтонкой структуры. Фи-
зически разумное согласие теории и прецизионного эксперимента может быть обеспечено 
благодаря полному последовательному учету межэлектронных корреляционных эффектов, 
ядерных, релятивистских и радиационных поправок. Ключевое различие между результа-
тами расчетов в приближениях Дирака-Фока, различных версиях формализма теории воз-
мущений в основном связано с использованием различных схем учета межэлектронных кор-
реляций. 

Ключевые слова:  Сверхтонкая структура - тяжелый атом - релятивистская теория воз-
мущений - корреляционные, ядерные, радиационные поправки
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О. О. Антошкіна, О. Ю. Хецеліус, М. П. Макушкіна, А. В. Смірнов

НАДТОНКА СТРУКТУРА ВАЖКИХ АТОМІВ В РАМКАХ
РЕЛЯТИВІСТСЬКОЇ БАГАТОЧАСТИНКОВОЇ ТЕОРІЇ ЗБУРЕНЬ

Резюме
Параметри надтонкої структури і електричний квадрупольний момент ізотопу радону роз-

раховані на основі релятивістської багаточастинкової теорії збурень з ефективним акурат-
ним урахуванням обмінно-кореляційних, релятивістських, ядерних і радіаційних поправок. 
Аналіз даних показує, що урахування ефектів міжелектронної кореляції має критичне зна-
чення при обчисленні параметрів надтонкої структури. Фізично розумне узгодження теорії 
і прецизійного експерименту може бути забезпечено завдяки повному послідовному обліку 
міжелектронних кореляційних ефектів, ядерних, релятивістських та радіаційних поправок. 
Ключова відмінність між результатами розрахунків в наближеннях Дірака-Фока, різних вер-
сіях формалізму теорії збурень в основному пов’язано з використанням різних схем обліку 
міжелектронних кореляцій.

Ключові слова: Надтонка структура – важкий атом - релятивістська теорія збурень – ко-
реляційні, ядерні, радіаційні поправки  
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PHOTOLUMINESCENCE OF CDSE:NI NANOPARTICLES OBTAINED BY CHEMICAL 
METHOD

Cadmium selenide nanocrystals doped with nickel were prepared in water phase chemistry technique with gelatin 
acting as capping agent. Structures were characterized using X-ray diffraction (XRD), scanning electron microscopy 
(SEM), visible absorption and photoluminescence spectroscopies. Influence of component concentrations and 
technological parameters on nanocrystals average size and properties was studied.

I. Introduction
Colloidal CdSe nanocrystals can be used to 

create structures emitting in the entire visible 
light range, as a sensitizer for photopolymer 
cells and in biomedical visualization [1-7]. In 
comparison with organic fluorophores semi-
conductor nanocrystals are much more stable to 
photodegradation. Cadmium selenide nanocrys-
tals exhibit strong quantum confinement and by 
regulating their size one can obtain emission 
in almost entire visible range. The wide prac-
tical application of this material is restrained 
by the high dispersion of the obtained particles 
and their instability. Therefore, the creation of a 
technology for the synthesis of stable nanopar-
ticles with controlled size is relevant.

The hot-injection method proposed in [5] had 
instigated activity in the field of metal chalcogen-
ide nanoparticles synthesis. It allowed to obtain 
highly luminescent crystals with good monodis-
persity but has certain disadvantages connected 
with expensive and hazardous pyrophoric reac-
tives being used. Plenty of adaptations of origi-
nal technology have been developed since then 
[6,7]. One of the natural choices of medium for 
QDs preparation might be polar solvents, for 
example water. Using this aqueous method, the 
energy level of CdSe QDs can be modified just 
allowing guest elements (Ag, Mn, Ni, Co etc.) 
into the CdSe host material and paves the way 
for discovering the new class luminescent mate-
rials with wide range of potential applications. 

Doping of these ions into the CdSe host material 
acts as the trap states for electrons and holes and 
enables the luminescence [8,9]. However, pres-
ence of two different kinds of ions simultane-
ously in a host material produces fluorescence 
which is totally different from the emission due 
to a single ion and this property is very useful 
for white and IR light generation [10].

In this paper, we report the synthesis of high-
quality water-soluble CdSe:Ni nanocrystals col-
loidal method and discuss the influence of im-
portant experiment parameters (precursor con-
centration) on the optical and luminescent prop-
erties of prepared QDs. The synthesized CdSe 
and CdSe:Ni nanocrystals have been character-
ized absorption and luminescence spectroscopy, 
X-ray diffraction (XRD), transmission electron 
microscopy (TEM), electron diffraction spec-
troscopy (EDS), and their morphology, crystal 
structure, optical properties, and element com-
position have been studied with these means. 
The prepared CdSe nanocrystals meet the re-
quirements for the fluorescence materials in op-
toelectronics, biological labeling and will surely 
have promising applications in biochemical de-
tection and biomedical researches.

II. Experimental
The study used commercially purshased re-

agents Merck Company. CdCl2 was the source 
of cadmium ions. NiCl2 was the source of cad-
mium ions in CdSe:NiThe source of Se2- ions 
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was sodium selenosulfate Na2SeSO3, Gelatin 
was used as the growth stabilizer of nanopar-
ticles. The reaction at room temperature might 
be described as follows:

CdCl2+ NiCl2+Na2SeSO3→      
CdSe:Ni+SO3+2NaCl +Cl2↑                   (1)

The formation of CdSe is confirmed by the 
presence of diffraction maxima corresponding 
to the planes (002), (110), (001) in this mate-
rial (Fig.1). The resulting colloidal solution 
containing CdSe, CdSe:Ni nanoparticles was 
deposited on quartz substrates, then the solvent 
evaporated, forming membranes for measuring 
optical absorption and photoluminescence. For 
investigation of structural properties the solvent 
sprayed on Si substrates.

Fig. 1.X-ray diffraction pattern of CdSe nanoparticles

The SEM image was obtained via JEM-2100 
(HR) transmission electron microscope (Japan 
Electron Optics Laboratory CO., Ltd.).

The optical absorption spectra in the visible 
range were recorded with MDR-6 (LOMO) 
monochro mator with a 1200 grove∙mm–1. The 
photoluminescence spectra were recorded with 
ISP-51 (LOMO) quartz monochromator us-
ing LED (Edison Corporation) excitation on 
λ=400 nm.

The average size of the nanopar ticles was es-
timated from the change in the band gap (ΔEg) 
relative to the bulk crystal, using the effective-
mass approximation using the equation [5] 

8ì Ä g

hR
E

=
                            (2)

There h is the Planck constant; μ=((me*)
−1 

+(mh*)
−1)−1, where me*= 0.3me, mh* = 0.6me are, 

respectively, the effective masses of the electron 
and hole in cadmium selenide, me is the mass of 
the free electron; ΔEg is the difference between 
the width of the band gap in the nanoparticle and 
the bulk crystal of CdSe (1.7 eV).

III. Experiment and results
Investigations of CdSe:Ni  nanocrystals optical 

absorption were carried out in the range of quanta 
of incident light 3.5-2 eV. The temperature of ex-
plored samples is varied from 77 to 300 K.

All investigated samples are characterized 
by the presence of a quantum-dimensional ef-
fect, which manifests itself in the high-energy 
shift of the fundamental absorption edge of the 
samples in comparison with the bulk CdSe ab-
sorption edge. Changing of the band gap width 
is confirmed by a change in solutions color from 
pale yellow to orange in comparison with the 
bulk crystals brown color. It is established that 
the shift magnitude is determined primarily by 
concentrations of cadmium and selenium pre-
cursors (Fig. 1). The highest shift is observed in 
samples containing 0.3% CdCl2 and Na2SeSO3.

Fig.2. Optical absorption spectra of CdSe nanocrys-
tals stabilized in gelatin matrices. Concentrations of 
CdCl2 and Na2SeSo3 is equal (1) 0.3%, (2) 0.5%, (3) 

1%, (4) 2%. Тmeas= 300 К.
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Fig.2. Optical absorption spectra of CdSe nanocrystals 
stabilized in gelatin matrices. Concentrations of CdCl2 
and Na2SeSo3 is equal (1) 0.3%, (2) 0.5%, (3) 1%, (4) 
2%. Тmeas=300 К. 

composition have been studied with these 
means. The prepared CdSe nanocrystals meet 
the requirements for the fluorescence 
materials in optoelectronics, biological 
labeling and will surely have promising 
applications in biochemical detection and 
biomedical researches. 

II. EXPERIMENTAL 
The study used commercially purshased 

reagents Merck Company. CdCl2 was the 
source of cadmium ions. NiCl2 was the source 
of cadmium ions in CdSe:NiThe source of 
Se2- ions was sodium selenosulfate Na2SeSO3, 
Gelatin was used as the growth stabilizer of 
nanoparticles. The reaction at room 
temperature might be described as follows: 

CdCl2+ NiCl2+Na2SeSO3→       

CdSe:Ni+SO3+2NaCl +Cl2↑                   (1) 

The formation of CdSe is confirmed by the 
presence of diffraction maxima corresponding 
to the planes (002), (110), (001) in this 
material (Fig.1). The resulting colloidal 
solution containing CdSe, CdSe:Ni 
nanoparticles was deposited on quartz 
substrates, then the solvent evaporated, 

forming membranes for measuring optical 
absorption and photoluminescence. For 
investigation of structural properties the 
solvent sprayed on Si substrates. 

The SEM image was obtained via JEM-
2100 (HR) transmission electron microscope 
(Japan Electron Optics Laboratory CO., Ltd.). 

The optical absorption spectra in the 
visible range were recorded with MDR-6 
(LOMO) monochromator with a 
1200 grove∙mm–1. The photoluminescence 
spectra were recorded with ISP-51 (LOMO) 
quartz monochromator using LED (Edison 
Corporation) excitation on λ=400 nm. 

The average size of the nanoparticles was 
estimated from the change in the band gap 
(ΔEg) relative to the bulk crystal, using the 
effective-mass approximation using the 
equation [5]  

8μΔ g
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E
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There h is the Planck constant; μ=((me*)−1 
+(mh*)−1)−1, where me*= 0.3me, mh* = 0.6me 
are, respectively, the effective masses of the 
electron and hole in cadmium selenide, me is 
the mass of the free electron; ΔEg is the 
difference between the width of the band gap 
in the nanoparticle and the bulk crystal of 
CdSe (1.7 eV). 

III. EXPERIMENT AND RESULTS 
Investigations of CdSe:Ni  nanocrystals 

optical absorption were carried out in the 
range of quanta of incident light 3.5-2 eV. 
The temperature of explored samples is varied 
from 77 to 300 K. 

All investigated samples are characterized 
by the presence of a quantum-dimensional 
effect, which manifests itself in the high-
energy shift of the fundamental absorption 
edge of the samples in comparison with the 
bulk CdSe absorption edge. Changing of the 
band gap width is confirmed by a change in 
solutions color from pale yellow to orange in 
comparison with the bulk crystals brown 
color. It is established that the shift magnitude 
is determined primarily by concentrations of 
cadmium and selenium precursors (Fig. 1). 
The highest shift is observed in samples 
containing 0.3% CdCl2 and Na2SeSO3. 
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By the magnitude of the fundamental ab-
sorption edge shift, the formula (2) calculated 
the size of CdSe nanoparticles. It is shown that 
when the precursor concentrations varied from 
0.3 to 2%, the size of nanoparticles increases 
from 3 to 6 nm (see TABLE I). 

As the nanocrystals temperature decreased 
from 300 to 77 K, the absorption edge shifted 
to the high-energy region by 0.14 eV. Such shift 
corresponds to a temperature change of CdSe 
band gap edge.

Table 1. 
RESULTS OF CALCULATIONS OF cdse, 

cdse:ni NANOPARTICLES SIZES

The doping of nanocrystals with nickel leads 
to a shift of the absorption edge to a region of 
lower energies, which is explained both by an 
increase in the size of nanoparticles and by in-
ter-impurity Coulomb interaction.

The photoluminescence spectra of the inves-
tigated CdSe nanocrystals are characterized by 
emission band localized in the visible spectral 
region. The half-width of the photoluminescence 
spectrum varied from 50 to 70 nm, depending on 
CdCl2 and Na2SeSO3 concentration (Fig.3). 

It is established that the position of these 
emission lines is determined by the concentra-
tion of CdCl2 and Na2SeSO3 in solution. The po-
sition of the emission maxima varied from 2.54 
to   2.14 eV with   an    increase in concentrations 
of CdCl2 and Na2SeSO3 from 0.3 to 2%. 

The position of the observed emission lines 
correlates with the second linear region position 
of the corresponding optical absorption spec-
trum. The magnitude of the Stokes shift in the 
samples under study is 20-30 meV. 

Fig. 3. Photoluminescence spectra of CdSe nanocrys-
tals stabilized in gelatin matrices. Concentrations of 
CdCl2 and Na2SeSo3 is equal (1) 0.3%, (2) 0.5%, (3) 

1%, (4) 2%. Тmeas=300 К.

When the temperature of nanocrystals chang-
es from 300 to 77 K, the emission lines shift to 
the high-energy region by 0.14 eV, which corre-
sponds to a temperature change of CdSe band gap. 
This allows us to assume that transitions involving 
excitons are responsible for these lines. Lines of a 
similar nature were observed earlier in [2].

With an increase of precursors concentration, 
broadening of the emission lines and the appear-
ance of additional high-energy radiation maxi-
ma are observed. This is explained by the spread 
in the sizes of the nanoparticles obtained. SEM 
images of the investigated nanocrystals (Fig.4) 
showed that the size of nanoparticles can vary 
within the limits of 2-6 nm.

The exciton emission spectra of the CdSe:Ni 
are shifted to the region of lower energies 
(Fig.5). There is a complete correlation with the 

By the magnitude of the fundamental 
absorption edge shift, the formula (2) 
calculated the size of CdSe nanoparticles. It is 
shown that when the precursor concentrations 
varied from 0.3 to 2%, the size of 
nanoparticles increases from 3 to 6 nm (see 
TABLE I).  

As the nanocrystals temperature decreased 
from 300 to 77 K, the absorption edge shifted 
to the high-energy region by 0.14 eV. Such 

shift corresponds to a temperature change of 
CdSe band gap edge. 

The doping of nanocrystals with nickel 
leads to a shift of the absorption edge to a 
region of lower energies, which is explained 
both by an increase in the size of 
nanoparticles and by inter-impurity Coulomb 
interaction. 

The photoluminescence spectra of the 
investigated CdSe nanocrystals are 
characterized by emission band localized in 
the visible spectral region. The half-width of 
the photoluminescence spectrum varied from 
50 to 70 nm, depending on CdCl2 and 
Na2SeSO3 concentration (Fig.3).  

It is established that the position of these 
emission lines is determined by the 
concentration of CdCl2 and Na2SeSO3 in 
solution. The position of the emission 
maxima varied from 2.54 to   2.14 eV with   
an    increase in concentrations of CdCl2 and 
Na2SeSO3 from 0.3 to 2%.  

The position of the observed emission 
lines correlates with the second linear region 
position of the corresponding optical 
absorption spectrum. The magnitude of the 

Stokes shift in the samples under study is 20-
30 meV.  

When the temperature of nanocrystals 
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Fig.2. Optical absorption spectra of CdSe nanocrystals 
stabilized in gelatin matrices. Concentrations of CdCl2 
and Na2SeSo3 is equal (1) 0.3%, (2) 0.5%, (3) 1%, (4) 
2%. Тmeas=300 К. 

 

TABLE I. RESULTS OF CALCULATIONS OF CdSe, CdSe:Ni 
NANOPARTICLES SIZES 

No. CdCl2, Na2SeSo3 

concentrations 
Eg, eV ΔEg, eV R, nm 

1. 2% 2.25 0.55 5.6 

2. 1% 2.60 0.9 4.4 

3. 0.5% 2.81 1.11 3.8 

4. 0.3% 2.93 1.23 3.5 

5. 0.3%+NiCl2 

0.001% 
2.86 1.16 3.7 

6. 0.3%+NiCl2 

0.005% 
2.77 1.07 3.9 

7. 0.3%+NiCl2 

0.01% 
2.7 1 4.2 
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absorption spectra shown in as the nickel con-
centration increases. At the same time, nickel 
doping results in a series of emission lines in the 
visible and near-IR regions. 

Fig. 4. SEM image of CdSe nanocrystals with 0.5% 
precursor concentration.

The luminescence spectra of nanocrystals in 
the visible region are characterized by lines local-
ized at 2.47, 2.38, 2.28, and 2.15 eV. In the near-
IR region, the photoluminescence spectra of Sdce 
nanocrystals show three emission lines at 1.86, 
1.74, and 1.64 eV. The position of these lines re-
mained unchanged with an increase in the con-
centration of NiCl2, and their intensity increased. 
This behavior is characteristic of emission lines 
due to intracenter radiative transitions. 

Fig. 5. Photoluminescence spectra of CdSe:Ni nano-
crystals. Concentrations of NiCl2 is equal (1) 0.001%, 
(2) 0.005%, (3) 0.01%, Тmeas=300 К. CdCl2, Na2SeSo3 

concentrations is equal 0.3%.

The luminescence of bulk crystals of ZnSe:Ni 
was previously investigated [11]. The band gap 
is varied in the range of 2.8–2.5 eV, depending 
on the nickel impurity concentration in these 
crystals. We assume that the visible emission 
lines are due to the emission transitions from the 
excited states 1E(G), 1T1(G), 1A1(G), 1T2(G) to 
the ground state 3T1(F) of the Ni2+ ion.  

The near-IR emission lines are due to transi-
tions from the excited state 3T1(P) split by the 
spin-orbital interaction to the ground state 3T1(F) 
of the Ni2+ ion. 

Thus, the luminescent properties of the 
CdSe:Ni nanocrystals are controlled by the intra-
centre emission transitions within the Ni2+ ion.

The obtained results indicate the possibility 
of controlling the nanoparticles size by different 
methods. The obtained samples have effective 
emission in the visible and near-infrared region can 
be used as the sensitizer for photopolymer cells. 
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PHOTOLUMINESCENCE OF CdSe:Ni NANOPARTICLES OBTAINED 
BY CHEMICAL METHOD

Abstract–Cadmium selenide nanocrystals doped with nickel were prepared in water phase 
chemistry technique with gelatin acting as capping agent. Structures were characterized using X-
ray diffraction (XRD), scanning electron microscopy (SEM), visible absorption and photolumi-
nescence spectroscopies. Influence of component concentrations and technological parameters on 
nanocrystals average size and properties was studied.
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ФОТОЛЮМІНЕСЦЕНЦІЯ НАНОЧАСТИНОК CdSe:Ni ОТРИМАНИХ 
ХІМІЧНИМ МЕТОДОМ

Анотація–Нанокристали CdSe, леговані нікелем, були  отримані в водній фазі з додаван-
ням желатину як зв’язуючого агенту. Структурні властивості були досліджені за допомогою 
дифракції рентгенівських променів (XRD), скануючої електронної мікроскопії (SEM), ви-
димого поглинання та фотолюмінесцентної спектроскопії. Визначено вплив концентрації 
компонентів та технологічних параметрів на середній розмір нанокристалів та досліджено 
їх властивості.

Ключові слова – Селенід кадмію, нанокристали, край поглинання, фотолюмінесценція.
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ФОТОЛЮМИНЕСЦЕНЦИЯ НАНОЧАСТИЦ CdSe:Ni ПОЛУЧЕННЫХ 
ХИМИЧЕСКИМ МЕТОДОМ

Аннотация – Нанокристаллы CdSe, легированные никелем, были получены в водной 
фазе с добавлением желатина в качестве связывающего агента. Структурные свойства 
были исследованы при помощи дифракции рентгеновских лучей (XRD), сканирующей 
электронной микроскопии (SEM), видимого поглощения та фотолюминесцентной спектрол-
скопии. Определено влияние компонентов и технологических параметров на средний размер 
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SPECTROSCOPY OF MULTICHARGED IONS IN PLASMAS:  
OSCILLATOR STRENGTHS OF BE-LIKE IONS GAXXVIII and GEXXIX

Oscillator strengths gf for 2s2-[2s1/22p3/2]1 transition in Be-like multicharged ions of of GaXXVIII and GeXXIX 
Fe are computed for different values of the electron density and temperature ( ne=1022-1024cm-3, T=0.5-2 keV) of 
plasmas are presented and compared with available alternative spectroscopic data.  The generalized relativistic energy 
approach and relativistic many-body perturbation theory with the Debye shielding model as zeroth approximation is 
used for studying spectral parameters of ions in plasmas. An electronic Hamiltonian for N-electron ion in a plasma is 
added by the Yukawa-type electron-electron and nuclear interaction potential.

1. Introduction
Spectroscopy of multicharged ions in a 

plasmas is one of the most fast developing 
branches of modern atomic spectroscopy. The 
properties of laboratory and astrophysical plas-
mas have drawn considerable attention over the 
last  decades [1-14]. It is known that multich-
arged ions play an important role in the diag-
nostics of a wide variety of plasmas. Similar 
interest is also stimulated by importance of 
this information for correct determination of 
the characteristics for plasma in thermonuclear 
(tokamak) reactors, searching new mediums 
for X-ray range lasers. The electron-ion colli-
sions play a major role in the energy balance of 
plasmas.  ([1-6]). Different theoretical methods 
were employed along with the Debye screening 
to study plasma medium. Earlier we have de-
veloped a new version of a relativistic energy 
approach combined with the  many-body pertur-
bation theory (RMBPT) for multi-quasiparticle 
(QP) systems for studying spectra of plasma 
of the multicharged ions and electron-ion col-
lisional parameters. The method is based on the 
Debye shielding model and energy approach [3-
5]. A new element of this paper is in using the 
effective optimized Dirac-Kohn-Sham method 
in general relativistic energy approach to colli-
sion processes in the Debye plasmas. 

     In this paper, which goes on our work 
[3-5], we present the results of computing en-
ergy shifts and oscillator strengths gf for 2s2-
[2s1/22p3/2]1 transitions in the Be-like ions of 

GaXXVIII and GeXXIX, calculated for differ-
ent values of the electron density and tempera-
ture ( ne=1022-1024cm-3, T=0.5-2 keV) of plas-
mas and compared with available alternative 
spectroscopic data.

2. Generalized energy approach in scat-
tering theory. Debye shielding model

The detailed description of our approach was 
earlier presented (see, for example, Refs. [3-5]). 
Therefore, below we are limited only by the key 
points. 

The generalized relativistic energy approach 
combined with the RMBPT has been in details 
described in Refs. [7,13-27]. It generalizes ear-
lier developed energy approach. The key idea is 
in calculating the energy shifts DE of degenerate 
states that is connected with the secular matrix 
M diagonalization [6,7,13-16]. To construct M, 
one should use the Gell-Mann and Low adiaba-
tic formula for DE. The secular matrix elements 
are already complex in the PT second order. 
The whole calculation is reduced to calcula-
tion and diagonalization of the complex matrix 
M .and definition of matrix of the coefficients 
with eigen state vectors IK

ivieB ,  [5-8]. To calculate 
all necessary matrix elements one must use the 
basis’s of the 1QP relativistic functions. Within 
an energy approach the total energy shift of the 
state is usually presented as [13-15]:

                   DE = ReDE + i c/2                (1)

vectors IK
ivieB ,  [5-8]. To calculate all necessary 

matrix elements one must use the basis’s of 
the 1QP relativistic functions. Within an 
energy approach the total energy shift of the 
state is usually presented as [13-15]: 

 
                   E = ReE + i /2               (1)                                                    

 
where  is interpreted as the level width and 
decay possibility P = . The imaginary part 
of electron energy of the system, which is 
defined in the lowest PT order as [3]:  
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where 

 fn

for electron and 
 fn

for vacancy. 

The separated terms of the sum in (3) 
represent the contributions of different 
channels. It is known that their adequate 
description requires using the optimized 
basis’s of wave functions. In [6] it has been 
proposed “ab initio” optimization principle 
for construction of cited basis’s. It uses a 
minimization of the gauge dependent 
multielectron contribution of the lowest QED 
PT corrections to the radiation widths of 
atomic levels. This contribution describes 
collective effects and it is dependent upon the 
electromagnetic potentials gauge (the gauge 
non-invariant contribution Eninv). The 
minimization of ImEninv leads to integral 
differential equation, that is numerically 
solved. In result one can get the optimal one-
electron basis of the PT [12-16]. It is worth 
to note that this approach was used under 
solving of multiple problems of modern 
atomic , nuclear and molecular physics (see 
[17-27]).Further let us firstly consider the 
Debye shielding model according to Refs. 
[4,5]. It is known in the classical theory of 
plasmas developed by Debye-Hückel, the 
interaction potential between two charged 
particles  is modelled by the Yukawa-type 
potential, which contains the shielding 
parameter  [2]. The parameter  is 
connected with the plasma parameters such 

as the temperature T and the charge density n  
as follows:  Tkne B/~ 2 . Here, as usually, 
е is the electron charge and кБ is the 
Boltzman constant.  The density n is given as 
a sum of the electron density Ne and ion 
density Nk of the k-th ion species having the 
nuclear charge  
 
                       qk : 

k
kke Nq Nn 2 .        (3) 

 
It is very useful to remind the simple 

estimates for the shielding parameter. For 
example, under typical laser plasmas 
conditions of T~ 1keV and n~ 1022 cm-3  the 
parameter  is of the order of 0.1 in atomic 
units; in the EBIT plasmas T~ 0.05keV, 
n~1018 cm-3  and  ~10-3. We are interested in 
studying the spectral parameters of ions in 
plasmas with the temperature T~ 0.1-1keV 
(106-107K) and n~1014-1026 cm-3 (~10-5-
100). It should be noted that indeed the 
Debye screening for the atomic electrons in 
the Coulomb field of nuclear charge is well 
understood due to the presence of the 
surrounding plasma electrons with high 
mobility. On the other hand, the contribution 
due to the Debye screening between 
electrons would be of smaller magnitude 
orders. Majority of the previous works on the 
spectroscopy study have considered the 
screening effect only in the electron-nucleus 
potential where the electron-electron 
interaction potential is truncated at its first 
term of the standard exponential expansion 
for its dominant contribution [3-69]. 
However, it is also important to take into 
account the screening in the electron- 
electron interactions for large plasma 
strengths to achieve more realistic results in 
the search for stability of the atomic structure 
in the plasma environment.  

By introducing the Yukawa-type e-N and 
e-e interaction potentials, an electronic 
Hamiltonian for N-electron ion in a plasma is 
in atomic units as follows [4]: 
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where Г is interpreted as the level width and 
decay possibility P = Г. The imaginary part of 
electron energy of the system, which is defined 
in the lowest PT order as [3]: 
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where ∑ for electron and ∑≤ for vacancy. 
The separated terms of the sum in (3) repre-
sent the contributions of different channels. It is 
known that their adequate description requires 
using the optimized basis’s of wave functions. 
In [6] it has been proposed “ab initio” optimiza-
tion principle for construction of cited basis’s. 
It uses a minimization of the gauge dependent 
multielectron contribution of the lowest QED 
PT corrections to the radiation widths of atomic 
levels. This contribution describes collective ef-
fects and it is dependent upon the electromag-
netic potentials gauge (the gauge non-invariant 
contribution dEninv). The minimization of Im-
dEninv leads to integral differential equation, that 
is numerically solved. In result one can get the 
optimal one-electron basis of the PT [12-16]. 
It is worth to note that this approach was used 
under solving of multiple problems of modern 
atomic , nuclear and molecular physics (see [17-
27]).Further let us firstly consider the Debye 
shielding model according to Refs. [4,5]. It is 
known in the classical theory of plasmas devel-
oped by Debye-Hückel, the interaction potential 
between two charged particles  is modelled by 
the Yukawa-type potential, which contains the 
shielding parameter μ [2]. The parameter μ is 
connected with the plasma parameters such as 
the temperature T and the charge density n  as 
follows:  Tkne B/~ 2m . Here, as usually, е is 
the electron charge and кБ is the Boltzman con-
stant.  The density n is given as a sum of the 
electron density Ne and ion density Nk of the k-th 
ion species having the nuclear charge 

                       qk : ∑ .          (3)

It is very useful to remind the simple esti-
mates for the shielding parameter. For example, 
under typical laser plasmas conditions of T~ 

1keV and n~ 1022 cm-3  the parameter μ is of the 
order of 0.1 in atomic units; in the EBIT plasmas 
T~ 0.05keV, n~1018 cm-3  and  μ~10-3. We are 
interested in studying the spectral parameters 
of ions in plasmas with the temperature T~ 0.1-
1keV (106-107K) and n~1014-1026 cm-3 (μ~10-5-
100). It should be noted that indeed the Debye 
screening for the atomic electrons in the Cou-
lomb field of nuclear charge is well understood 
due to the presence of the surrounding plasma 
electrons with high mobility. On the other hand, 
the contribution due to the Debye screening be-
tween electrons would be of smaller magnitude 
orders. Majority of the previous works on the 
spectroscopy study have considered the screen-
ing effect only in the electron-nucleus potential 
where the electron-electron interaction potential 
is truncated at its first term of the standard ex-
ponential expansion for its dominant contribu-
tion [3-69]. However, it is also important to take 
into account the screening in the electron- elec-
tron interactions for large plasma strengths to 
achieve more realistic results in the search for 
stability of the atomic structure in the plasma 
environment. 

By introducing the Yukawa-type e-N and e-e 
interaction potentials, an electronic Hamiltonian 
for N-electron ion in a plasma is in atomic units 
as follows [4]:
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To generate the wave functions basis we use 
the optimized Dirac-Kohn-Sham potential with 
one parameter [8], which calibrated within the 
special ab initio procedure within the relativistic 
energy approach [6]. The modified PC numeri-
cal code ‘Superatom” is used in all calculations. 
Other details can be found in Refs. [3-6]. 

3. Results and conclusion
Firstly, we present our results on energy 

shifts and oscillator strengths for transitions 2s2-
2s1/22p1/2,3/2 in spectra of the Be-like Fe. The cor-
responding plasma parameters are as follows: 
ne=1022-1024cm-3, T=0.5-2 keV (i.e. m~0.01-0.3). 

vectors IK
ivieB ,  [5-8]. To calculate all necessary 

matrix elements one must use the basis’s of 
the 1QP relativistic functions. Within an 
energy approach the total energy shift of the 
state is usually presented as [13-15]: 

 
                   E = ReE + i /2               (1)                                                    

 
where  is interpreted as the level width and 
decay possibility P = . The imaginary part 
of electron energy of the system, which is 
defined in the lowest PT order as [3]:  
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where 

 fn

for electron and 
 fn

for vacancy. 

The separated terms of the sum in (3) 
represent the contributions of different 
channels. It is known that their adequate 
description requires using the optimized 
basis’s of wave functions. In [6] it has been 
proposed “ab initio” optimization principle 
for construction of cited basis’s. It uses a 
minimization of the gauge dependent 
multielectron contribution of the lowest QED 
PT corrections to the radiation widths of 
atomic levels. This contribution describes 
collective effects and it is dependent upon the 
electromagnetic potentials gauge (the gauge 
non-invariant contribution Eninv). The 
minimization of ImEninv leads to integral 
differential equation, that is numerically 
solved. In result one can get the optimal one-
electron basis of the PT [12-16]. It is worth 
to note that this approach was used under 
solving of multiple problems of modern 
atomic , nuclear and molecular physics (see 
[17-27]).Further let us firstly consider the 
Debye shielding model according to Refs. 
[4,5]. It is known in the classical theory of 
plasmas developed by Debye-Hückel, the 
interaction potential between two charged 
particles  is modelled by the Yukawa-type 
potential, which contains the shielding 
parameter  [2]. The parameter  is 
connected with the plasma parameters such 

as the temperature T and the charge density n  
as follows:  Tkne B/~ 2 . Here, as usually, 
е is the electron charge and кБ is the 
Boltzman constant.  The density n is given as 
a sum of the electron density Ne and ion 
density Nk of the k-th ion species having the 
nuclear charge  
 
                       qk : 

k
kke Nq Nn 2 .        (3) 

 
It is very useful to remind the simple 

estimates for the shielding parameter. For 
example, under typical laser plasmas 
conditions of T~ 1keV and n~ 1022 cm-3  the 
parameter  is of the order of 0.1 in atomic 
units; in the EBIT plasmas T~ 0.05keV, 
n~1018 cm-3  and  ~10-3. We are interested in 
studying the spectral parameters of ions in 
plasmas with the temperature T~ 0.1-1keV 
(106-107K) and n~1014-1026 cm-3 (~10-5-
100). It should be noted that indeed the 
Debye screening for the atomic electrons in 
the Coulomb field of nuclear charge is well 
understood due to the presence of the 
surrounding plasma electrons with high 
mobility. On the other hand, the contribution 
due to the Debye screening between 
electrons would be of smaller magnitude 
orders. Majority of the previous works on the 
spectroscopy study have considered the 
screening effect only in the electron-nucleus 
potential where the electron-electron 
interaction potential is truncated at its first 
term of the standard exponential expansion 
for its dominant contribution [3-69]. 
However, it is also important to take into 
account the screening in the electron- 
electron interactions for large plasma 
strengths to achieve more realistic results in 
the search for stability of the atomic structure 
in the plasma environment.  

By introducing the Yukawa-type e-N and 
e-e interaction potentials, an electronic 
Hamiltonian for N-electron ion in a plasma is 
in atomic units as follows [4]: 
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To generate the wave functions basis we use 
the optimized Dirac-Kohn-Sham potential 
with one parameter [8], which calibrated 
within the special ab initio procedure within 
the relativistic energy approach [6]. The 
modified PC numerical code ‘Superatom” is 
used in all calculations. Other details can be 
found in Refs. [3-6].  
 

3. Results and conclusion 
Firstly, we present our results on energy 
shifts and oscillator strengths for transitions 
2s2-2s1/22p1/2,3/2 in spectra of the Be-like Fe. 
The corresponding plasma parameters are as 
follows: ne=1022-1024cm-3, T=0.5-2 keV (i.e. 
~0.01-0.3). We studied a behavior of the  
energy shifts Е (cm-1) for 2s2-[2s1/22p1/2,3/3]1  
transitions and oscillator strengths changes 
for different plasma parameters (the electron 
density and temperature). In Table 1 there are 
listed the oscillator strengths gf for 2s2-
[2s1/22p3/2]1 transition in Be-like GaXXVIII 
for different values of the ne (см-3) and T (in 
eV): the alternative theoretical data by 
Yongqiang Li et al [1] and our data.  

 
Table 1. Oscillator strengths for 2s2-[2s1/2 

2p3/2]1 transition in Be-like ion of GaXXVIII  
different ne (см-3) and T (eV)  

(gf0 –gf value for free ion) 
 

ne  1022 1024 
kT [13] [13] [13] 
500 0.1416 0.14157 0.14214 
1000  0.14157 0.14200 
2000  0.14157 0.14190 
I-S  0.14157 0.14171 
ne  1022 1024 
kT Our Our Our 
500 0.1419 0.14185 0.14268 
1000  0.14185 0.14255 
2000  0.14185 0.14242 

 

There are also listed the available data by Li 
etal and Saha-Frische: the multiconfiguration 
Dirac-Fock (DF) calculation results, and 
ionic sphere (I-S) model simulation data [1, 
2] (see refs. therein). In Table 2 we presented 
our data on the oscillator strengths gf for 2s2-
[2s1/22p3/2]1 transition in Be-like ion of 
GeXXIX   for different values of the ne (см-3) 
and T (in eV). 

Table 2. Oscillator strengths for 2s2-[2s1/2 
2p3/2]1 transition in Be-like ion of GeXXIX,  

for different ne (см-3) and T (eV) (gf0 –gf 
value for free ion) 

ne 1022 1023 1024 
kT Our Our Our 
500 0.14052 0.14068 0.14115 
1000 0.14052 0.14067 0.14104 
2000 0.14052 0.14065 0.14089 

 
The analysis shows that the presented data 
are in physically reasonable agreement, 
however, some difference can be explained 
by using different relativistic orbital basises 
and different models for accounting of the 
plasma screening effect. It is important to 
note that our computing oscillator strengths 
within  an energy approach with different 
forms of transition operator (this is 
corresponding to using the photon 
propagators in the form of Coulomb, 
Feynman and Babushkin) gives very close 
results.  
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We studied a behavior of the  energy shifts DЕ 
(cm-1) for 2s2-[2s1/22p1/2,3/3]1  transitions and os-
cillator strengths changes for different plasma 
parameters (the electron density and tempera-
ture). In Table 1 there are listed the oscillator 
strengths gf for 2s2-[2s1/22p3/2]1 transition in Be-
like GaXXVIII for different values of the ne (см-

3) and T (in eV): the alternative theoretical data 
by Yongqiang Li et al [1] and our data. 

Table 1. 
Oscillator strengths for 2s2-[2s1/2 2p3/2]1 transi-
tion in Be-like ion of GaXXVIII  different ne 
(см-3) and T (eV) (gf0 –gf value for free ion)

ne 1022 1024

kT [13] [13] [13]
500 0.1416 0.14157 0.14214
1000 0.14157 0.14200
2000 0.14157 0.14190
I-S 0.14157 0.14171
ne 1022 1024

kT Our Our Our
500 0.1419 0.14185 0.14268
1000 0.14185 0.14255
2000 0.14185 0.14242

There are also listed the available data by Li 
etal and Saha-Frische: the multiconfiguration 
Dirac-Fock (DF) calculation results, and ionic 
sphere (I-S) model simulation data [1, 2] (see 
refs. therein). In Table 2 we presented our data 
on the oscillator strengths gf for 2s2-[2s1/22p3/2]1 
transition in Be-like ion of GeXXIX   for differ-
ent values of the ne (см-3) and T (in eV).

Table 2. 
Oscillator strengths for 2s2-[2s1/2 2p3/2]1 

transition in Be-like ion of GeXXIX,  for different 
ne (см-3) and T (eV) (gf0 –gf value for free ion)

ne 1022 1023 1024

kT Our Our Our
500 0.14052 0.14068 0.14115
1000 0.14052 0.14067 0.14104
2000 0.14052 0.14065 0.14089

The analysis shows that the presented data 
are in physically reasonable agreement, how-
ever, some difference can be explained by using 
different relativistic orbital basises and different 
models for accounting of the plasma screening 
effect. It is important to note that our computing 
oscillator strengths within  an energy approach 
with different forms of transition operator (this 
is corresponding to using the photon propaga-
tors in the form of Coulomb, Feynman and Ba-
bushkin) gives very close results. 
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SPECTROSCOPY OF MULTICHARGED IONS IN PLASMAS:  
OSCILLATOR STRENGTHS OF Be-LIKE IONS GaXXVIII and GeXXIX 

Summary
Oscillator strengths gf for 2s2-[2s1/22p3/2]1 transition in Be-like multicharged ions of of GaXXVIII 

and GeXXIX  are computed for different values of the electron density and temperature (ne=1022-
1024cm-3, T=0.5-2 keV) of plasmas are presented and compared with available alternative spectro-
scopic data.  The generalized relativistic energy approach and relativistic many-body perturbation 
theory with the Debye shielding model as zeroth approximation is used for studying spectral pa-
rameters of ions in plasmas. An electronic Hamiltonian for N-electron ion in a plasma is added by 
the Yukawa-type electron-electron and nuclear interaction potential.

Key words: spectroscopy of ions in plasmas, relativistic energy approach, oscillator strengths
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В. В. Буяджи, Т. Б. Ткач, А. П. Лавренко, Э. С. Романенко

СПЕКТРОСКОПИЯ МНОГОЗАРЯДНЫХ ИОНОВ В ПЛАЗМЕ: СИЛЫ 
ОСЦИЛЛЯТОРОВ ДЛЯ Be-ПОДОБНЫХ ИОНОВ GaXXVIII и GeXXIX

Резюме
Силы осцилляторов 2s2-[2s1/22p3/2]1 переходов  в Be-подобных многозарядных ионах GaXX-

VIII, GeXXIX  рассчитаны для различных значений электронной плотности и температуры  
( ne=1022-1024cm-3, T=0.5-2 keV) плазмы и сравниваются с имеющимися альтернативными 
спектроскопическими данными. Изучение спектральных параметров  ионов в плазме вы-
полнено на основе обобщенного релятивистского энергетического подхода и релятивист-
ской многочастичной теории возмущений с использованием  экранировочной модели  Де-
бая. Электронный гамильтониан для N-электронного иона в плазме дополнен потенциалом 
электрон-электронного и ядерного взаимодействия типа Юкавы. 

Ключевые слова: спектроскопия ионов в плазме, энергетический подход, силы осцилля-
торов  
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В. В. Буяджи,  Т. Б. Ткач, О. П. Лавренко, Е. С. Романенко

СПЕКТРОСКОПІЯ БАГАТОЗАРЯДНИХ ІОНІВ В ПЛАЗМІ: СИЛИ ОСЦИЛЯТОРІВ 
ДЛЯ Be-ПОДІБНИХ ІОНІВ GaXXVIII і GeXXIX

Резюме
Сили осциляторів 2s2-[2s1/22p3/2]1 переходів в Be-подібних багатозарядних іонах GaXXVIII, 

GeXXIX розраховані для різних значень електронної густини і температури ( ne=1022-
1024cm-3, T=0.5-2 keV) плазми та порівнюються з наявними альтернативними спектроско-
пічними даними. Вивчення спектральних параметрів іонів в плазмі виконано на основі уза-
гальненого релятивістського енергетичного підходу і релятивістської багаточастинкової те-
орії збурень з використанням екраніровочної моделі Дебая. Електронний гамильтоніан для 
N-електронного іона в плазмі доповнений потенціалом електрон-електронної та ядерного 
взаємодії типа Юкави.

Ключові слова: спектроскопія іонів в плазмі, енергетичний підхід, сили осциляторів
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SOLDER  FOR  FORMATION  OF CONTACTS  TO  CONVERTERS  OF  OPTICAL  
AND X-RAY   IMAGES   INTO   THE   ELECTRICAL   SIGNAL

The pasty solder is used in the technology of the installation of electro-radio elements. Such elements can be 
microcircuits and optical and X-ray images microelectronic sensors with a hard raster [1]. Tinning of such sensor 
contact surfaces and printed circuit boards, where such sensors are mounted and soldering of the sensors to the plate is 
a considerable problem due to the need to remove corrosive active paste radical. The advantage of the developed solder 
is low corrosion activity and high fluxing ability. After soldering, there is no need to clean the surface of the printed 
circuit board and the contact sensor from paste redicals and chemical reaction products.

Because of the high printing density of the op-
tical and X-ray images sensors with a rigid raster, 
when the distance between the current circles, the 
width and thickness of the tracks can be less than 
10 microns, the solder paste should have high 
fluxing activity and not cause corrosion, while 
providing satisfactory soldering.

The main disadvantages of known pasty solders:
1. Insufficient fluxing activity. The paste rad-

icals after soldering are corrosively active.
2. When soldering due to the presence of 

rosin (up to 22%), there is the formation of a 
large number of resinification products on a 
surface that is soldered. Removal of these sub-
stances needs thorough washing with mixtures 
of various organic solvents, and in some cases, 
additional mechanical cleaning. This is associ-
ated with the significant technological difficul-
ties, especially with the high compactness of the 
printed assembly and the presence on the printed 
circuit boards without hull and hinged elements.

3. High rosin corrosion activity (acid number 
170-180) leads to the maturation and dissolution 
of the metal, which is soldered, especially when 
soldered by the technology of mounting on the 
surface, when the contact plane (CP) thickness 
is 10-20 microns.

4. During the soldering process, compounds 
are formed which, in conditions of high humid-
ity, can cause corrosion and reduce insulation 

resistance of printed circuit boards, especially 
with high density of printed assembly (distance 
between conductive tracks is 10 - 30 microns). 
Maleic acid has a very large fluxing activity, but 
at its content of ≈ 0.5 - 3.0%, the insulation re-
sistance after soldering is reduced by 1-2 orders 
of magnitude, which is in accordance with the 
requirements of the STD, but is not acceptable 
for special purpose radioelectronic equipment 
(REE).

5. High activity of fluxing components (di-
ethylamine hydrochloric acid and maleic acid 
(or maleic anhydride) leads to the maturation 
and dissolution of soldered metal, especially 
when soldered using surface mount technology, 
when the CP thickness is of 10-20 μm (Fig. 1).

Fig. 1  Solder seam surface destruction. Raster 
electron microscope. Mode of the secondary electrons. 

Increase 2000x.
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6. The paste fluxing activity reducing during 
its storage. Because of the high corrosion ac-
tivity of the fluxing components (diethylamine 
hydrochloric acid and maleic acid (or maleic 
anhydride)) with the paste prolonged storage 
(warranty period of 3 months or more) due to 
the developed surface of the solder powder, its 
oxidation occurs, which significantly reduces 
the technological characteristics of the paste: 
fluxing activity, wettability , spread ratio.

These factors reduce the reliability of the 
contact of the optical and X-ray image sensor to 
the board on which it is mounted. Their remov-
ing leads to the reduction of material costs, time 
and funds for soldering technology.

Due to the fact that the distance between the 
current paths may be less than 10 microns, the 
solder paste should have high fluxing activity 
and should not cause corrosion while provid-
ing satisfactory soldering. For this purpose, as 
an active fluxing component, rosin and extra 
relatively inactive succinic acid and glycerin, 
which have the properties of a reducing agent 
and greatly enhance the fluxing effect of the ros-
in, are selected. The introduction of the solvent 
paste of succinic acid and glycerine reduces the 
content of the rosin, which significantly reduces 
the amount of product of the  resinification and 
simplifies the operation of laundering after sol-
dering.

In the proposed composition, the optimal 
quantitative ratios of active reagents - rosin, 
succinic acid, glycerol are selected in such way 
as to provide sufficient fluxing activity (required 
for wetting and spreading) without increasing 
the corrosion activity of the paste solder.

The proposed composition is prepared in this 
way [2].

Amber acid is thoroughly rubbed in a mortar 
to a fine powder, then add glycerol and dissolve 
in alcohol at a temperature of 70-80 ° C. In the 
resulting solution, add a solder powder and mix. 
Rosin is thoroughly rubbed in a mortar to a fine 
powder then adds castor oil and dibutylphthal-
ate. The resulting mixture is heated to 90-1200C 
and, when stirred, dissolved to obtain a homo-
geneous mass. Both solutions are combined and 
also thoroughly mixed.

The trial of the proposed paste solder and 
the known paste were performed by soldering 
the prototype of optical and X-ray image sensor 
samples to the printed circuit boards. The paste 
remnants after soldering were not removed. Fur-
ther, accelerated tests of printed circuit boards 
in a climate chamber at a temperature of 400C 
and a relative humidity of 98% were carried 
out. After soldering and after performed accel-
erated tests, the insulation resistance of printed 
circuit boards was measured, which depends on 
the corrosion activity of the compositions. Flux-
ing activity was determined by the coefficient 
of diffusion (for copper, silver). Results of com-
parative tests are given in tables 1, 2.

Table 1

Technical 
characteristics

Paste flux,  
which is 
offered

Prototype solder 
paste 

Residual 
corrosive 
activity after
soldering.

Resistance to 
PCB insulation 
after soldering 
does not 
change.  
After 
accelerated 
tests, the 
resistance does 
not change.

Resistance to 
PCB insulation 
after soldering 
does not change.
 After 
accelerated tests, 
the resistance 
decreases by 
5-10 times.

Table 2

Paste rheological 
characteristics  

Paste flux,  
which is 
offered

Prototype 
solder paste 

Dispersion coefficient 
(after manufacturing)

1.4 1.4

Dispersion coefficient 
(after 1 month of 
storage)

1.4 1.3

Dispersion coefficient 
(after 2 months of 
storage)

1.4 1.25

Dispersion coefficient 
(after 3 months of 
storage)

1.4 1.0
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The advantage of the proposed paste solder 
is low corrosion activity and high fluxing abil-
ity when soldered, which does not decrease 
with prolonged storage (the warranty period is 
3 months or more). The resistance of PCB in-
sulation after soldering and accelerated testing 
is not changed. After soldering, no cleaning of 
the PCBs surface and contact nodes from paste 
residues or chemical reactions is required. The 
introduction into the composition of the paste 
solder of succinic acid and glycerol allows to 
reduce the content of rosin, which significantly 
reduces the resinification products amount. The 
economic efficiency at the invention implement-
ing is that, when practically the same cost of 
chemical components (ingredients) as the proto-

type paste, the soldering quality is significantly 
increased and the reliability and operating (time) 
of the equipment as a whole increases.

1. Smyntyna V. A. Image sensor on the 
basis of nonideal heterojunction with 
rigid raster/ Smyntyna V.A.,  Borschak 
V.A., Kutalova M.I., Zatovskaya N.P., 
Balaban A.P.// Photoelectronics.- 
2006.- №15.- P.21-23.

2. Patent of Ukraine № 70407. «Paste 
form» / Lepich Ya.I., Sh.D.Kurmashev, 
T.I.Lavrenova, T.M. Bugayova. Public 
11.06 2012, bul. No. 11
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The pasty solder is used in the technology of the installation of electro-radio elements. Such 
elements can be microcircuits and optical and X-ray images microelectronic sensors with a hard 
raster [1]. Tinning of such sensor contact surfaces and printed circuit boards, where such sensors 
are mounted and soldering of the sensors to the plate is a considerable problem due to the need 
to remove corrosive active paste radical. The advantage of the developed solder is low corrosion 
activity and high fluxing ability. After soldering, there is no need to clean the surface of the printed 
circuit board and the contact sensor from paste redicals and chemical reaction products.
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ПРИПОЙ ДЛЯ СОЗДАНИЯ КОНТАКТА К ПРЕОБРАЗОВАТЕЛЯМ ОПТИЧЕСКОГО 
И РЕНТГЕНОВСКОГО ИЗОБРАЖЕНИЙ В ЭЛЕКТРИЧЕСКИЙ СИГНАЛ

Пастообразный припой используется в технологии монтажа электрорадиоэлементов. Та-
кие элементы могут быть микросхемами и микроэлектронными датчиками оптических и 
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рентгеновского изображений с твердым растром [1]. Лужение контактных площадок контак-
та сенсора и печатной платы на которую такие сенсоры монтируются есть важной пробле-
мой из-за необходимости удаления коррозийно активных остатков пасты. Преимуществом 
разработанного  припоя является низкая коррозийная активность деятельность и высокая 
флюсующая способность. После пайки, нет необходимости очищать поверхность печатной 
платы и контактов датчика от остатков пасты и продуктов химических реакций.

Ключевые слова: припой, сенсор, контакт
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ПРИПОЙ ДЛЯ СТВОРЕННЯ КОНТАКТУ ДО ПЕРЕТВОРЮВАЧА ОПТИЧНОГО 
ТА РЕНТГЕНІВСЬКОГО ЗОБРАЖЕНЬ В ЕЛЕКТРИЧНИЙ СИГНАЛ

Пастоподібний припій використовується в технології монтажу електрорадіоелементів. 
Такими елементами можуть бути мікросхеми і мікроелектронні сенсори опричного та рент-
генівського зображень з жорстким растром [1]. Лудіння контактних площинок таких сен-
сорів та друкованих плат, на яких такі сенсори монтуються і паяння сенсорів є чималою 
проблемою через необхідність видалення корозийно активних залишків пасти. Перевагою 
розробленого припою є низька корозійна активність та висока флюсуюча здатність. Після 
паяння не потрібне очищення поверхні друкованих плат та контактних сенсору від залишків 
пасти та продуктів хімічних реакцій. 
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RELATIVISTIC CALCULATION OF RYDBERG AUTOIONIZATION STATES 
PARAMETERS IN SPECTRUM OF BARIUM

The combined relativistic energy approach and relativistic many-body perturbation theory with the zeroth order 
Dirac-Kohn-Sham one-particle approximation are used for estimating the energies the in Rydberg autoionization  
4f5/2,7/2n’f J=6,5,4 states, excited from the initial state 5d3/215f J=5 in spectrum of the barium atom. The comparison 
with available theoretical and experimental (compillated) data is performed. The important point is linked with an 
accurate accounting for the complex exchange-correlation (polarization) effect contributions and using the optimized 
one-quasiparticle representation in the relativistic many-body perturbation theory zeroth order that significantly 
provides a physically reasonable agreement between theory and precise experiment.

1.  Introduction
The research in many fields of modern atom-

ic physics (spectroscopy, spectral lines theory, 
theory of atomic collisions etc), astrophysics, 
plasma physics, laser physics and quantum and 
photo-electronics requires an availability of sets 
of correct data on the energetic, spectroscopic 
and structural properties of atoms, especially in 
the high excited, Rydberg states. Naturally, the 
correct corresponding data about radiative de-
cay widths, probabilities and oscillator strengths 
of atomic transitions are needed in building ad-
equate astrophysical models, realizing regular 
astrophysical, laboratory, thermonuclear plasma 
diagnostics and in fusion research. Besides, a 
great interest to studying Rydberg atomic states 
parameters  can be easily explained by a power-
ful development of such new fields as quantum 
computing, and quantum cryptography, con-
struction of new type Rydberg atomic lasers etc. 
The knowledge of the Rydberg  autoionization 
states parameters for many of atomic systems is 
of a great importance note for many applications 
in atomic and molecular physics, plasma chem-
istry and physics, laser physics and quantum 
electronics etc. [1-62].  However, studying spec-
tral characteristics of heavy atoms and ions in 
the Rydberg states has to be more complicated 
as it requires a necessary accounting the relativ-
istic , exchange-correlations effects and possibly 
the QED corrections for superheavy atomic sys-

tems. There have been sufficiently many reports 
of calculations and compilation of energies and 
oscillator strengths, autoionization states ener-
gies and widths  for the barium and even Ba-like 
ions (see, for example, [1–3] and refs. therein), 
however, an accuracy of these data call for fur-
ther serious analysis and calculation.  In many 
papers the Dirac-Fock method, model potential 
approach, quantum defect (QD) approximation 
(different versions such as QD, MCQD etc) 
different realizations have been used for cal-
culating  the energy and spectral properties of 
barium and it has been shown that an account 
of the polarization interelectron corrections is of 
a great quantitative importance. The consistent 
relativistic MCQD calculations  of the transi-
tions energies and oscillator strengths for some 
chosen transitions between the Rydberg states 
are performed in Refs. [1,63,64].  However, it 
should be stated that for majority of the barium 
Rydberg states and there is not enough precise 
information available in literatures [1-3]. In 
our paper The combined relativistic energy ap-
proach and relativistic many-body perturbation 
theory with the zeroth order Dirac-Kohn-Sham 
one-particle approximation are used for estimat-
ing the energies the in Rydberg autoionization  
4f5/2,7/2n’f J=6,5,4 states, excited from the ini-
tial state 5d3/215f J=5 in spectrum of the barium 
atom. 
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2.  The theoretical method
In refs. [8-170] the fundamentals of the rela-

tivistic many-body PT formalism  have been in 
details presented, so further  we are limited only 
by the novel elements.   Let us remind that  the 
majority of complex atomic systems possess a 
dense energy spectrum of interacting states. In 
refs. [3-65, 17-20] it is realized a field procedure 
for calculating the energy shifts DE of degener-
ate states, which is connected with the secular 
matrix M diagonalization. The whole calcula-
tion of the energies and decay probabilities of 
a non-degenerate excited state is reduced to the 
calculation and diagonalization of the M. The 
complex  secular matrix M is represented in the 
form [9,10]:  

    ( ) ( ) ( ) ( )0 1 2 3 .M M M M M= + + +             (1)

where ( )0M  is the contribution of the vacuum di-
agrams of all order of PT, and ( )1M , ( )2M , ( )3M  
those of the one-, two- and three-QP diagrams 
respectively. The diagonal matrix ( )1M  can be 
presented as a sum of the independent 1QP con-
tributions. The optimized 1-QP representation is 
the best one to determine the zeroth approxima-
tion. In the relativistic energy approach [4-9], 
which has received a great applications during 
solving numerous problems of atomic, molecu-
lar and nuclear physics (e.g. , see Refs. [10-59]), 
the imaginary part of electron energy shift of 
an atom is  directly connected with the radia-
tion decay possibility (transition  probability). 
An approach, using the Gell-Mann and Low for-
mula with the QED scattering matrix, is used in 
treating the relativistic atom. The total energy 
shift of the state is usually presented in the form:

                DE = ReDE + i G/2                   (2)

where G is interpreted as the level width, and 
the decay possibility P = G. The imaginary part 
of electron energy of the system, which is de-
fined in the lowest order of perturbation theory 
as [4]: 
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where (a>n>f)  for electron and (a<n<f)  for va-
cancy. Under calculating the matrix elements (3) 
one should use the angle symmetry of the task 
and write the expansion for potential sin|w|r12/r12  
on spherical functions as follows [4]: 
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where J  is the Bessel function of first kind and 
(l)= 2l + 1. This expansion is corresponding to 
usual multipole one for probability of radiative 
decay. Substitution of the expansion (5) to matrix 
element of interaction gives as follows [5-8]: 

×++++= )12)(12)(12)(12(; 43213421 jjjjV ββββ      

××
   mmjjjj

( )∑ ×







-








-

-
m

m

mma mm
ajj

mm
ajj

42

42

31

31             
1x

× ,

(5)

                   = Qul
aQ + Br

aQ .                    (6)

where ji is the total single electron momentums, 
mi – the projections; QCul is the Coulomb part of 
interaction, QBr - the Breit part. The detailed ex-
pressions for the Coulomb and Breit parts and 
the corresponding radial Rl and angular  Sl  inte-
grals can be found in Refs. [22-32].
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The calculating of all matrix elements, wave 
functions, Bessel functions etc is reduced to 
solving the system of differential equations. The 
formulas for the autoionization (Auger) decay 
probability include the radial integrals Ra(akgb), 
where one of the functions describes electron 
in the continuum state. When calculating this 
integral, the correct normalization of the wave 
functions is very important, namely, they should 
have the following asymptotic at  r®0:

( ) ( )[ ] ( )

( )[ ] ( )







+-

++
→





--

--
-

.äkrcosáZù

,äkrsináZù
ëù

g
f

2
12

2
12

2
1

   (7)

The important aspect of the whole procedure 
is an accurate accounting for the exchange-cor-
relation effects. We have used the generalized 
relativistic Kohn-Sham density functional [8-
17] in the zeroth approximation of relativistic 
PT; naturally, the perturbation operator contents 
the operator (3) minus the cited Kohn-Sham 
density functional. Further the wave functions 
are corrected by accounting of the first order PT 
contribution. Besides, we realize the procedure 
of optimization  of relativistic orbitals base. The 
main idea is based on using ab initio optimiza-
tion procedure, which  is reduced to minimiza-
tion of the gauge dependent multielectron con-
tribution ImDEninv of the lowest QED PT correc-
tions to the radiation widths of atomic levels. 

According to [6,8], “in the fourth order of 
QED PT (the second order of the atomic PT) 
there appear the diagrams, whose contribution 
to the ImdEninv accounts for correlation effects 
and this contribution is determined by the elec-
tromagnetic potential gauge (the gauge depend-
ent contribution)”. The accurate  procedure for 
minimization of the functional ImdEninv leads 
to the Dirac-Kohn-Sham-like equations for the 
electron density that are numerically solved by 
the Runge-Cutta standard method It is very im-
portant to known that the regular  realization of 
the total scheme allow to get an optimal set of 
the 1QP functions and more correct results in 
comparison with so called simplified one, which 

has been used in Refs. [6-8] and reduced to the 
functional minimization using the variation of 
the correlation potential parameter b. Other 
details can be found in refs.[8-17, 22-40]. All 
calculations are performed on the basis of the 
modified numeral code Superatom (version 93).

3.  Results and conclusion
As an important application of the theory we 

study the Rydberg autoionization states, which 
are corresponding to transitions into 4fnf, states, 
in particular, 4f5/2,7/2n’f J=6,5,4 states, excited 
from the initial state 5d3/215f J=5 (Figure 1). 

In Table 1 we present the values of Energies 
(cm-1) of autoionization states 4fnf, n = 15: Exp.- 
experiment; Теорія: (1)-data, obtained within 
the quantum defect method MCQD with empiri-
cal fitting by de Graaf et al; (2) –our theory). 

Physically reasonable agreement between 
theory and precise experiment can be reached 
under condition of an accurate accouting of the 
complex exchange-correlation effects and using 
the optimized relativistic orbitals basis sets (the 
optimal one-quasiparticle representation). 

Table 1. 
Energies (cm-1) of autoionization states 
4f5/2,7/2n’f J=6,5,4, n = 15: Exp.- experiment; 
Theory: (1)-quantum defect method MCQD 

with empirical fitting; (2) –our theory

АС J Exp. (1) (2)

4f5/215f7/24f7/215f5/24f7/215f7/24f5/215f7/24f7/215f7/24f7/215f5/24f5/215f5/24f5/215f7/24f7/215f5/24f7/215f5/24f5/215f7/22

6
6
6
5
5
5
4
4
4
3
2

89 758.4±0.5
89 993.6±0.5
89 926.6±5.0
89 726.3±1.0
89 951.0±0.5
-
89 705.6±0.5
-
-
-
-

89759.1
89992.4
89937.1
89718.7
89952.9
89943.6
89706.8
89720.0
89937.2
-
-

89758.8
89993.6
89926.8
89726.9
89951.6
89942.3
89705.4
89718.5
89937.6
89953.4
89767.8

corresponding radial R and angular  S  
integrals can be found in Refs. [22-32]. 
The calculating of all matrix elements, wave 
functions, Bessel functions etc is reduced to 
solving the system of differential equations. 
The formulas for the autoionization (Auger) 
decay probability include the radial integrals 
R(k), where one of the functions 
describes electron in the continuum state. 
When calculating this integral, the correct 
normalization of the wave functions is very 
important, namely, they should have the 
following asymptotic at  r0: 
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                                                                 (7) 
The important aspect of the whole procedure 
is an accurate accounting for the exchange-
correlation effects. We have used the 
generalized relativistic Kohn-Sham density 
functional [8-17] in the zeroth approximation 
of relativistic PT; naturally, the perturbation 
operator contents the operator (3) minus the 
cited Kohn-Sham density functional. Further 
the wave functions are corrected by 
accounting of the first order PT contribution. 
Besides, we realize the procedure of 
optimization  of relativistic orbitals base. The 
main idea is based on using ab initio 
optimization procedure, which  is reduced to 
minimization of the gauge dependent 
multielectron contribution ImEninv of the 
lowest QED PT corrections to the radiation 
widths of atomic levels.  

According to [6,8], “in the fourth order of 
QED PT (the second order of the atomic PT) 
there appear the diagrams, whose 
contribution to the ImEninv accounts for 
correlation effects and this contribution is 
determined by the electromagnetic potential 
gauge (the gauge dependent contribution)”. 
The accurate  procedure for minimization of 
the functional ImEninv leads to the Dirac-
Kohn-Sham-like equations for the electron 
density that are numerically solved by the 
Runge-Cutta standard method It is very 
important to known that the regular  

realization of the total scheme allow to get an 
optimal set of the 1QP functions and more 
correct results in comparison with so called 
simplified one, which has been used in Refs. 
[6-8] and reduced to the functional 
minimization using the variation of the 
correlation potential parameter b. Other 
details can be found in refs.[8-17, 22-40]. All 
calculations are performed on the basis of the 
modified numeral code Superatom (version 
93). 

 
3.  Results and conclusion 

As an important application of the theory 
we study the Rydberg autoionization states, 
which are corresponding to transitions into 
4fnf, states, in particular, 4f5/2,7/2n’f J=6,5,4 
states, excited from the initial state 5d3/215f 
J=5 (Figure 1).  

In Table 1 we present the values of 
Energies (cm-1) of autoionization states 4fnf, 
n = 15: Exp.- experiment; Теорія: (1)-data, 
obtained within the quantum defect method 
MCQD with empirical fitting by de Graaf et 
al; (2) –our theory).  

Physically reasonable agreement 
between theory and precise experiment can 
be reached under condition of an accurate 
accouting of the complex exchange-
correlation effects and using the optimized 
relativistic orbitals basis sets (the optimal 
one-quasiparticle representation).  

 

Table 1. Energies (cm-1) of autoionization 
states 4f5/2,7/2n’f J=6,5,4, n = 15: Exp.- 

experiment; Theory: (1)-quantum defect 
method MCQD with empirical fitting; (2) –

our theory 

АС J Exp. (1) (2) 
4f5/215f7/2 
4f7/215f5/2 
4f7/215f7/2 
4f5/215f7/2 
4f7/215f7/2 
4f7/215f5/2 
4f5/215f5/2 
4f5/215f7/2 
4f7/215f5/2 
4f7/215f5/2 
4f5/215f7/22 

6 
6 
6 
5 
5 
5 
4 
4 
4 
3 
2 

89 758.4±0.5 
89 993.6±0.5 
89 926.6±5.0 
89 726.3±1.0 
89 951.0±0.5 

- 
89 705.6±0.5 

- 
- 
- 
- 

89759.1 
89992.4 
89937.1 
89718.7 
89952.9 
89943.6 
89706.8 
89720.0 
89937.2 

- 
- 

89758.8 
89993.6 
89926.8 
89726.9 
89951.6 
89942.3 
89705.4 
89718.5 
89937.6 
89953.4 
89767.8 
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Figure 1. The experimental spectrum of the Ba 4f5/2n’f 
J=6,5,4 autoionization states, excited from initial state: 

5d3/215f, J=5
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E. V. Ternovsky, V. V. Buyadzhi, A. V. Tsudik, A. A. Svinarenko

RELATIVISTIC CALCULATION OF RYDBERG AUTOIONIZATION STATES 
PARAMETERS IN SPECTRUM OF BARIUM

Summary
The combined relativistic energy approach and relativistic many-body perturbation theory with 

the zeroth order Dirac-Kohn-Sham one-particle approximation are used for estimating the energies 
the in Rydberg autoionization  4f5/2,7/2n’f J=6,5,4 states, excited from the initial state 5d3/215f J=5 in 
spectrum of the barium atom. The comparison with available theoretical and experimental (compil-
lated) data is performed. The important point is linked with an accurate accounting for the complex 
exchange-correlation (polarization) effect contributions and using the optimized one-quasiparticle 
representation in the relativistic many-body perturbation theory zeroth order that significantly pro-
vides a physically reasonable agreement between theory and precise experiment.

Key words: relativistic theory, Rydberg autoionization states, barium 
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E. В. Терновский, В. В. Буяджи, А. В. Цудик, А. А. Свинаренко

РЕЛЯТИВИСТСКИЙ РАСЧЕТ ПАРАМЕТРОВ РИДБЕРГОВСКИХ 
АВТОИОНИЗАЦИОННЫХ СОСТОЯНИЙ В СПЕКТРЕ БАРИЯ

Резюме
Комбинированный релятивистский энергетический подход и релятивистская много-

частичная теория возмущений с дирак-кон-шэмовским одночастичным нулевым 
приближением используются для вычисления энергий ридберговских  автоионизационных 
состояний 4f5/2,7/2n’f J=6,5,4, возбуждаемых из начального состояния 5d3/215f, J=5 в спектре 
атома бария. Проведено сравнение с имеющимися теоретическими и экспериментальными 
(скопированными) данными. Важный момент связан с аккуратным учетом вкладов 
сложных многочастичных обменных корреляционных (поляризационных) эффектов и 
с использованием оптимизированного одноквазичастичного представления в нулевом 
приближении релятивистской многочастичной теории возмущений, что существенно 
определяет физически разумное согласие между теорией и точным экспериментом. 

Ключевые слова: релятивистская теория, ридберговские  автоионизационные состояния, 
барий
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Є. В. Терновський, В. В. Буяджи, А. В. Цудік, А. А. Свинаренко

РЕЛЯТИВІСТСЬКИЙ РОЗРАХУНОК ПАРАМЕТРІВ РІДБЕРГІВСЬКИХ 
АВТОІОНІЗАЦІЙНИХ СТАНІВ В СПЕКТРІ БАРІЯ

Резюме
Комбінований релятивістський енергетичний підхід і релятивістська багаточастинкова 

теорія збурень з дірак-кон-шемівським одночастинковим наближенням нульового порядку 
використовуються для енергій рідбергівських автоіонізаційних станів 4f5/2,7/2n’f J=6,5,4, 
збуджених з початкового стану 5d3/215f, J=5  в спектрі атома барію. Проведено порівняння 
з наявними теоретичними і експериментальними (скопійованими) даними. Важливий 
момент пов’язаний з акуратним урахуванням вкладів складних багаточасткових обмінних 
кореляційних (поляризаційних) ефектів і з використанням оптимізованого одноквазічастічного 
уявлення в нульовому наближенні релятивістської багаточастинкової  теорії збурень, що 
істотно визначає фізично розумне згоду між теорією і точним експериментом.. 

Ключові слова: релятивістська теорія, рідбергівські автоіонізаційні стани, барій
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CHAOTIC DYNAMICS OF RELATIVISTIC BACKWARD-WAVE TUBE WITH 
ACCOUNTING FOR SPACE CHARGE FIELD AND DISSIPATION EFFECTS: 

NEW EFFECTS

We have performed an advanced modelling nonlinear dynamics elements for relativistic backward-wave tube 
(RBWT) with accounting for  dissipation and space charge field  effects etc. The temporal dependences of the 
normalized field amplitude (power) in a wide range of variation of the controlling parameters (electric length of an 
interaction space N, bifurcation parameter L and relativistic factor γ0) are  computed. The dynamic and topological 
invariants of the RBWT dynamics in auto-modulation and chaotic regimes such as correlation dimensions values, 
embedding, Kaplan-York dimensions, Lyapunov’s exponents, Kolmogorov entropy etc are calculated. It has been 
discovered the "beak" effect on the plane of parameters:  bifurcation Piers-like parameter L – relativistic factor  γ0.

1.  Introduction
Powerful generators of chaotic oscillations 

of microwave range of interest for radar, plasma 
heating in fusion devices, modern systems of 
information transmission using dynamic chaos 
and other applications. Among the most studied 
of vacuum electronic devices with complex dy-
namics are backward-wave tubes (BWT) , for 
which the possibility of generating chaotic os-
cillations has been theoretically and experimen-
tally found [1-12]. The BWT is an electronic de-
vice for generating electromagnetic vibrations 
of the superhigh frequencies range. Authors [7] 
formally considered the possible chaos scenario 
in a single relativistic BWT. Authors [4,6] have 
studied dynamics of a non-relativistic BWT, in 
particular, phase portraits, statistical quantifiers 
for a weak chaos arising via period-doubling 
cascade of self-modulation and the same char-
acteristics of two non-relativistic backward-
wave tubes. The authors of [4,6] have solved the 
equations of nonstationary nonlinear theory for 
the O-type BWT without account of the spatial 
charge, relativistic effects, energy losses etc. It 
has been shown that the finite-dimension strange 
attractor is responsible for chaotic regimes in 

the BWT.  The multiple studies [1-12], increas-
ing the beam current in the system implemented 
complex pattern of alternation of regular and 
chaotic regimes of generation, completes the 
transition to a highly irregular wideband chaotic 
oscillations with sufficiently uniform continu-
ous spectrum. 

In this work we have performed an advanced 
modelling emission spectrum and nonlinear dy-
namics elements for relativistic backward-wave 
tube (RBWT) with accounting for  dissipation 
and space charge effects etc. The temporal de-
pendences of the normalized field amplitude 
(power) in a wide range of variation of the con-
trolling parameters (electric length of an inter-
action space N, bifurcation parameter L and rel-
ativistic factor g0) are  computed. The dynamic 
and topological invariants of the RBWT dynam-
ics in automodulation and chaotic regimes such 
as correlation dimensions values, embedding, 
Kaplan-York dimensions, Lyapunov’s expo-
nents, Kolmogorov entropy etc are calculated. 
WE discovered discovered the «beak» effect on 
the plane L – g0.
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2.  Relativistic model and some results
As the key ideas of our technique for nonlin-

ear analysis of chaotic systems have been in de-
tails presented in refs. [13-28], here we are lim-
ited only by a short  representation. We use the 
standard non-stationary theory [3-7], however, 
despite the above cited papers we take into ac-
count a number of effects, namely, influence of 
space charge,  dissipation, the waves reflections 
at the ends of the system and others (a modifica-
tion of model of Refs.   [12,13]). 

The relativistic dynamics is described sys-
tem of equations for unidimensional relativistic 
electron phase ( )0è æ,ô,è  (which moves in the 
interaction space with phase c0 (c0c[0; 2p]) and 
has a coordinate z at time moment t) and field 
unidimensional complex amplitude  

( ) ( )2
0æ,ô / 2âF E UC=   as  [12,13]:                 
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with the corresponding boundary and initial 
conditions. The dynamical system studied has 
several controlling parameters which are char-
acteristic for distributed relativistic electron-
waved self-vibrational systems: i) electric 
length of an interaction space N; ii) bifurcation 
parameter CNL =  (here  C- is the known 
Piers parameter) ; iii)  relativistic factor, which 
is determined as: 

            
                           .          (2)

As input parameters there were taken follow-
ing initial values: relativistic factor g0=1.5 (fur-
ther we will increase g0  in 2 and 4 times), electri-
cal length of the interaction space /(0 plkN =
=10, electrons speed v0=0.75c, vгр=0.25c, dis-
sipation parameter D = 5Db, starting reflection 
parameters: s = 0.5, r=0.7, 0< <2p . A choice 

of j due to the fact that the dependence upon it 
is periodic. The influence of reflections leads to 
the fact that bifurcational parameter L begins to 
be dependent on the phase j of  the reflection 
parameter (see discussion regarding it in [7,8]).

The basic idea of the construction of our ap-
proach to prediction of chaotic properties of 
complex systems is in the use of the traditional 
concept of a compact geometric att (CGA) in 
which evolves the measurement data, plus the 
neural networks (NNW) algorithm implementa-
tion [10-16]. Let us consider some scalar meas-
urements s(n) = s(t0 + nDt) = s(n), where t0 is 
the start time, Dt is the time step, and n is the 
number of the measurements.  The main task 
is to reconstruct phase space using as well as 
possible information contained in s(n). To do it, 
the method of using time-delay coordinates by 
Packard et al [17] can be used. The direct us-
ing lagged variables s(n+t) (here t is some inte-
ger to be defined) results in a coordinate system 
where a structure of orbits in phase space can 
be captured. A set of time lags is  used to create 
a vector in d dimensions, y(n)= [s(n), s(n + t), 
s(n + 2t), .., s(n +(d-1)t)], the required coor-
dinates are provided. Here the dimension d is 
the embedding dimension, dE. To determine the 
proper time lag at the beginning one should use 
the known method of the linear autocorrelation 
function (ACF) CL(d) and look for that time lag 
where CL(d) first passes through 0 [4].  The al-
ternative additional approach is provided by the 
average mutual information (AMI) method as 
an  approach with so called nonlinear concept of 
independence. The further next step is to deter-
mine the embedding dimension, dE, and corre-
spondingly to reconstruct a Euclidean space Rd 
large enough so that the set of points dA can be 
unfolded without ambiguity. The dimension, dE, 
must be greater, or at least equal, than a dimen-
sion of attractor, dA, i.e. dE > dA. To reconstruct 
the attractor dimension and to study the signa-
tures of chaos in a time series, one could use 
such methods as the correlation integral algo-
rithm (CIA) by Grassberger and Procaccia [21] 
or the false nearest neighbours (FNN) method   
by Kennel et al [18]. The principal question of 
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been in details presented in refs. [13-28], 
here we are limited only by a short  
representation. We use the standard non-
stationary theory [3-7], however, despite the 
above cited papers we take into account a 
number of effects, namely, influence of space 
charge,  dissipation, the waves reflections at 
the ends of the system and others (a 
modification of model of Refs.   [12,13]).  

The relativistic dynamics is described 
system of equations for unidimensional 
relativistic electron phase  0θ ζ,τ,θ  (which 
moves in the interaction space with phase 0 
(0[0; 2]) and has a coordinate  at time 
moment ) and field unidimensional complex 
amplitude     2
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with the corresponding boundary and initial 
conditions. The dynamical system studied 
has several controlling parameters which are 
characteristic for distributed relativistic 
electron-waved self-vibrational systems: i) 
electric length of an interaction space N; ii) 
bifurcation parameter 0/2 CNL   (here  C- 
is the known Piers parameter) ; iii)  
relativistic factor, which is determined as:  
             
                           2/.12

00 )1(   .          (2) 
 
As input parameters there were taken 
following initial values: relativistic factor 
0=1.5 (further we will increase 0  in 2 and 4 
times), electrical length of the interaction 
space )2/(0 lkN  =10, electrons speed 
v0=0.75c, vгр=0.25c, dissipation parameter D 
= 5Db, starting reflection parameters: s = 0.5, 
=0.7, 0< <2 . A choice of  due to the 
fact that the dependence upon it is periodic. 

The influence of reflections leads to the fact 
that bifurcational parameter L begins to be 
dependent on the phase  of  the reflection 
parameter (see discussion regarding it in 
[7,8]). 
The basic idea of the construction of our 
approach to prediction of chaotic properties 
of complex systems is in the use of the 
traditional concept of a compact geometric 
att (CGA) in which evolves the measurement 
data, plus the neural networks (NNW) 
algorithm implementation [10-16]. Let us 
consider some scalar measurements 
s(n) = s(t0 + nt) = s(n), where t0 is the start 
time, t is the time step, and n is the number 
of the measurements.  The main task is to 
reconstruct phase space using as well as 
possible information contained in s(n). To do 
it, the method of using time-delay 
coordinates by Packard et al [17] can be 
used. The direct using lagged variables 
s(n+) (here  is some integer to be defined) 
results in a coordinate system where a 
structure of orbits in phase space can be 
captured. A set of time lags is  used to create 
a vector in d dimensions, y(n)= [s(n), 
s(n + ), s(n + 2), .., s(n +(d1))], the 
required coordinates are provided. Here the 
dimension d is the embedding dimension, dE. 
To determine the proper time lag at the 
beginning one should use the known method 
of the linear autocorrelation function (ACF) 
CL() and look for that time lag where CL() 
first passes through 0 [4].  The alternative 
additional approach is provided by the 
average mutual information (AMI) method as 
an  approach with so called nonlinear concept 
of independence. The further next step is to 
determine the embedding dimension, dE, and 
correspondingly to reconstruct a Euclidean 
space Rd large enough so that the set of 
points dA can be unfolded without ambiguity. 
The dimension, dE, must be greater, or at 
least equal, than a dimension of attractor, dA, 

been in details presented in refs. [13-28], 
here we are limited only by a short  
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stationary theory [3-7], however, despite the 
above cited papers we take into account a 
number of effects, namely, influence of space 
charge,  dissipation, the waves reflections at 
the ends of the system and others (a 
modification of model of Refs.   [12,13]).  

The relativistic dynamics is described 
system of equations for unidimensional 
relativistic electron phase  0θ ζ,τ,θ  (which 
moves in the interaction space with phase 0 
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with the corresponding boundary and initial 
conditions. The dynamical system studied 
has several controlling parameters which are 
characteristic for distributed relativistic 
electron-waved self-vibrational systems: i) 
electric length of an interaction space N; ii) 
bifurcation parameter 0/2 CNL   (here  C- 
is the known Piers parameter) ; iii)  
relativistic factor, which is determined as:  
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As input parameters there were taken 
following initial values: relativistic factor 
0=1.5 (further we will increase 0  in 2 and 4 
times), electrical length of the interaction 
space )2/(0 lkN  =10, electrons speed 
v0=0.75c, vгр=0.25c, dissipation parameter D 
= 5Db, starting reflection parameters: s = 0.5, 
=0.7, 0< <2 . A choice of  due to the 
fact that the dependence upon it is periodic. 

The influence of reflections leads to the fact 
that bifurcational parameter L begins to be 
dependent on the phase  of  the reflection 
parameter (see discussion regarding it in 
[7,8]). 
The basic idea of the construction of our 
approach to prediction of chaotic properties 
of complex systems is in the use of the 
traditional concept of a compact geometric 
att (CGA) in which evolves the measurement 
data, plus the neural networks (NNW) 
algorithm implementation [10-16]. Let us 
consider some scalar measurements 
s(n) = s(t0 + nt) = s(n), where t0 is the start 
time, t is the time step, and n is the number 
of the measurements.  The main task is to 
reconstruct phase space using as well as 
possible information contained in s(n). To do 
it, the method of using time-delay 
coordinates by Packard et al [17] can be 
used. The direct using lagged variables 
s(n+) (here  is some integer to be defined) 
results in a coordinate system where a 
structure of orbits in phase space can be 
captured. A set of time lags is  used to create 
a vector in d dimensions, y(n)= [s(n), 
s(n + ), s(n + 2), .., s(n +(d1))], the 
required coordinates are provided. Here the 
dimension d is the embedding dimension, dE. 
To determine the proper time lag at the 
beginning one should use the known method 
of the linear autocorrelation function (ACF) 
CL() and look for that time lag where CL() 
first passes through 0 [4].  The alternative 
additional approach is provided by the 
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an  approach with so called nonlinear concept 
of independence. The further next step is to 
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space Rd large enough so that the set of 
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least equal, than a dimension of attractor, dA, 
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here we are limited only by a short  
representation. We use the standard non-
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with the corresponding boundary and initial 
conditions. The dynamical system studied 
has several controlling parameters which are 
characteristic for distributed relativistic 
electron-waved self-vibrational systems: i) 
electric length of an interaction space N; ii) 
bifurcation parameter 0/2 CNL   (here  C- 
is the known Piers parameter) ; iii)  
relativistic factor, which is determined as:  
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with the corresponding boundary and initial 
conditions. The dynamical system studied 
has several controlling parameters which are 
characteristic for distributed relativistic 
electron-waved self-vibrational systems: i) 
electric length of an interaction space N; ii) 
bifurcation parameter 0/2 CNL   (here  C- 
is the known Piers parameter) ; iii)  
relativistic factor, which is determined as:  
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with the corresponding boundary and initial 
conditions. The dynamical system studied 
has several controlling parameters which are 
characteristic for distributed relativistic 
electron-waved self-vibrational systems: i) 
electric length of an interaction space N; ii) 
bifurcation parameter 0/2 CNL   (here  C- 
is the known Piers parameter) ; iii)  
relativistic factor, which is determined as:  
             
                           2/.12

00 )1(   .          (2) 
 
As input parameters there were taken 
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0=1.5 (further we will increase 0  in 2 and 4 
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space )2/(0 lkN  =10, electrons speed 
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=0.7, 0< <2 . A choice of  due to the 
fact that the dependence upon it is periodic. 

The influence of reflections leads to the fact 
that bifurcational parameter L begins to be 
dependent on the phase  of  the reflection 
parameter (see discussion regarding it in 
[7,8]). 
The basic idea of the construction of our 
approach to prediction of chaotic properties 
of complex systems is in the use of the 
traditional concept of a compact geometric 
att (CGA) in which evolves the measurement 
data, plus the neural networks (NNW) 
algorithm implementation [10-16]. Let us 
consider some scalar measurements 
s(n) = s(t0 + nt) = s(n), where t0 is the start 
time, t is the time step, and n is the number 
of the measurements.  The main task is to 
reconstruct phase space using as well as 
possible information contained in s(n). To do 
it, the method of using time-delay 
coordinates by Packard et al [17] can be 
used. The direct using lagged variables 
s(n+) (here  is some integer to be defined) 
results in a coordinate system where a 
structure of orbits in phase space can be 
captured. A set of time lags is  used to create 
a vector in d dimensions, y(n)= [s(n), 
s(n + ), s(n + 2), .., s(n +(d1))], the 
required coordinates are provided. Here the 
dimension d is the embedding dimension, dE. 
To determine the proper time lag at the 
beginning one should use the known method 
of the linear autocorrelation function (ACF) 
CL() and look for that time lag where CL() 
first passes through 0 [4].  The alternative 
additional approach is provided by the 
average mutual information (AMI) method as 
an  approach with so called nonlinear concept 
of independence. The further next step is to 
determine the embedding dimension, dE, and 
correspondingly to reconstruct a Euclidean 
space Rd large enough so that the set of 
points dA can be unfolded without ambiguity. 
The dimension, dE, must be greater, or at 
least equal, than a dimension of attractor, dA, 
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studying any complex chaotic system is to build 
the corresponding prediction model and define 
how predictable is a chaotic system. The new 
element of our approach is using the NNW al-
gorithm in forecasting nonlinear dynamics of 
chaotic systems [9,10]. In terms of the neuro-
informatics and neural networks theory the 
process of modelling the evolution of the sys-
tem can be generalized to describe some evo-
lutionary dynamic neuro-equations. Imitating 
the further evolution of a system within NNW 
simulation with the corresponding elements of 
the self-study, self- adaptation, etc., it becomes 
possible to significantly improve the prediction 
of its evolutionary dynamics. The fundamental 
parameters to be computed are the Kolmogorov 
entropy (and correspondingly the predictabil-
ity measure as it can be estimated by the Kol-
mogorov entropy), the Lyapunov’s exponents 
(LE), the Kaplan-Yorke dimension (KYD) etc. 
The LE are usually defined as asymptotic aver-
age rates and they are related to the eigenvalues 
of the linearized dynamics across the attractor. 
Naturally, the knowledge of the whole LE al-
lows to determine other important invariants 
such as the Kolmogorov entropy and the at-
tractor’s dimension. The Kolmogorov entropy 
is determined by the sum of the positive LE. 
The estimate of the dimension of the attractor 
is provided by the Kaplan and Yorke conjecture  

∑ ,  where j is such that ∑  

and ∑ , and the LE are taken in descend-

ing order. In Figure 1 we present the flowchart 
of the our combined chaos-geometric and NNW 
computational approach to nonlinear analysis 
and prediction of dynamics of any complex sys-
tem [10-30]. 

In figure 2 we list the data on the tempo-
ral dependence of normalized field amplitude 

( ) ( )2
0æ,ô / 2âF E UC=   (our data subject dissipa-

tion, the influence of space charge, the effect of 
reflections waves) at the values of the bifurcation 
parameter L:(a) – 3.5, (b) – 3.9 (other parameters: 
g0=1.5, 10, s=0.5, r=0.7, =1.3p).

Figure 1. Flowchart of the combined chaos-geometric 
approach and NNW to nonlinear analysis and prediction 

of chaotic dynamics of the complex systems (devices)

Figures 1a,b are corresponding to the regimes 
of periodical automodulation (a) and hyper cha-
otic regime (b). It is worth to note that our re-
sults obtained without accounting for the reflec-
tion effect are very well correlated with the data 
by Ryskin-Titov in Ref. [7], where it has been in 
details studied the RBWT dynamics with. 

i.e. dE > dA. To reconstruct the attractor 
dimension and to study the signatures of 
chaos in a time series, one could use such 
methods as the correlation integral algorithm 
(CIA) by Grassberger and Procaccia [21] or 
the false nearest neighbours (FNN) method   
by Kennel et al [18]. The principal question 
of studying any complex chaotic system is to 
build the corresponding prediction model and 
define how predictable is a chaotic system. 
The new element of our approach is using the 
NNW algorithm in forecasting nonlinear 
dynamics of chaotic systems [9,10]. In terms 
of the neuro-informatics and neural networks 
theory the process of modelling the evolution 
of the system can be generalized to describe 
some evolutionary dynamic neuro-equations. 
Imitating the further evolution of a system 
within NNW simulation with the 
corresponding elements of the self-study, 
self- adaptation, etc., it becomes possible to 
significantly improve the prediction of its 
evolutionary dynamics. The fundamental 
parameters to be computed are the 
Kolmogorov entropy (and correspondingly 
the predictability measure as it can be 
estimated by the Kolmogorov entropy), the 
Lyapunov’s exponents (LE), the Kaplan-
Yorke dimension (KYD) etc. The LE are 
usually defined as asymptotic average rates 
and they are related to the eigenvalues of the 
linearized dynamics across the attractor. 
Naturally, the knowledge of the whole LE 
allows to determine other important 
invariants such as the Kolmogorov entropy 
and the attractor's dimension. The 
Kolmogorov entropy is determined by the 
sum of the positive LE. The estimate of the 
dimension of the attractor is provided by the 
Kaplan and Yorke conjecture  





j

i
jiL jd

1
1 ||/  ,  where j is such that 

0
1




j

i
i  and 0

1

1






j

i
i , and the LE are taken in 

descending order. In Figure 1 we present the 
flowchart of the our combined chaos-
geometric and NNW computational approach 
to nonlinear analysis and prediction of 
dynamics of any complex system [10-30].  
 

I. General analysis of the dynamical 
problem, processing dynamical variable 

series for studied complex system 
(preliminary general analysis of 

dynamics, evolutionary differential 
equations treating,…) 

 
II. Chaos-geometric method: 

assessment of the presence of chaos: 
1. The Gottwald-Melbourne test:  

K → 1 – chaos; 
2. Fourier decompositions, irregular 

nature of change – chaos; 
3. Spectral analysis, Energy spectra 
statistics, the Wigner distribution, the 

spectrum of power, "Spectral rigidity"; 
 

III. The geometry of phase space. 
Fractal Geometry: 

4. Computation time delay τ using 
ACF or AMI; 

5. Determining embedding dimension dE 
by the CIA method or FNN points; 
6. Calculation multi-fractal spectra. 

Wavelet analysis; 
 

IV. Prediction model: 
7. Computing global LE:  ; KYD dL, 
average predictability measure Prmax; 

8. Determining the number of FNN points 
for the best prediction results; 

9. Methods of nonlinear prediction: 
nonlinear parameterized function; NNW; 

optimized trajectories (propagators) 
algorithms, ...; 

 
Figure 1. Flowchart of the combined 

chaos-geometric approach and NNW to 
nonlinear analysis and prediction of chaotic 
dynamics of the complex systems (devices) 

 
In figure 2 we list the data on the temporal 
dependence of normalized field amplitude 



47

Figure 2. Data on the time dependence of normalized 
field amplitude F(ζ,τ)(our data with accounting  dis-
sipation, the influence of space charge and an effect of 
wave reflections) at the values of the bifurcation pa-
rameter L: (a) 3.0 (b) 4.0 (other parameters: γ0=1.5, 

10, s=0.5, ρ=0.7, =1.3π).

In table 1 we list our data on  the correla-
tion dimension d2, embedding dimension, deter-
mined on the basis of false nearest neighbours 
algorithm (dN) with percentage of false neigh-
bours (%).  calculated for different values of lag  
t (data on fig1b, regime of a chaos).

In Table 2 we list our computing data on 
the  Lyapunov exponents (LE), the dimension 
of the Kaplan-York attractor, the Kolmogorov 
entropy Kentr. 

Table 1. 
Correlation dimension d2, embedding di-

mension, determined on the basis of false 
nearest neighbours algorithm (dN) with per-
centage of false neighbours (%) calculated 

for different values of lag τ

t d2 (dN)
60 8.2 10 (12)
8 6.5 8 (2.1)
10 6.5 8 (2.1)

Table 2. 
The  Lyapunov exponents (LE), the 

dimension of the Kaplan-York attractor, the 
Kolmogorov entropy Kentr. (our data)

l1 l2 l3 l4 K

0.508 0.196 -0.0001 -0.0003 0.704

For studied series there are the positive and 
negative LE values.The resulting KYD in both 
cases are very similar to the correlation dimen-
sion (calculated by the algorithm by Grassberg-
er-Procachia). More important is the analysis 
of the RBWT nonlinear dynamics in the plane 
“relativistic factor – bifurcation parameter.” 

The numerical solution has shown that under 
the realistic values of the dissipation parameter, 
the effect is reduced to the shift of the value 
of the bifurcation parameter L towards the in-
crease. The most interesting, in our opinion, is 
the results of the analysis of the change of the 
nonlinear dynamics of the considered RBWT 
in the plane “relativistic factor - bifurcation pa-
rameter”. In this aspect, in fact, the three par-
ametric nonlinear dynamics of the RBWT are 
fundamentally different from the dynamics of 
processes in the non-relativistic BWT. In Fig-
ure 3 we refer to our calculated diagram which 
quantitatively shows the limits of automodula-
tion (line I) on the plane of parameters: L-g0. 
Note that line II limits the region where the par-
ticle rotation takes place, that is, the used theo-
retical model (1) works. A characteristic feature 
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0ζ,τ / 2βF E UC  (our data subject 

dissipation, the influence of space charge, the 
effect of reflections waves) at the values of 
the bifurcation parameter L:(a) – 3.5, (b) – 
3.9 (other parameters: 0=1.5, N 10, s=0.5, 
=0.7,  =1.3). 

 

 
(a) 

 
(b) 

Figure 2. Data on the time dependence of 
normalized field amplitude F(,  )(our data 
with accounting  dissipation, the influence of 

space charge and an effect of wave 
reflections) at the values of the bifurcation 

parameter L: (a) 3.0 (b) 4.0 (other 
parameters: 0=1.5, N 10, s=0.5, =0.7, 

 =1.3). 
 
Figures 1a,b are corresponding to the regimes 
of periodical automodulation (a) and hyper 
chaotic regime (b). It is worth to note that our 
results obtained without accounting for the 
reflection effect are very well correlated with 
the data by Ryskin-Titov in Ref. [7], where it 
has been in details studied the RBWT 
dynamics with.  

In table 1 we list our data on  the 
correlation dimension d2, embedding 
dimension, determined on the basis of false 
nearest neighbours algorithm (dN) with 
percentage of false neighbours (%).  
calculated for different values of lag   (data 
on fig1b, regime of a chaos). 
 

Table 1. Correlation dimension d2, 
embedding dimension, determined on the 

basis of false nearest neighbours algorithm 
(dN) with percentage of false neighbours (%) 

calculated for different values of lag   
 d2 (dN) 

60 8.2 10 
(12) 

8 6.5 8 
(2.1) 

10 6.5 8 
(2.1) 

 
In Table 2 we list our computing data on the  
Lyapunov exponents (LE), the dimension of 
the Kaplan-York attractor, the Kolmogorov 
entropy Kentr.  

 
Table 2. The  Lyapunov exponents (LE), the  
dimension of the Kaplan-York attractor, the 

Kolmogorov entropy Kentr. (our data) 
1 2 3 4 K 

0.508 0.196 -0.0001 0.0003 0.704 
 

For studied series there are the 
positive and negative LE values.The 
resulting KYD in both cases are very similar 
to the correlation dimension (calculated by 
the algorithm by Grassberger-Procachia). 
More important is the analysis of the RBWT 
nonlinear dynamics in the plane "relativistic 
factor – bifurcation parameter."  
The numerical solution has shown that under 
the realistic values of the dissipation 
parameter, the effect is reduced to the shift of 
the value of the bifurcation parameter L 
towards the increase. The most interesting, in 
our opinion, is the results of the analysis of 
the change of the nonlinear dynamics of the 
considered RBWT in the plane "relativistic 
factor - bifurcation parameter". In this aspect, 
in fact, the three parametric nonlinear 
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of Figure 3 is the presence of the “beak” effect, 
which, depending on the relativistic factor, goes 
far into the domain of automodulation. 

Figure 3. The boundaries of automodulation (line I) on 
the plane of parameters:L-g0.  

                       
3. Conclusions
In this  work we have performed an advanced 

modelling and for the first time forecasting an 
emission spectrum and nonlinear dynamics el-
ements for relativistic backward-wave tube 
(RBWT) with accounting for  dissipation and 
space charge effects etc. The temporal depend-
ences of the normalized field amplitude (power) 
in a wide range of variation of the controlling pa-
rameters (electric length of an interaction space 
N, bifurcation parameter L and relativistic factor 
g0) are  computed. The dynamic and topological 
invariants of the RBWT dynamics in auto-mod-
ulation and chaotic regimes such as correlation 
dimensions values, embedding, Kaplan-York 
dimensions, Lyapunov’s exponents, Kolmogo-
rov entropy etc are calculated. diagram which 
quantitatively shows the limits of self-modula-
tion (line I) on the plane of parameters:L-g0 .is 
calculated. It has been discovered the “beak” ef-
fect (on the plane of parameters L, g0), which, 
depending on the relativistic factor, goes far into 
the domain of automodulation for the RBWT 
studied.   
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3. Conclusions 
In this  work we have performed an 

advanced modelling and for the first time 
forecasting an emission spectrum and 
nonlinear dynamics elements for relativistic 
backward-wave tube (RBWT) with 
accounting for  dissipation and space charge 
effects etc. The temporal dependences of the 
normalized field amplitude (power) in a wide 
range of variation of the controlling 
parameters (electric length of an interaction 
space N, bifurcation parameter L and 
relativistic factor 0) are  computed. The 
dynamic and topological invariants of the 
RBWT dynamics in auto-modulation and 
chaotic regimes such as correlation 
dimensions values, embedding, Kaplan-York 
dimensions, Lyapunov’s exponents, 
Kolmogorov entropy etc are calculated. 
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discovered the "beak" effect (on the plane of 
parameters L, 0), which, depending on the 

relativistic factor, goes far into the domain of 
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CHAOTIC DYNAMICS OF RELATIVISTIC BACKWARD-WAVE TUBE WITH 
ACCOUNTING FOR SPACE CHARGE FIELD AND DISSIPATION EFFECTS: 

NEW EFFECTS

Summary.
We have performed an advanced modelling and for the first time forecasting an emission spec-

trum and nonlinear dynamics elements for relativistic backward-wave tube (RBWT) with account-
ing for  dissipation and space charge effects etc. The temporal dependences of the normalized field 
amplitude (power) in a wide range of variation of the controlling parameters (electric length of an 
interaction space N, bifurcation parameter L and relativistic factor g0) are  computed. The dynamic 
and topological invariants of the RBWT dynamics in auto-modulation and chaotic regimes such 
as correlation dimensions values, embedding, Kaplan-York dimensions, Lyapunov’s exponents, 
Kolmogorov entropy etc are calculated. It has been discovered the «beak» effect on the plane of 
parameters:  bifurcation Piers-like parameter L – relativistic factor  g0, which, depending on the 
relativistic factor, goes far into the domain of automodulation.  

Key words: relativistic backward-wave tube, chaos, non-linear methods
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А. В. Глушков, А. В. Цудик, Д. А. Новак, О. В. Дубровский

ХАОТИЧЕСКАЯ ДИНАМИКА РЕЛЯТИВИСТСКОЙ ЛАМПЫ ОБРАТНОЙ ВОЛНЫ 
С УЧЕТОМ ВЛИЯНИЯ ПОЛЯ ПРОСТРАНСТВЕННОГО ЗАРЯДА 

И ДИССИПАЦИИ: НОВЫЕ ЭФФЕКТЫ

Резюме.
Представлены результаты моделирования элементов нелинейной динамики для реляти-

вистской обратной волны (РЛОВ) с учетом эффектов диссипации и поля пространственного 
заряда и др.  Временные зависимости нормированной амплитуды поля (мощности) вычис-
лены в широком диапазоне вариаций управляющих параметров (электрическая длина про-
странства взаимодействия N, параметр бифуркации L и релятивистский фактор g0). Рассчи-
таны динамические и топологические инварианты динамики РЛОВ в автомодуляционном 
и хаотичном режимах, в частности, значения корреляционной размерности, размерности 
вложения, Каплана-Йорка, показатели Ляпунова, энтропия Колмогорова и др. Обнаружен 
эффект «клюва» на плоскости параметров: бифуркационный параметр L - релятивистский 
фактор g0.

Ключевые слова: релятивистская лампы обратной волны, хаос, нелинейные методы
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О. В. Глушков, А. В. Цудік, Д. А. Новак, О. В. Дубровський

ХАОТИЧНА ДИНАМІКА РЕЛЯТИВІСТСЬКОЇ ЛАМПИ ЗВЕРНЕНОЇ ХВИЛІ  З 
УРАХУВАННЯМ  ВПЛИВУ ПОЛЯ ПРОСТОРОВОГО ЗАРЯДУ ТА ДИСИПАЦІЇ: 

НОВІ ЕФЕКТИ

Резюме.
Представлені результати моделювання спектру випромінювання та елементів нелінійної 

динаміки для релятивістської зворотної хвилі (РЛЗХ) з урахуванням  ефектів дисипації та 
поля просторового заряду тощо. Часові залежності нормированної амплітуди поля (потуж-
ності) обчислені в широкому діапазоні варіацій керуючих параметрів (електрична довжина 
простору взаємодії N, параметр біфуркації L і релятивістський фактор g0). Розраховані дина-
мічні та топологічні інваріанти динаміки РЛЗХ в автомодуляційному та хаотичному режи-
мах, зокрема, значення кореляційної розмірності, розмірності вкладення, Каплана-Йорка, 
показники Ляпунова, ентропія Колмогорова тощо. Виявлено ефект «дзьоба» на площині па-
раметрів: біфуркаційний параметр L - релятивістський фактор g0.

Ключові слова: релятивістська лампи зворотної хвилі, хаос, нелінійні методи
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LUMINESCENCE OF NANOSCALE TIN DIOXIDE. REVIEW

The article presents a brief review of luminescence in nanoscale tin dioxide. The luminescence caused by its 
intrinsic defects, the luminescence associated with impurities, the mechanisms of luminescence in tin dioxide are 
considered. The results of research by various authors presented in this review show the promising use of tin dioxide 
in optoelectronics and LED technology.

Introduction
Requirements for modern electronic display 

devices stimulate the search for new luminescent 
materials. Nanoscale forms of compounds that 
are not classical phosphors help in solving new 
electronics’ problems. One of these compounds 
is tin dioxide. In recent years, studies of the lu-
minescence of various nanoscale forms of pure 
and doped SnO2, as well as composite com-
pounds and heterojunctions using it, have been 
activated. This interest is due to the promising 
use of such materials as phosphors [1], in LED 
applications [2], in solid-state optical amplifiers 
and tunable lasers [3], etc. Thermoluminescence 
of tin dioxide doped by Europium [4] is used as 
a detection phenomenon for dosimetry purposes. 
Stannates of calcium, barium and strontium with 
a perovskite-like structure have attracted the at-
tention of researchers to create IR phosphors as 
an alternative to expensive phosphors. [5].

Low-temperature luminescence of crystal-
line tin dioxide was described in 1979 [6]. In the 
ultraviolet spectrum region (~ 350-355 nm), the 
intrinsic luminescence band of SnO2 is located. 
In the visible range, at low temperatures, wide 
photoluminescence (PL) bands in the range of 
2 and 2.5 eV [7, 8] are observed in bulk sam-
ples of tin dioxide, which are associated with 
electron transitions in the interstitial tin/oxygen 
vacancy. With increasing temperature, the in-
tensity of such a PL decreases, the PL becomes 
almost invisible at room temperature. The PL 

spectra of nanoscale samples of tin dioxide dif-
fer from the spectra of the bulk material, which 
was shown by a number of researchers [9]. Pho-
toluminescence in nanoscale SnO2 is increas-
ingly observed at higher temperatures [10-12].

A brief review of luminescence in nanoscale 
tin dioxide will be presented in this paper. 

Luminescence in nanoscale forms of tin 
dioxide

Glow due to its intrinsic defects. The edge lu-
minescence of tin dioxide nanoscale forms was 
recorded by researchers in the ultraviolet region 
of the spectrum. For example, in [13] it was ob-
served in transparent conductive thin films at 4.18 
eV (~ 300 nm), and in [14] - at 333 nm. The dif-
ferences in values are explained by the difference 
in the sizes of the nanocrystallites that form the 
film – the smaller it is, the greater is the energy of 
the peak of the edge luminescence.

In addition to the main UV peak of its intrin-
sic luminescence, the researchers report a whole 
set of radiation peaks in the visible region. As a 
rule, researchers observe bands in the blue-vio-
let and orange-red regions of the spectrum. For 
example, Meier and colleagues [9] observed a 
PL peak at a wavelength of 625 nm (E = 2 eV) in 
SnOx nanoparticles at liquid nitrogen tempera-
ture. Korean researchers [11] observed in thin 
films of SnO2 PL in the region of 2.5 eV, Bonu 
and colleagues [12] observed at 2.54 eV and 2.42 
eV and about 1.96 eV in SnO2 nanoparticles. In 
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[15], photoluminescence measurements in thin 
SnO2 films at room temperature with excita-
tion at 280 nm show two broad emission peaks 
(400 and 430 nm). In thin undoped tin dioxide 
films on silicon substrates in [3], a broad emis-
sion peak at 395 nm was observed. The behavior 
of the peak at 590 nm depending on the diam-
eter of tin dioxide nanowires was investigated 
in [16]. In addition to the edge luminescence at 
333 nm, the authors of [14] observed a band of 
480 nm at 13 K in thin SnO2 films deposited by 
the MOCVD method on α-Al2O3 substrates. In 
[17], luminescence in the visible region (577 
nm and 642 nm) of nanosized tin dioxide films 
was detected at room temperature. Violet (371-
382) nm and blue (400-415 and 430-470 nm) 
luminescence bands in nanorods and tin dioxide 
nanocrystals were studied in [18].

Luminescence associated with impurities. 
The luminescence was often observed by re-
searchers in tin dioxide with various additives, 
as well as in complex compounds, ceramics 
and heterojunctions with its use. For example, 
[19] found a violet photoluminescence band of 
about ~ 404 nm and weak red emission of about  
700 nm in fluorine-doped films of tin dioxide 
deposited by spray pyrolysis on glass substrates. 
The SnO2 quantum dots doped by Mn obtained 
using the solution combustion synthesis show 
the emission of orange radiation at about 590 
nm [20]. The effect of doping by Mn and Ce on 
the luminescence associated with oxygen va-
cancies (400 nm) was studied in [21]. The prop-
erties of the intense peak of ultraviolet lumines-
cence about 392 nm observed in SnO2:Sb films 
at room temperature were studied in detail [22]. 
The use of nanoscale tin dioxide as a doping 
luminescent material used to enhance radiation 
in conjunction with other additives in glass or 
other similar structures has been reported in the 
literature. In [23], strontium phosphate glasses 
were doped with SnO2 and Gd2O3, and they de-
tected enhanced blue emission at 421 nm. The 
authors of [24] used tin dioxide nanocrystals to 
enhance the fluorescence of Eu3+ in SiO2 glass 
by more than 150 times. The luminescence of 
SnO2 was modified in [25] by doping with Cr. 

The normalized emission spectra from [25] are 
shown in Fig. 1. In the doped Cr nanostruc-
tures, a new emission with a center of 1.5 eV 
was detected; Cr doping also contributes to the 
enhancement of luminescence associated with 
oxygen vacancies (1.94 eV).

Fig 1. The normalized emission spectra SnO2 and 
SnO2: Cr.[25]

Luminescence mechanisms in tin dioxide. 
The variety of radiation centers provides the 
possibility of widespread use of the material, but 
it causes difficulties in unambiguous associating 
of bands with specific defects and luminescence 
mechanisms.

The authors of [26] attributed the PL peak 
to approximately 3.307 eV (at 10 K) to the do-
nor – acceptor transition in high quality tin ox-
ide nanowires. The observed by Chen and col-
leagues phonon replicas of this band indicated 
a high crystallinity of the samples. With an in-
crease of temperature, donor energy of 32 meV 
was observed and the nature of the luminescence 
changed to recombination of a free electron on an 
acceptor with a shift in the emission maximum 
towards lower energies. They also observed an 
emission band with a maximum of 3.355 eV, the 
nature of which the authors attributed to radia-
tive recombination on neutral donors. The rela-
tive intensity of this band decreases faster and 
disappears completely at about 70 K, which is 
the characteristic behavior of excitons associ-

films at room temperature with excitation at 
280 nm show two broad emission peaks (400 
and 430 nm). In thin undoped tin dioxide films 
on silicon substrates in [3], a broad emission 
peak at 395 nm was observed. The behavior of 
the peak at 590 nm depending on the diameter 
of tin dioxide nanowires was investigated in 
[16]. In addition to the edge luminescence at 
333 nm, the authors of [14] observed a band of 
480 nm at 13 K in thin SnO2 films deposited 
by the MOCVD method on α-Al2O3 substrates. 
In [17], luminescence in the visible region 
(577 nm and 642 nm) of nanosized tin dioxide 
films was detected at room temperature. Violet 
(371-382) nm and blue (400-415 and 430-470 
nm) luminescence bands in nanorods and tin 
dioxide nanocrystals were studied in [18]. 
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Luminescence mechanisms in tin dioxide. 

The variety of radiation centers provides the 
possibility of widespread use of the material, 
but it causes difficulties in unambiguous 
associating of bands with specific defects and 
luminescence mechanisms. 

The authors of [26] attributed the PL peak 
to approximately 3.307 eV (at 10 K) to the 
donor – acceptor transition in high quality tin 
oxide nanowires. The observed by Chen and 
colleagues phonon replicas of this band 
indicated a high crystallinity of the samples. 
With an increase of temperature, donor energy 
of 32 meV was observed and the nature of the 
luminescence changed to recombination of a 
free electron on an acceptor with a shift in the 
emission maximum towards lower energies. 
They also observed an emission band with a 
maximum of 3.355 eV, the nature of which the 
authors attributed to radiative recombination 
on neutral donors. The relative intensity of this 
band decreases faster and disappears 
completely at about 70 K, which is the 
characteristic behavior of excitons associated 
with neutral donors and their transition to a 
free state with increasing temperature. At 
room temperature (300 K) all PL bands form a 
broad emission band at 3.18 eV. 
Unfortunately, the authors did not associate 
the observed luminescence with specific 
defects — interstitial tin, dangling bonds, or 
oxygen vacancies. 
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ated with neutral donors and their transition 
to a free state with increasing temperature. At 
room temperature (300 K) all PL bands form a 
broad emission band at 3.18 eV. Unfortunately, 
the authors did not associate the observed lumi-
nescence with specific defects — interstitial tin, 
dangling bonds, or oxygen vacancies.

Radiation in the region of about 400 nm has 
several explanations in the literature. Thus, in 
[27], a broad peak of about 396 nm (~ 3.14 eV) 
was reported in thin SnO2 films, the origin of 
which was associated with the nanodimension 
of crystallites and defects in the film. The radia-
tion at 400 nm [28] was explained by an electron 
transition to the levels of defects in the band gap, 
such as oxygen vacancies. At the same time, 
they considered three different charge states of 
oxygen vacancies in the oxide: Vo

0, Vo
+ and Vo

++. 
The model of visible radiation at 400 nm thin 
SnO2 films included the formation of an exciton 
upon photoexcitation. After tunneling deep into 
the film previously trapped on the surface or 
on the center of Vo

+ hole, recombination occurs 
with an electron in a deep trap with the forma-
tion of center Vo

++:

Vo
+ + h → Vo

++
 
Thereafter, the visible emission at 400 nm 

can appear due to the recombination of a con-
duction band electron with the Vo

++ center:

Vo
++ + e → Vo

+ + hν

A decrease in the peak intensity of 400 nm 
with the annealing temperature increase is in 
favor of this mechanism, since it increases the 
size of the films’ crystallites. As a result, the 
ratio of surface to volume, and the number of 
surface defects and the number of oxygen va-
cancies decreases as a result of their recombina-
tion with oxygen diffusing into the film volume. 
In another paper, these authors [21] successfully 
proposed to introduce Ce3+ and Mn2+ ions into 
particles of tin dioxide to increase the number 
of oxygen vacancies and to increase the lumi-
nescence intensity.

In [29], in the photoluminescence spectra 
of cubic SnO2 nanocrystals, a double peak was 
observed in the violet region between 360 and 
400  nm. The energy separation between the two 

sub- peaks increased with the size of the nano-
crystals. According to the authors, this is due to 
the edge recombination of the strip caused by 
different depths of oxygen vacancies. The con-
ducted Density functional theory calculations 
showed that changes in the depth of oxygen va-
cancies lead to splitting of the peak of the va-
lence band, which leads to the observed splitting 
and shift of the double peak[29].

In [30], the photoluminescence of the 417 nm 
band of a SnO2 nanocrystalline powder obtained 
by direct chemical deposition was studied. The 
emission was associated with the recombination of 
electrons on oxygen vacancies with photoexcited 
holes of the valence band. With an increase in the 
annealing temperature, red mixing and a decrease 
in the luminescence intensity were observed, due 
to a decrease in the number of oxygen vacancies 
with an increase in the crystallite size from 9 to 43 
nm. As we see, in this case, and in the case of 400 
nm luminescence in thin nanoscale films of tin di-
oxide [28], the reason for the decrease in intensity 
is the same – a decrease in the number of oxygen 
vacancies in the samples. 

Meier and colleagues [9] detected the PL 
peak of nanosized tin dioxide particles at liquid 
nitrogen temperature at a wavelength of 625 nm 
(E = 2 eV). The radiation wavelength did not 
depend on the particle size, which indicates the 
group defect responsible for it, according to the 
authors, associated with oxygen vacancies. In-
terestingly, the PL intensity increased with an 
increase in the size of nanoparticles from 5 to 20 
nm and as the samples approached stoichiom-
etry from SnO1.5 to SnO1.7 (Fig. 2).

Fig. 2. The results of PL measurements for particles of 
various sizes and degrees of oxidation [9].
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This fact correlated with the observation of 
a high density of electronic states inside the 
band gap from absorption measurements pre-
sented by the researchers there. The authors 
of this work associate this increase in intensity 
with a low rate of nonradiative recombination 
in SnO1.7 due to the low total density of defects. 
Obviously, ideally, in a defect-free SnO2 crystal, 
there are no defects providing PL. If the number 
of oxygen vacancies increases, the PL intensity 
will increase until nonradiative recombination 
processes dominate, as in the case of SnO1.5.

The PL observed in nanostructured tin di-
oxide films obtained using polymers [31] was 
detected at room temperature. The authors also 
associated a peak at 647 nm (1.9 eV) with oxy-
gen vacancies in samples whose PL results are 
shown in Fig. 3.

 

Fig. 3. The photoluminescence spectrum of SnO2 films 
with different concentrations of the precursor (0.05% 

PVA) at room temperature.

The difference in the energy values of the lu-
minescence peaks in the films obtained by the 
authors [9] and [31] may be due to both different 
temperatures during the experiments and differ-
ences in the structure of the samples studied by 
different authors. The authors of [31] also made 
the assumption that the band groups 2.17-2.2 eV 
in the films correspond to the luminescence cen-
ters representing interstitial tin atoms or clusters 
of these atoms, since it is known from reference 
data [32] that the free singly charged Sn atom 
has the spectrum band is 579 nm (2.15 eV). The 
presence of metal clusters in SnO2 films was 
previously established by the authors of [33], 

and their significant contribution to the electri-
cal conductivity and adsorption activity of SnO2 
layers was noted. In addition, it was shown in 
[34] that, at T = 723 K, at least 3 substances ex-
ist in films of tin dioxide: Sn, SnO, SnO2.

The authors from Korea [11] also associated 
their observed peaks in thin SnO2 films deposited 
by using CVD techniques in the 2.5-eV region 
with oxygen vacancies. Bonu and colleagues 
[12] also explained their observed luminescence 
at 2.54 eV and 2.42 eV with oxygen defects, 
namely in-plane and bridging ‘O’ vacancies. 
The authors observed a broad luminescence 
peak at about 1.96 eV in SnO2 nanoparticles, 
the authors associate with OH– hydroxyl groups 
on the surface of the particles. In work [35], the 
wide luminescence bands observed in the re-
gion of 350–550 nm were associated with defect 
states on the surface of SnO2 nanoparticles. As 
we see, surface states play an important role in 
the luminescence of tin dioxide nanoforms.

Radiation at 421 nm was explained by the 
authors [23] as the Sn band. Moreover, the addi-
tion of Gd2O3 to the strontium phosphate glasses 
doped with tin dioxide they studied increases the 
Sn2+/Sn4+ ratio, which contributes to enhanced 
blue emission of SnO2-such doped glasses. The 
band at 430 nm in [28] was explained by the 
contribution of interstitial tin.

Based on experimental results, Indian re-
searchers [18] proposed a schematic model for 
various relaxation processes in SnO2 nanocrys-
tals during photoexcitation (Fig.4). Visible ra-
diation of SnO2 nanocrystals was attributed by 
the authors to the transition of an electron from 
a level close to the edge of the conduction band 
to a deeply trapped hole in the volume (V0

++) 
of SnO2 nanocrystals. It was also shown that 
surface defects are more noticeable in smaller 
nanocrystals than in nanorods. It was found that 
the PL emission time and the decay time strong-
ly depend on the shape of the nanocrystals.

Studying the cathode luminescence of tin di-
oxide nanowires, [36] found that the CL bands 
centered at 1.90 and 2.20 eV belong to the sur-
face oxygen vacancies coordinated with tin at-
oms at an angle of 100°, and the CL bands cen-
tered at 2.37 and 2,75 eV, are associated with 

presented by the researchers there. The authors 
of this work associate this increase in intensity 
with a low rate of nonradiative recombination 
in SnO1.7 due to the low total density of 
defects. Obviously, ideally, in a defect-free 
SnO2 crystal, there are no defects providing 
PL. If the number of oxygen vacancies 
increases, the PL intensity will increase until 

nonradiative recombination processes 
dominate, as in the case of SnO1.5. 

The PL observed in nanostructured tin 
dioxide films obtained using polymers [31] 
was detected at room temperature. The authors 
also associated a peak at 647 nm (1.9 eV) with 
oxygen vacancies in samples whose PL results 
are shown in Fig. 3. 
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the luminescence centers representing 
interstitial tin atoms or clusters of these atoms, 
since it is known from reference data [32] that 
the free singly charged Sn atom has the 
spectrum band is 579 nm (2.15 eV). The 
presence of metal clusters in SnO2 films was 
previously established by the authors of [33], 
and their significant contribution to the 
electrical conductivity and adsorption activity 
of SnO2 layers was noted. In addition, it was 
shown in [34] that, at T = 723 K, at least 3 
substances exist in films of tin dioxide: Sn, 
SnO, SnO2. 

The authors from Korea [11] also 
associated their observed peaks in thin SnO2 
films deposited by using CVD techniques in 

the 2.5-eV region with oxygen vacancies. 
Bonu and colleagues [12] also explained their 
observed luminescence at 2.54 eV and 2.42 eV 
with oxygen defects, namely in-plane and 
bridging 'O' vacancies. The authors observed a 
broad luminescence peak at about 1.96 eV in 
SnO2 nanoparticles, the authors associate with 
OH– hydroxyl groups on the surface of the 
particles. In work [35], the wide luminescence 
bands observed in the region of 350–550 nm 
were associated with defect states on the 
surface of SnO2 nanoparticles. As we see, 
surface states play an important role in the 
luminescence of tin dioxide nanoforms. 

Radiation at 421 nm was explained by the 
authors [23] as the Sn band. Moreover, the 
addition of Gd2O3 to the strontium phosphate 
glasses doped with tin dioxide they studied 
increases the Sn2+/Sn4+ ratio, which 
contributes to enhanced blue emission of 
SnO2-such doped glasses. The band at 430 nm 
in [28] was explained by the contribution of 
interstitial tin. 
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vacancies on the surface of oxygen, coordinated 
at 130°. The model of radiative transitions in the 
tin dioxide nanosized forms studied in [37] also 
takes into account the participation of coordi-
nated oxygen vacancies in photoluminescence 
(Fig. 5). 

Fig. 4. A schematic model for various relaxation pro-
cesses in SnO2 nanocrystals upon photoexcitation [18].

Fig. 5. Generalized scheme of levels and radiative 
transitions in photoluminescence of SnO2 [37].

The results of research by various authors, 
presented in this review, allow us to consider tin 
dioxide not only one of the most popular and 
promising materials in sensorics, but also hav-
ing wide applications in optoelectronics and 
LED technology.

References
1. Arai T., Adachi S. Simple wet chemi-

cal synthesis and photoluminescence 
characterization of SnO2:Eu3+ red-
dish-orange phosphor// J. Lumines-
cence.-2014.- Vol.153, №9.- P.46-53 

2. Yang Y., Li S., Liu F., Zhang N., Fang 
G. Bidirectional electroluminescence 
from p-SnO2/i-MgZnO/n-ZnO het-
erojunction light-emitting diodes// J. 
Luminescence.- 2017.-Vol.186,N6.- 
P.223-228

3. Bouzidi C., Elhouichet H., Moadhen 
A.. Yb3+ effect on the spectroscopic 
properties of Er–Yb codoped SnO2 
thin films// J. Luminescence. - 2011. - 
Vol.131, Iss.12.- P.2630-2635.

4. Bajpai N., Khan S.A., Kher R.S., 
Bramhe N., Tiwari A. Thermolumi-
nescence investigation of sol–gel 
derived and γ-irradiated SnO2:Eu3+ 
nanoparticles// J. Luminescence.- 
2014.- Vol.145, N1.-  P. 940-943

5. Марьина У.А. Разработка техноло-
гии синтеза и исследование люми-
нофоров на основе CaSnO3, BaSnO3, 
SrSnO3, активированных редкозе-
мельными ионами. Дисс…. канд. 
техн. наук. Ставрополь. 2017

6. Агекян В.Т. Сложный спектр экс-
итонно-примесных комплексов в 
дефектных кристаллах двуокиси 
олова. Письма в ЖЭТФ.-1979.-
29,№8.-С.475-479.

7. Рябцев С.В. Электрофизические 
и оптические свойства различных 
наноформ оксида олова, Автореф. 
дисс. … докт. физ.-мат. наук, Воро-
неж, 2011. 46 c.

8. Агекян В.Ф., Серов А.Ю., Фило-
софов Н.Г. Излучение света кри-
сталлами двуокиси олова// ФТП.- 
2014.-Т.48,№4.-С.458-461

9. Meier C., Luttjohann S., Kravets V. 
G., Nienhaus H., Lorke A., Ifeacho P., 
Wiggers H., Schulz Ch., Kennedy M. 
K. and Kruis F. E. Vibrational and de-
fect states in SnOx nanoparticles// J. of 

Based on experimental results, Indian 
researchers [18] proposed a schematic model 
for various relaxation processes in SnO2 
nanocrystals during photoexcitation (Fig.4). 
Visible radiation of SnO2 nanocrystals was 
attributed by the authors to the transition of an 
electron from a level close to the edge of the 

conduction band to a deeply trapped hole in 
the volume (V0

++) of SnO2 nanocrystals. It was 
also shown that surface defects are more 
noticeable in smaller nanocrystals than in 
nanorods. It was found that the PL emission 
time and the decay time strongly depend on 
the shape of the nanocrystals. 

 

 
 

Fig.4. A schematic model for various relaxation processes in SnO2 nanocrystals upon 
photoexcitation [18]. 

 
Studying the cathode luminescence of tin 
dioxide nanowires, [36] found that the CL 
bands centered at 1.90 and 2.20 eV belong to 
the surface oxygen vacancies coordinated with 
tin atoms at an angle of 100°, and the CL 
bands centered at 2.37 and 2,75 eV, are 
associated with vacancies on the surface of 
oxygen, coordinated at 130°. The model of 
radiative transitions in the tin dioxide 
nanosized forms studied in [37] also takes into 
account the participation of coordinated 
oxygen vacancies in photoluminescence (Fig. 
4).  

The results of research by various authors, 
presented in this review, allow us to consider 
tin dioxide not only one of the most popular 
and promising materials in sensorics, but also 
having wide applications in optoelectronics 
and LED technology. 
 

 
 

Fig.5. Generalized scheme of levels and 
radiative transitions in photoluminescence of 

SnO2 [37]. 
 

 
 
 

 



57

Appl. Phys.-2006.- Vol.99.-113108.
10. Gu F., Wang Sh.F., Song Ch.F.,  

Lü M.K., Qi Y.X., Zhou G.J., Xu 
D., Yuan D.R.. Synthesis and lu-
minescence properties of SnO2 
nanoparticles// Chem. Phys. Lett.- 
2003.-Vol.372,Iss.3–4, P.451-454.

11. Jeong J., Choi S. P. and Hong K. J., 
Song H. J., Park J. S.. Structural 
and Optical Properties of SnO2 Thin 
Films Deposited by Using CVD 
Techniques// J. Korean Phys. Soc.- 
2006.-Vol.48,No.5.-P.960-963. 

12. Bonu V., Das A., Amirthapandian S., 
Dhara S., Tyagi A.K. Photolumines-
cence of oxygen vacancies and hy-
droxyl group surface functionalized 
SnO2 nanoparticles// Phys. Chem. 
Chem. Phys.- 2015.- 17.-P. 9794-
9801. 

13. Alhuthali A., El-Nahass M. M., Atta 
A. A., Abd El-Raheem M. M., Has-
sanien A. M. Study of topological 
morphology and optical properties of 
SnO2 thin films deposited by RF sput-
tering technique// J. Luminescence.- 
2015.- Vol.158, No2.-   P. 165-171.

14. Zhu Z., Ma J., Luan C., Kong L., 
Q. Yu. Structure and photolumines-
cence properties of epitaxial SnO2 
films grown on α-Al2O3 (012) by 
MOCVD// J. Luminescence.-2011.-
Vol.131,Iss.1.-P.88-91

15. Gu F., Wang Sh.F., Song Ch.F., Lü 
M.K., Cheng X.F., Liu S.W., Zhou 
G.J., Xu D., Yuan D.R.. Luminescence 
of SnO2 thin films prepared by spin-
coating methods// J Cryst Growth.- 
2004.-Vol.262.-P. 182-185.

16. Lee S.Y., Shin Y.H., Kim Y., Kim S., 
Ju S.. Emission characteristics of di-
ameter controlled SnO2 nanowires. 
J. Luminescence.- 2011.- Vol.131, 
Iss.12.-P. 2565-2568

17. Grinevich V.S., Smyntyna V.A., Fi-
levska L.M.. Photoluminescence of 
tin dioxide thin films obtained with 
the use of polymers// Photoelectron-

ics.- 2005. –No 14, P. 42-44.
18. Kar A., Kundu S., and Patra A. Sur-

face Defect-Related Luminescence 
Properties of SnO2 Nanorods and 
Nanoparticles// J. Phys. Chem. C.- 
2011.- Vol.115 (1).- P. 118–124.

19. Shewale P.S., Sim K.U.,  Kim Y.-
b., Kim, J.H. Moholkar A.V., Uplane 
M.D. Structural and photolumines-
cence characterization of SnO2:F thin 
films deposited by advanced spray 
pyrolysis technique at low substrate 
temperature J. Luminescence.- 2013.- 
Vol.139,No7.-P. 113-118.

20. Babu B., Kadam A. N., Rao G.T., Lee 
S.-W., J. Shim. Enhancement of visi-
ble-light-driven photoresponse of Mn-
doped SnO2 quantum dots obtained 
by rapid and energy efficient synthe-
sis// J. Luminescence.- 2018.-Vol.195, 
No3.- P. 283-289.

21. Gu F., Wang S.F., Lü M.K., Zhou G.J., 
Xu D., and Yuan D.R.. Photolumines-
cence Properties of SnO2 Nanoparti-
cles Synthesized by Sol−Gel Method// 
J. Phys.Chem. B.- 2004.- Vol.108(24).- 
P.8119-8123. 

22. Wang Y., Ma J., Ji F., Yu X., Ma H. 
Structural and photoluminescence 
characters of SnO2:Sb films depos-
ited by RF magnetron sputtering// J. 
Luminescence.- 2005.-Vol.114, Iss 1.- 
P.  71-76.

23. Tong Y., Yan Zh., Zeng H., Chen G. 
Enhanced blue emission of SnO2 
doped phosphate glasses by Gd2O3 
co-doping J. Luminescence.- 2014.- 
Vol.145, No1, P.438-442.

24. Nogami M., Enomoto T., Hayakawa 
T. Enhanced fluorescence of Eu3+ in-
duced by energy transfer from nano-
sized SnO2 crystals in glass// J. Lumi-
nescence, 2002.-Vol. 97, Iss.3–4.-P. 
147-152.

25. García-Tecedor M., Maestre D., Cre-
mades A., and Piqueras J.. Influence of 
Cr Doping on the Morphology and Lu-
minescence of SnO2 Nanostructures J. 



58

Phys. Chem. C.-2016.-Vol.120 (38).- 
P.22028–22034 

26. Chen R., Xing G. Z., Gao J., Zhang 
Z., Wu T. and Sun H.D.. Characteris-
tics of ultraviolet photoluminescence 
from high quality tin oxide nanow-
ires// Appl. Phys. Lett.- 2009.-Vol.95.-
061908.

27. Kim T.W., Lee D.U., Yoon Y.S., Mi-
crostructural, electrical, and optical 
properties of SnO2 nanocrystalline 
thin films grown on InP (100) sub-
strates for applications as gas sensor 
devices. J. Appl. Phys. 2000.-Vol.88.- 
P. 3759-3761.

28. Gu F., Wang Sh.F., Song Ch.F., Lü 
M.K., Cheng X. F., Liu S.W.,  Zhou 
G.J., Xu D., Yuan D.R.. Luminescence 
of SnO2 thin films prepared by spin-
coating methods. J Cryst. Growth.- 
2004.-Vol.262.-P.182-185.

29. Liu L.Z.,  Wu X.L.,  Xu J.Q., Li T. 
H.,  Shen J.C., and Chu P.K.. Oxygen-
vacancy and depth-dependent violet 
double-peak photoluminescence from 
ultrathin cuboid SnO2 nanocrystals// 
Appl. Phys. Lett.- 2012. Vol.100.- 
121903. 

30. Nehru L. C., Swaminathan V., Sanjee-
viraja C. Photoluminescence Studies 
on Nanocrystalline Tin Oxide Powder 
for Optoelectronic Devices, American 
J Mater. Science.- 2012.- Vol.2(2).- 
P.6-10.

31. Filevskaya L.N., Smyntyna V.A., 
Grinevich V.S. Surface and optical 
properties of nano SnO2 films for sen-
sor electronics. International Meet-
ing EVROSENSORS XX, September 
2006 Goteborg, Sweden. – p.96-97.

32. Зейдель А.Н., Прокофьев В.К., Рай-
ский С.М., Славный В.А., Шрейдер 
Е.Я. Таблицы спектральных линий. 
М., изд-во “Наука”.- 1977.- C. 679.

33. Витер Р.В., Сминтына В.А., Евту-
шенко Н.Г., Филевская Л.Н., Курков 
В.В., Исследование адсорбционно-
кинетических характеристик тон-
ких плёнок SnO2. Фотоэлектроника. 
– 2002. – Вып. 11. – С.109-113.

34. Ховив А.М., Логачева В.А., Новико-
ва О.В.. Особенности оксидирова-
ния пленок олова в условиях пони-
женного и атмосферного давления 
кислорода при воздействии ИК-
излучения. ВЕСТНИК ВГУ. Серия: 
Химия. Биология. Фармация.- 2004. 
– № 1. – С. – 101-106.

35. Lin T, Wan N, Xu J, Xu L, Chen KJ. 
Size-dependent optical properties of 
SnO2 nanoparticles prepared by soft 
chemical technique. J Nanosci Nano-
technol. – 2010. –  Vol.10,No7. –  
P.4357-4362.

36. Prades J.D., Arbiol J., Cirera A., Mo-
rante J.R., Avella M., Zanotti L., Co-
mini E., Faglia G., Sberveglieri G. 
Defect study of SnO2 nanostructures 
by cathodo-luminescence analysis: 
Application to nanowires. Sens and 
Actuat B.- 2007/- Vol.126.-P.6–12.

37. Хадия Н.М.А. Получение и иссле-
дование оптических свойств ните-
видных полупроводниковых окси-
дов SnO2 и In2O3 Автореф. дисс.…
канд. физ.– мат. Наук. Воронеж.– 
2011. – 16 стр. 

This article has been received in September 
2018



59

PACS 73.61.Le, 73.63.Bd

L. M. Filevska

LUMINESCENCE OF NANOSCALE TIN DIOXIDE. REVIEW

Summary
The article presents a brief review of luminescence in nanoscale tin dioxide. The luminescence 

caused by its own defects, the luminescence associated with impurities, the mechanisms of lumi-
nescence in tin dioxide are considered. The results of research by various authors presented in this 
review show the promising use of tin dioxide in optoelectronics and LED technology.

Key words: tin dioxide, nanoscale, luminescence.
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Л. М. Філевська 

ЛЮМІНЕСЦЕНЦІЯ НАНОРОЗМІРНОГО ДІОКСИДУ ОЛОВА. ОГЛЯД

Резюме
У статті подано короткий огляд люмінесценції в нанорозмірному диоксиде олова. 

Розглядається світіння, обумовлене його власними дефектами, люмінесценція, пов’язана з 
домішками, механізми люмінесценції в діоксиді олова. Результати досліджень різних авторів, 
представлені в цьому огляді, показують перспективність застосування двоокису олова для 
широке застосування в оптоелектроніці і світлодіодним техніці.

Ключові слова: діоксид олова, нанорозмір, люмінесценція

PACS 73.61.Le, 73.63.Bd

Л. Н. Филевская

ЛЮМИНЕСЦЕНЦИЯ НАНОРАЗМЕРНОГО ДИОКСИДА ОЛОВА. ОБЗОР

Резюме
В статье представлен краткий обзор люминесценции в наноразмерном диоксиде олова. 

Рассматривается свечение, обусловленное его собственными дефектами, люминесценция, 
связанная с примесями, механизмы люминесценции в диоксиде олова. Результаты иссле-
дований различных авторов, представленные в этом обзоре, показывают перспективность 
применения двуокиси олова в оптоэлектронике и светодиодной технике.

Ключевые слова: диоксид олова, наноразмер, люминесценция
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PHOTOELECTRON SPECTROSCOPY OF DIATOMIC MOLECULES: OPTIMIZED  
GREEN’S FUNCTIONS AND DENSITY FUNCTIONAL APPROACH 

We present the optimized version of the hybrid combined density functional theory (DFT) and the Green’s-functions 
(GF) approach to quantitative treating the diatomic photoelectron spectra. The  Fermi-liquid quasiparticle version of 
the density functional theory is used.   The density of states, which describe the vibrational structure in photoelectron 
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Fermi-liquid DFT formalism [1-8] and use of the 
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16]). The density of states is well approximated 
by using only the first order coupling constants 
in the one-particle approximation. It is important 
that the calculational procedure is significantly 
simplified with using the quasiparticle DFT for-
malism.  Thus quite simple method becomes 
a powerful tool in interpreting the vibrational 
structure of photoelectron spectra for different 
molecular systems.  

As usually (see details in refs. [1-12]), the 
quantity which contains the information about 
the ionization potentials (I.P.) and molecular vi-
brational structure due to quick ionization is the 
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with ni=1 (0), if  (if), f=1 (0) , (ijkl)f 
, where the index set v1 means that at least  

k  and l or i  and j are unoccupied, v2 that 
at most one of the orbitals is unoccupied, and  
v3  that  k  and j or l and  j  are 
unoccupied.  The s are the HF frequencies; 

sb , t
sb  are destruction and creation operators 

for vibrational quanta as  
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The interpretation of the above Hamiltonian 
and an exact solution of the one-body HF 
problem is given in refs. [1,2,11,12]. The 
usual way is to define the HF-single-particle 
component 0H  of the Hamiltonian (4) is as 
in Refs. [11,12]. Correspondingly in the one-
particle picture the density of occupied states 
is given by 
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In a diagrammatic method to get function 

)(єNk  one should calculate the 
GF )(' єGkk first [1,2,11,12]: 
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and the function )(єNk  can be found from 
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The direct method for calculation of Nk() as 
the imaginary part of the GF includes a 
definition of the vertical I.P. (V.I.P.s) of the 
reference molecule and then of Nk   .  The 
zeros of the functions 
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where  kop  denotes the k-th eigenvalue 
of the diagonal matrix of the one-particle 
energies added to matrix of the self-energy 
part, are the negative V. I. P. 's for a given 
geometry.  One can write [2,11,12]: 
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with ni=1 (0), iϵf  (if), ccf=1 (0) , (ijkl)ccf , 

where the index set v1 means that at least   and 

or  and are unoccupied, v2 that at most 
one of the orbitals is unoccupied, and  v3  that  

 and or and   are unoccupied.  The 

are the HF frequencies; ,  are destruction 
and creation operators for vibrational quanta as 
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The direct method for calculation of Nk(∈) as 
the imaginary part of the GF includes a defini-
tion of the vertical I.P. (V.I.P.s) of the reference 
molecule and then of Nk ( )∈ .  The zeros of the 
functions
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where ( )kop S+∈ denotes the k-th eigenvalue of 
the dia gonal matrix of the one-particle energies 
added to matrix of the self-energy part, are the 
negative V. I. P. ‘s for a given geometry.  One 
can write [2,11,12]:
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Expanding the ionic energy about the 
equilibrium geometry of the reference molecule 
in a power series of the normal coordinates of 
this molecule leads to a set of linear equations in 
the unknown normal coordinate shifts δQS, and 
new coupling constants are then:
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unoccupied.  The s are the HF frequencies; 
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The  coupling constants  and ′  are cal-
culated by the well-known perturbation expan-
sion of the self-energy part.   In second order 
one obtains:
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and the coupling constant gl, are written as [17]:
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The pole strength of the corresponding GF:
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Below we give another the definition of the 
pole strength corresponding to V. I. P.’s.  

3. Fermi-liquid quasiparticle density func-
tional theory

The  quasiparticle Fermi-liquid version of 
the DFT [1-3,8,17] is used to determine the cou-
pling constants etc. The  master equations can 
be obtained on the basis of variational principle, 
if we start from a Lagrangian of a molecule Lq. 
It should be defined as a functional of  quasipar-
ticle densities: 

∑

                 ∑ ∇            (17)

∑ ].[)( **
2 nr

The densities ν0 and ν1  are similar to the HF 
electron density and kinetical energy density 
correspondingly; the density ν2  has no an analog 
in the HF or DFT theory and appears as result of 
account for the energy dependence of the mass 

operator S. A Lagrangian Lq  can be written as 
a sum of a free Lagrangian and Lagrangian of 
interaction: Lq = Lq

0 + Lq
int, where the interac-

tion Lagrangian is defined in the form, which is 
characteristic for a standard  DFT  (as a sum of 
the Coulomb and exchange-correlation terms), 
however, it takes into account for the energy de-
pendence of a mass operator S :

212121
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                                                                 (18)

where F is an effective potential of the exchange-
correlation interaction. The constants βik are de-
fined in Ref. [8,17].  The single used constant 
β02  can be calculated by analytical way, but it 
is very useful to remember its connection with a 
spectroscopic factor Fsp of the system [18]:
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The terms ∂∂∑  and ∑ is directly linked 
[2,17]. In the terms of the Green function meth-
od expression (7) is in fact corresponding to 
the pole strength of the  Green’s function [2].  
The new element of an approach is  connected 
with using the DFT correlation functional of the 
Gunnarsson-Lundqvist, Lee-Yang-Parr (look 
details in ref. [13-16]).

3. Results and conclusions
In further calculation as potential XCV  we use 

the exchange-correlation pseudo-potential which 
contains the correlation (Gunnarsson-Lundqvist) 
potential and relativistic exchanger Kohn-Sham 
one [40-42]. As example in table 1 we present 
our calculational data for spectroscopic factors of 
some atoms together with available experimental 
data and results, obtained in the Hartree-Fock 
theory plus random phase approximation. As 
an object of studying we choose the diatomic 
molecule of N2 for application of the combined  
Green’s function method and quasiparticle DFT 
approach. The nitrogen molecule has been natu-
rally discussed in many papers. The valence V. I. 
P.  of N2 have been calculated [1,13,14,24] by the 
method of Green’s functions and there fore the 
pole strengths pk are known and the mean values 
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qk can be estimated. It should be reminded that 
the N2 molecule is the classical example where 
the known Koopmans’ theorem (KT) even fails 
in reproducing the sequence of the V. I. P. ‘s in 
the PE spectrum.   From the HF calculation of 
Cade et al.[24] one finds that including reorga-

nization the V. I. P. ‘s assigned by and 
improve while for π V. I. P. the good agreement 
between the Koopmans value and the experimen-
tal one is lost, leading to the same sequence as 
given by Koopmans’ theorem.  In Table 1 the ex-
perimental V. I. P. ‘s (a), the one-particle HF en-
ergies (b), the V. I. P. ‘s calculated by Koopmans’ 
theorem plus the contribution of reorganization 
(c), the V. I. P. ‘s calculated with Green’s func-
tions method (d), the combined Green functions 
and DFT approach (e), the similar our results (f).   

Table 1. 
The experimental and calculated V. I. P. 
(in eV) of N2 (Rk is the contribution of 

reorganization (see text)

Besides, the comparisons are made in Table 1 
with the multiconfigurational electron propaga-
tor method (MCEP) and  extended KT (EKT) 
theory (the extended KT has been implemented 
using multiconfigurational self-consistent field 
wave functions within different basis sets (I-IV)
[52], calculated with the GAMESS, HONDO, 

and SIRIUS programs. The EKT ionization en-

ergies for the   3  and 1  are comparable 
to the MCEP values. Note that our data are in 
physically reasonable agreement with the best 
theretixl values and experimental data. But the 
most important point of all consideration is con-
nected the principal possibility to reproduce 
diatomic spectra by applying a one-particle 
theory with accounting for the correlation and 
reorganiza tion effects. The combined DFT-GF  
theoretical approach can be prospectively used 
for quantitative treating photoelectron spectra of 
more complicated diatomic molecules. 
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corresponding to the pole strength of the  
Green's function [2].  The new element of an 
approach is  connected with using the DFT 
correlation functional of the Gunnarsson-
Lundqvist, Lee-Yang-Parr (look details in 
ref. [13-16]). 

3. Results and conclusions 
 
In further calculation as potential XCV  we 
use the exchange-correlation pseudo-
potential which contains the correlation 
(Gunnarsson-Lundqvist) potential and 
relativistic exchanger Kohn-Sham one [40-
42]. As example in table 1 we present our 
calculational data for spectroscopic factors of 
some atoms together with available 
experimental data and results, obtained in the 
Hartree-Fock theory plus random phase 
approximation. As an object of studying we 
choose the diatomic molecule of N2 for 
application of the combined  Green’s 
function method and quasiparticle DFT 
approach. The nitrogen molecule has been 
naturally discussed in many papers. The 
valence V. I. P.  of N2 have been calculated 
[1,13,14,24] by the method of Green's 
functions and therefore the pole strengths pk 
are known and the mean values qk can be 
estimated. It should be reminded that the N2 
molecule is the classical example where the 
known Koopmans' theorem (KT) even fails 
in reproducing the sequence of the V. I. P. 's 
in the PE spectrum.   From the HF 
calculation of Cade et al.[24] one finds that 
including reorganization the V. I. P. 's 
assigned by g and u improve while for π 
V. I. P. the good agreement between the 
Koopmans value and the experimental one is 
lost, leading to the same sequence as given 
by Koopmans' theorem.  In Table 1 the 
experimental V. I. P. 's (a), the one-particle 
HF energies (b), the V. I. P. 's calculated by 
Koopmans' theorem plus the contribution of 
reorganization (c), the V. I. P. 's calculated 
with Green's functions method (d), the 
combined Green functions and DFT 
approach (e), the similar our results (f).    

Table 1. The experimental and calculated V. 
I. P. (in eV) of N2 (Rk is the contribution of 

reorganization (see text) 

 Exp 

 
KT 
- b

k  
EKT 
- b

k  
GF 
- b

k  
MCEP 

- b
k  

  3 g  15.6 17.24 16.37 
16.13 
16.84 
15.66 

15.31 15.52 

  1 u  16.98 16.73 16.73 16.80 17.24 
  2 u  18.78 21.13 21.13 19.01 18.56 
   Exp GF+ 

Reorg. 
GF- 

All corr 
GF-
DFT 

This 
work 

  3 g  15.6 16.0 15.50 15.52 15.58 
  1 u  16.98 15.7 16.83 16.85 16.93 
  2 u  18.78 19.9 18.59 18.63 18.71 
 
Besides, the comparisons are made in Table 1 
with the multiconfigurational electron 
propagator method (MCEP) and  extended 
KT (EKT) theory (the extended KT has been 
implemented using multiconfigurational self-
consistent field wave functions within different 
basis sets (I-IV)[52], calculated with the GAMESS, 
HONDO, and SIRIUS programs. The EKT 
ionization energies for the   3 g  and 1 u  are 
comparable to the MCEP values. Note that 
our data are in physically reasonable 
agreement with the best theretixl values and 
experimental data. But the most important 
point of all consideration is connected the 
principal possibility to reproduce diatomic 
spectra by applying a one-particle theory with 
accounting for the correlation and reorganiza-
tion effects. The combined DFT-GF  
theoretical approach can be prospectively 
used for quantitative treating photoelectron 
spectra of more complicated diatomic 
molecules.  
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A. V. Ignatenko, A. V. Glushkov, Ya. I. Lepikh, A. S. Kvasikova

ADVANCED GREEN’S FUNCTIONS AND DENSITY FUNCTIONAL APPROACH TO 
VIBRATIONAL STRUCTURE IN THE PHOTOELECTRON SPECTRA OF DIATOMIC 

MOLECULE

Summary
We present the optimized version of the hybrid combined density functional theory (DFT) and 

the Green’s-functions (GF) approach to quantitative treating the diatomic photoelectron spectra. 
The  Fermi-liquid quasiparticle version of the density functional theory is used.   The density of 
states, which describe the vibrational structure in photoelectron spectra, is defined with the use of 
combined DFT-GF approach and is well approximated by using only the first order coupling con-
stants in the optimized one-quasiparticle approximation. Using the combined DFT-GF approach 
leads to significant simplification of the calculation and increasing an accuracy of theoretical pre-
diction.

Key words: photoelectron spectra of molecules, Green’s functions, density functional theory
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А. В. Игнатенко, А. В. Глушков, Я. И. Лепих, А. С. Квасикова

ОБОБЩЕННЫЙ МЕТОД ФУНКЦИЙ ГРИНА И ФУНКЦИОНАЛА ПЛОТНОСТИ 
В ОПРЕДЕЛЕНИИ КОЛЕБАТЕЛЬНОЙ СТРУКТУРЫ ФОТОЭЛЕКТРОННОГО 

СПЕКТРА ДВУХАТОМНЫХ МОЛЕКУЛ

Резюме
Мы представляем оптимизированную версию гибридной комбинированной теории функ-

ционала плотности (DFT) и метода функций Грина (GF) для количественного описания 
фотоэлектронных спектров двухатомных молекул. Используется модель ферми-жидкостная 
квазичастичная версия теории функционала плотности. Плотность состояний, которые опи-
сывают колебательную структуру в фотоэлектронных спектрах, определяется с использо-
ванием комбинированного DFT-GF подхода и физически разумно аппроксимируется с ис-
пользованием только первого порядка констант связи в одноквазичастичном приближении. 
Использование комбинированного DFT-GF подхода приводит к значительному упрощению 
молекулярных расчетов и увеличению точности теоретического предсказания. 

Ключевые слова: фoтoэлектронный спектр молекул, метод функций Грина, теория функ-
ционала плотности
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Г. В. Ігнатенко, О. В. Глушков, Я. І. Лепіх, Г. С. Квасикова

УДОСКОНАЛЕНИЙ МЕТОД ФУНКЦІЙ ГРІНА І ФУНКЦІОНАЛУ ГУСТИНИ  
У ВИЗНАЧЕННІ ВІБРАЦІЙНОЇ СТРУКТУРИ ФОТОЕЛЕКТРОННОГО СПЕКТРУ 

ДВОАТОМНИХ МОЛЕКУЛ

Резюме
Ми представляємо оптимізовану версію гібридної комбінованої теорії функціоналу гус-

тини  (DFT) і методу функцій Грина (ГФ) для кількісного опису фотоелектронних спектрів 
двохатомних молекул. Використовується фермі-рідинна квазічастична версія теорії функціо-
налу густини. Густина стану, яка описує коливальну структуру в фотоелектронних спектрах, 
визначається з використанням комбінованого DFT-GF підходу та фізично розумно апрок-
симується за допомогою тільки першого порядку констант зв’язку в одноквазічастинково-
му наближенні. Використання комбинированного DFT-GF подхода призводить до значного 
спрощення молекулярних обчислень та збільшення точності теоретичного прогнозування.

Ключові слова: фoтoелектронний спектр молекул, метод функцій Гріна, теорія функціо-
нала густини
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WAVELENGTHS AND OSCILLATOR STRENGTHS FOR LI-LIKE MULTICHARGED 
IONS WITHIN RELATIVISTIC MANY-BODY PERTURBATION THEORY

The relativistic many-body perturbation theory with the optimized Dirac-Kohn-Sham zeroth approximation is 
applied to calculation of the radiative transitions wavelengths and oscillator strengths for some Li-like multicharged 
ions. The relativistic, exchange-correlation and other corrections are accurately taken into account. The optimized 
relativistic orbital basis set is generated in the optimal many-body perturbation theory approximation with fulfilment 
of the gauge invariance principle. An accurate treatment of the QED perturbation theory fourth order (a second order of 
the atomic perturbation theory) Feynman diagrams (whose contribution into the energy shift imaginary part (radiation 
width) for the multi-electron atoms accounts for multi-body correlation effects) is performed. The obtained data  on the 
radiative transition wavelengths and oscillator strengths for some transition in spectra of the Li-like multicharged ions 
are analyzed and compared with alternative theoretical and experimental results.  

1.  Introduction
The levels energies, transitions probabilities, 

oscillator strengths  and so on are very impor-
tant in atomic physics (spectroscopy, spectral 
lines theory), astrophysics, plasma physics, la-
ser physics, quantum electronics. They are very 
much needed in research of thermonuclear re-
actions, where the ionic radiation is one of the 
primary loss mechanisms and so on.  The spec-
tral lines belonging to the radiation of many 
multicharged ions have been identified in both 
solar flares and nonflaring solar active regions, 
observed in high-temperature plasmas, such 
as pinches and laser-produced plasmas, and in 
beam-foil spectra [1-30]. 

There have been sufficiently many reports 
of theoretical and experimental studies of ener-
gies and oscillator strengths for the Li-like ions 
and other alkali-like ions (see, for example, 
[7-15]). Banglin Deng et al [12] presented the 
calculated wavelengths, oscillator strengths, 
transition probabilities, and line strengths for 
Li-like ions (Z = 7–30) in the framework of the 
relativistic configuration-interaction formalism 
using MCDF wave functions and considering 
the Breit interaction, QED and nuclear mass 

corrections. A critical evaluation and compila-
tion of the spectroscopic parameters for Li-like 
ions (Z=3-28) was undertaken by Martin and 
Wiese [153-156]. Bièmont [30] applied fully 
variational nonrelativistic HF wave functions 
in computing 1s2n2L (n<8=s,p,d,f; 3<Z<22) Li-
like states]. Aglitskii et al  [121] experimentally 
observed the Lα wavelengths of Li-like ions  
(Z = 19–26) in laser-produced plasmas. Theo-
retical approach to studying the spectroscopic 
characteristics of the heavy multicharged ions 
(Li-like ions) within the RMBPT with the mod-
el potential zeroth approximation is developed 
by Ivanov-Ivanova [119-125]. Fully relativis-
tic computing the wavelengths and oscillator 
strengths from excitation of Li-like ions (Z = 
8–92) have been given by Zhang et al. [53]. Na-
har [54] applied the Breit–Pauli R-matrix meth-
od to calculations of the wavelengths, transition 
probabilities, and oscillator strengths for a num-
ber of the Li-like ions with the nuclear charge 
Z=6-68. The relativistic quantum defect method 
has been used by Martin et al [55] to calculate 
the oscillator strengths for a number of radiative 
transitions between low-lying states in the Li-
like ions for Z < 45. The energy levels and hy-
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perfine constants of neutral lithium were studied 
by Lindgren[9] within a nonrelativistic coupled-
cluster method, by Guan-Wang [47] within the 
effective operator form of MBPT  etc. Relativis-
tic all-order MBPT calculations of energies and 
matrix elements for Li and Be+ were reported in 
Ref. [44]. Wu Xiao-Li et al [50] have performed 
the relativistic MBPT calculation for lithium-
like isoelectronic sequence (Z=3−9) within the 
DF method with using the finite basis sets of the 
Dirac–Fock equations, constructed by B splines.

Chen Chao and Wang Zhi-Wen [48] applied 
a full core plus correlation method with using 
multiconfiguration interaction wave functions to 
computing the nonrelativistic values of the os-
cillator strengths for a number of transitions into 
the Rydbers states along the LiI isoelectronic se-
quence. The Hylleraas-type variational method 
and the 1/Z expansion method have been used 
also to obtain the non-relativistic calculations 
data on the energies and oscillator strengths of 
1s22s,1s22p for Li-like systems up to Z = 50 
[41-51].  

In this paper the relativistic many-body 
perturbation theory with the optimized Dirac-
Kohn-Sham zeroth approximation is applied 
to calculation of the radiative transitions wave-
lengths and oscillator strengths for some Li-like 
multicharged ions. The relativistic, exchange-
correlation and other corrections are accurately 
taken into account.

2. Relativistic many-body perturbation 
theory with optimized zeroth approximation 
and energy approach

The theoretical basis of the RMBPT with the 
Dirac-Kohn-Sham zeroth approximation was 
widely discussed [26,27,93-102], and here we 
will only present the essential features. 

As usually, we use the charge distribution in 
atomic (ionic) nucleus ρ(r) in the Gaussian ap-
proximation:  

            ( ) ( ) ( )223 exp4 rRr g-pg=r           (1)

where γ=4/πR2 and R is the effective nucleus ra-
dius. The Coulomb potential for the spherically 
symmetric density ρ( r ) is:
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Further consider the Dirac-like type equa-

tions for the radial functions F and G (compo-
nents of the Dirac spinor) for a three-electron 
system 1s2nlj. Formally a potential V(r|R) in 
these equations  includes electric and polariza-
tion potentials of the nucleus, VX is the exchange 
inter-electron interaction (in the zeroth approxi-
mation). The standard Kohn-Sham (KS) ex-
change potential is [13]:    

               2 1/3( ) (1/ )[3 ( )] .KS
XV r rp p r= -             (3)

In the local density approximation the rela-
tivistic potential is [33]:
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where [ ( )]XE rr is the exchange energy of the 
multielectron system corresponding to the ho-
mogeneous density ( )rr , which is obtained 
from a Hamiltonian having a transverse vector 
potential describing the photons. In this theory 
the exchange potential is [33]:
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where 2 1/3[3 ( )] /r cβ p r= , c is the velocity of 
light. The corresponding one-quasiparticle cor-
relation potential 

     
1/3[ ( ), ] 0.0333 ln[1 18.3768 ( ) ]CV r r b rr r= - ⋅ ⋅ + ⋅ , (6)

(here  b is the optimization parameter; see be-
low). 

The  perturbation operator contains the rela-
tivistic potential of the interelectron interaction 
of the form: 
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(here αi ,αj are the Dirac matrices, ωij is the tran-
sition frequency) with the subsequent subtrac-
tion of the exchange and correlation potentials. 
The rest of the exchange and correlation effects 
will be taken into account in the first two orders 
of the PT [93-102].  
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In Ref. [127,128] it has been proposed “ab 
initio” optimization principle for construction 
of the optimal relativistic orbital basis set. The 
minimization condition of the gauge dependent 
multielectron contribution of the lowest QED 
PT corrections to the radiation widths of the 
atomic levels is used. The details of procedure 
can be found in Ref. [126-134]. As in Ref. [127, 
134], let us examine the multi-electron atomic 
ion with one quasiparticle in the first excited 
state, connected with the ground state by the 
electric dipole radiation transition. In the QED 
PT zeroth order we use the one-electron bare 
potential VN(r)+VX(r)+ VC(r). As usual, the per-
turbation operator is as follows:

                         ( ) ( ) ( )XcV r J x A xm
m- -           (8)

where A – vector-potential of the electromag-
netic field,  J – current operator. 

Further one may treat the lowest order multi-
electron effects, in particular, the gauge depend-
ent radiative contribution for a certain class of 
the photon propagator calibration. The contri-
bution of the QED PT fourth order diagrams 
A  into the ImδE  accounts for the  exchange-
polarization   effects. In fact it describes the col-
lective effects and is dependent upon the elec-
tromagnetic potentials gauge (the gauge non-
invariant contribution). This value is considered 
to the typical electron correlation effect, whose 
minimization is a reasonable criterion in search-
ing the optimal one-electron basis of PT. All the 
gauge non-invariant terms are multi-electron by 
their nature (the particular case of the gauge non-
invariance manifestation is the non-coincidence 
of the oscillator strengths values, obtained in 
the approximate calculations with the “length” 
and “velocity” transition operator forms). Quite 
complicated calculation of contribution of the 
QED PT fourth order polarization diagrams into 
Im δE gives the following result [127]: 

Here, f is the boundary of the closed shells;  
n ≥f indicates the unoccupied bound and the up-
per continuum electron states;  m ≤ f indicates 
the finite number of states in the  core  and  the 
states of the negative  continuum  (accounting  
for  the  electron vacuum  polarization).  

The expression (9) can be represented in the 
form of terms:                                     
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with four different combinations of operators 
 and  (see details in Refs. [127-129]). The 

sum over n can be calculated by the method of 
differential equations. The minimization of the 
density functional ImδE leads to the integral 
differential equation for the ρc, that can be nu-
merically solved. This step allows to determine 
the   optimization parameter b. In Ref. [127] the 
authors elaborated a simplified computational 
procedure. We have used more sophisticated 
method, presented in Ref. [131313]. It presents 
for first time the full consistent realization of the 
optimization approach within our version of the 
RMBPT.

The key elements of the relativistic energy 
approach to computing radiation widths and 
oscillator strengths for atomic systems are pre-
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of atoms and  multicharged ions has been devel-
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istic approach has been presented in [127,128].  
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sibility (transition  probability). An approach, 
based on the Gell-Mann and Low formula with 
the QED scattering matrix, is used in treatment 
of the relativistic atom. The total energy shift of 
the state is usually presented in the form:

                  Re i / 2E Ed d= + G                 (11)

where G is interpreted as the level width, and the 
decay probability P = G.  For the a-s radiation 
transition the imaginary part of electron energy 
in the lowest order of perturbation theory is de-
termined as [124]: 

             
| |

[ ]

1Im
4

n
n n

n f
n f

E V aw
a a

a
a

d
p > >

< ≤

= - ∑ ,                (12)

where ωαn is a frequency of the a-n radiation, 
(a>n>f)  for electron and (a<n<f)  

for vacancy.  The matrix element V is deter-
mined as follows:
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The separated terms of the sum in (34) repre-

sent the contributions of different channels and 
a probability of the dipole transition is: 
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The corresponding oscillator strength: 
gf=λ2Gan/6.67×1015, where g is the degeneracy 
degree,  l is a wavelength in angstroms (Ǻ). All 
calculations are performed on the basis of the 
numeral code Superatom-ISAN (version 93). 
The details of the used method can be found in 
the references [1,11,14,21-24]. 

 
3. Results and Conclusions
In table 1 we list our computational results 

on the wavelengths and oscillator strengths gf 
(upper number in the line “Our work”: data, ob-
tained without using the optimized basis set and 
accounting for the exchange-polarization cor-
rections; lower number in the line “Our work” – 
with using the optimized basis set and account-
ing for the exchange-polarization corrections) 
for 1s22s (2S1/2) → 1s23p (2P1/2) transitions in the 
Li-like ions with Z=21,22.  In Table 1 the  data on 
the wavelengths, oscillator strengths, calculated 
by  Banglin Deng et al [52] (in the framework 

of the relativistic configuration-interaction for-
malism using multiconfiguration DF wave func-
tions and considering the Breit interaction, QED 
and nuclear mass corrections),  Zhang et al (the 
Dirac-Fock-Slater method and disturbed wave 
approximation), Martin et al (the relativistic 
quantum defect method),Nahar (ab initio calcu-
lations including relativistic effects employing 
the Breit-Pauli R-matrix method) and the NIST 
data [10-14] are listed too.  The data by Ban-
glin Deng et al [12] are obtained  in the length 
gauge, and the  ratios (V/L; in %) of the velocity 
and length gauges data to  check the accuracy 
of  calculations are listed.  We also present our 
values of the gauge non-invariant contribution 
(Ninv; in %).  Comparison of the presented data 
shows that the agreement between the theoreti-
cal data and experimental results is more or less 
satisfactory. 

Table 1. 
The calculated wavelengths, oscillator 
strengths for 1s22s (2S1/2) → 1s23p (2P1/2) tran-
sitions in the Li-like ions with Z=21-30; V/L 
is the  ratios of the velocity and length gauges 
values by Banglin Deng et al [12]; Ninv (in 
%) is the  gauge non-invariant contribution 

(this work);

Z Ref. Wavelength 
(A)

Oscillator 
strength 
(gf, 10-1)

V/L;
Ninv 
(%)

21 Banglin 
Deng et al

16.862 1.2392 V/L=
0.117

NIST 16.861 1.2404
Zhang 
et al

16.856 1.250

Martin 
et al

- 1.24

This work 16.860 1.2835
1.2401

Ninv=
0.10

22 Banglin 
Deng et al

15.254 1.2484 V/L=
0.128

NIST 15.253 1.2489
Zhang 
et al

15.249 1.259

Nahar 15.3 1.281
Martin 

et al
1.24

This work 15.252 1.2967
1.2492

Ninv=
0.11
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where n is a frequency of the -n 
radiation, (>n>f)  for electron and (<n<f)   
for vacancy.  The matrix element V is 
determined as follows: 
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        (13)   

The separated terms of the sum in (34) 
represent the contributions of different 
channels and a probability of the dipole 
transition is:  
                         | |1 .

4
n

n n nV 
  

                  (36) 

 
The corresponding oscillator strength: 
gf=2n/6.671015, where g is the 
degeneracy degree,   is a wavelength in 

angstroms (Ǻ). All calculations are 
performed on the basis of the numeral code 
Superatom-ISAN (version 93). The details of 
the used method can be found in the 
references [1,11,14,21-24].  
  

3. Results and Conclusions 
 

In table 1 we list our computational results 
on the wavelengths and oscillator strengths 
gf (upper number in the line “Our work”: 
data, obtained without using the optimized 
basis set and accounting for the exchange-
polarization corrections; lower number in the 
line “Our work” – with using the optimized 
basis set and accounting for the exchange-
polarization corrections) for 1s22s (2S1/2) → 
1s23p (2P1/2) transitions in the Li-like ions 
with Z=21,22.  In Table 1 the  data on the 
wavelengths, oscillator strengths, calculated 
by  Banglin Deng et al [52] (in the 
framework of the relativistic configuration-
interaction formalism using 
multiconfiguration DF wave functions and 
considering the Breit interaction, QED and 
nuclear mass corrections),  Zhang et al (the 
Dirac-Fock-Slater method and disturbed 
wave approximation), Martin et al (the 
relativistic quantum defect method),Nahar 
(ab initio calculations including relativistic 
effects employing the Breit-Pauli R-matrix 
method) and the NIST data [10-14] are listed 
too.  The data by Banglin Deng et al [12] are 
obtained  in the length gauge, and the  ratios 
(V/L; in %) of the velocity and length gauges 
data to  check the accuracy of  calculations 
are listed.  We also present our values of the 
gauge non-invariant contribution (Ninv; in 
%).  Comparison of the presented data shows 
that the agreement between the theoretical 
data and experimental results is more or less 
satisfactory.  

 
Table 1. The calculated  wavelengths, 

oscillator strengths for 1s22s (2S1/2) → 1s23p 
(2P1/2) transitions in the Li-like ions with 

Z=21-30; V/L is the  ratios of the velocity 
and length gauges values by Banglin Deng et 

al [12]; Ninv (in %) is the  gauge non-
invariant contribution (this work); 
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The approach presented (with using the op-
timized relativistic PT) can provide sufficiently 
high accuracy and physically reasonable de-
scription of the corresponding wavelengths and 
oscillator strengths. It should be noted that an es-
timate of the gauge-non-invariant contributions 
(the difference between the oscillator strengths 
values calculated with using the transition op-
erator in the form of “length” and “velocity”) 
is about 0.15%, i.e., the results for oscillator 
strengths obtained with using different photon 
propagator gauges (Coulomb, Babushkin, Lan-
dau) are practically equal. This is the evidence 
of a successful choice of the one-quasiparticle 
representation.
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THE HYPERFINE STRUCTURE OF HEAVY ELEMENTS ATOMS WITHIN 
RELATIVISTIC MANY-BODY PERTURBATION THEORY

Summary
The relativistic many-body perturbation theory with the optimized Dirac-Kohn-Sham zeroth 

approximation is applied to calculation of the radiative transitions wavelengths and oscillator 
strengths for some Li-like multicharged ions. The relativistic, exchange-correlation and other cor-
rections are accurately taken into account. The optimized relativistic orbital basis set is generated in 
the optimal many-body perturbation theory approximation with fulfilment of the gauge invariance 
principle. An accurate treatment of the QED perturbation theory fourth order (a second order of the 
atomic perturbation theory) Feynman diagrams (whose contribution into the energy shift imaginary 
part (radiation width) for the multi-electron atoms accounts for multi-body correlation effects) is 
performed. The obtained data  on the radiative transition wavelengths and oscillator strengths for 
some transition in spectra of the Li-like multicharged ions are analyzed and compared with alterna-
tive theoretical and experimental results.  

Keywords: Relativistic many-body perturbation theory – Optimal one-quasiparticle representa-
tion – Oscillator strengths –Energy approach – Correlation corrections
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О. Ю. Хецелиус, А. Л. Михайлов, Э. А. Ефимова, Р. Э. Серга

СВЕРХТОНКАЯ СТРУКТУРА ТЯЖЕЛЫХ АТОМОВ В РАМКАХ 
РЕЛЯТИВИСТСКОЙ МНОГОЧАСТИЧНОЙ ТЕОРИИ ВОЗМУЩЕНИЙ

Резюме
Релятивистская многочастичная теория возмущений с оптимизированным нулевым при-

ближением Дирака-Кона-Шэма применена  для расчета длин волн радиационных переходов 
и сил осцилляторов для некоторых Li-подобных многозарядных ионов. Релятивистские, об-
менно-корреляционные и другие поправки учитываются в рамках последовательных про-
цедур. Оптимизированный базис релятивистских орбиталей  генерируется в последователь-
ном нулевом приближении релятивистской многочастичной теории возмущений, исходя 
из условия выполнения принципа калибровочной инвариантности. Предложена процедура 
аккуратного учета вкладов, описываемых диаграммами Фейнмана четвертого порядка КЭД 
теории возмущений (второй порядок атомной теории  возмущений),  в мнимую часть энер-
гетического сдвига атомных уровней (радиационные ширины) многоэлектронных атомов 
с целью учета многочастичных корреляционных эффектов. Полученные данные о длинах 
волн радиационного перехода и силах осциллятора для некоторого перехода в спектрах Li-
подобных многозарядных ионов анализируются и сравниваются с альтернативными теоре-
тическими и экспериментальными результатами.
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Ключевые слова:  Релятивистская многочастичная теория возмущений – оптимальное 
одноквазичастинкове представление – Силы осцилляторов – Энергетический подход – Кор-
реляционные поправки

PACS 31.15.A-;32.30.-r  

О. Ю. Хецеліус, О. Л. Михайлов, Е. О. Ефімова, Р. Е. Сєрга

НАДТОНКА СТРУКТУРА ВАЖКИХ АТОМІВ В РАМКАХ
РЕЛЯТИВІСТСЬКОЇ БАГАТОЧАСТИНКОВОЇ ТЕОРІЇ ЗБУРЕНЬ

Резюме
Релятивістська багаточастинкова  теорія збурень з оптимізованим нульовим наближен-

ням Дірака-Кона-Шема застосована для розрахунку довжин хвиль радіаційних переходів і 
сил осциляторів для деяких Li-подібних багатозарядних іонів. Релятивістські, обмінно-ко-
реляційні та інші поправки враховуються в рамках послідовних процедур. Оптимізований 
базис релятивістських орбіталей генерується в послідовному нульовому наближенні реляти-
вістської багаточастинкової теорії збурень, виходячи з умови виконання принципу калібру-
вальної інваріантності. Запропоновано процедуру акуратного урахування вкладів, описува-
них діаграмами Фейнмана четвертого порядку КЕД теорії збурень (другий порядок атомної 
теорії збурень), в уявну частину енергетичного зсуву атомних рівнів (радіаційні ширини) 
багатоелектронних атомів з метою врахування багаточастинкових кореляційних ефектів. 
Отримані дані по довжинам хвиль радіаційних переходів та силам осциляторів для деяких 
переходів у спектрах Li-подібних багатозарядних іонів, які порівнюються з альтернативни-
ми теоретичними і експериментальними результатами.

Ключові слова: Релятивістська багаточастинкова теорія збурень – Оптимальне  одно-
квазічастинкове представлення – Сили осциляторів – Енергетичний підхід – Кореляційні 
поправки
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THE STUDY OF  CADMIUM  SULFIDE HETEROGENEOUSLY SENSITIZED 
CRYSTALS.  PART II. RELAXATION CHARACTERISTICS

The photoelectric properties of CdS crystals with combined doping has been considered. The relaxation of the 
photocurrent determined by the long-term (months) redistribution of the sensitive impurity has been found. The 
possibility of creating of a new type of light sensors with super long memory  has been shown. The medium-time 
(minutes) and fast (seconds) relaxation of the photocurrent under excitation by intrinsic and infrared light has been 
studied.

This article is a continuation of the review 
[1]. For the sake of maintaining wholeness the 
numbering of sections were selected transpar-
ent. References in each article are given indi-
vidually. 

The term «Heterogenic» is understood in two 
senses.

Firstly, the process of tactile sensing Bube-
Rose you must have at least two classes of cen-
ters – R (slow recombination) and S (fast recom-
bination). Moreover, each of these groups may 
consist of several physically different types. The 
condition of predominance of concentration of 
one of the classes NR > NS or NR <NS creates 
some features considered in Part I.

Secondly, under the influence of external fac-
tors (electric field, light, temperature), spatial re-
distribution of the sensitive centers is possible. 
This creates a number of specific effects, dis-
cussed below, which are impossible in samples 
with uniform doping.

3.1. Long-term (hours) migration-depen-
dent relaxation of photocurrent

After pre- lightings of the samples with our 
own light and long (2-3 months) stay in the 
dark, we observed almost complete absence of 
photosensitivity [2,3,4,5]. Then the photosensi-
tivity was restored for several days, while the 
crystals were exposed to monochromatic light 

with a wavelength of 515 nm [6]. The process 
passed independently of the duration or the 
number of lightings and remained the same 
even under lighting for 20 minutes once a day 
[7,8]. The rate of recovery of photosensitivity 
turned out to be the maximum at first, then the 
increase decreased. After about 100 hours, the 
photocells stabilized and no longer responded to 
daily lightings.

Fig. 3.1 Relaxation of the photocurrent after exposure 
in the dark for 3 months (curve “a“), then five days 

(”b“) and two days (”c").

At the same time, there was a certain limit 
level of sensitivity, which could not be exceed-
ed, regardless of the time of illumination, both 
one-time and total. 
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The type of relaxation curve depended on the 
applied field strength. Moreover, if a simple de-
crease in the applied voltage did not make fun-
damental changes in the shape of the curve, only 
reducing the corresponding currents, then an 
increase in the distance between the contacts to 
2 mm at a displacement on the sample was still 
50 V led to a modification of the initial stage of 
changes-at small times of less than 10 min, a sec-
tion of relatively slow current increase appeared 
and the relaxation curve as a whole acquired an 
S – shaped form. Characteristically, in this case, 
although the strength applied field is decreased 
approximately four times, the value of flowing 
current decreases disproportionately, accounting 
for roughly half of the original value on the plot 
of saturation after relaxation in 35 – 40 minutes.

The samples had a strong effect of infrared 
quenching of photocurrent. Even with not very 
large values of the ratio of the intensity of the 
quenching light to the intensity of the exciting, 
the value of the IR quenching coefficient Q easily 
reached 100 %.  The spectral distribution curve 
Q (λ) was typical with two maxima at 1080 and 
1400 nm (0.9 and 1.1 eV, respectively).

At temperatures of large 40 – 50 °C for the 
excitation intensities used, the effect of temper-
ature quenching of the photocurrent with stan-
dard characteristics was observed.

The presence of both types of quenching in-
dicates the presence of S – and R – centers of 
comparable concentrations in the crystal, and 
the absolute value of the number of centers of 
each class should be significant.

Since the described situation is close to the 
existing model with moving S-centers, we have 
put a special selective experiment. After com-
pletion of the relaxation process is already in a 
sensual state (curve "b   Fig. 3.1) the polarity of 
the applied field was reversed.

If the observed phenomena are associated with 
the migration in the sample of light-charged de-
fects, which play the role of centers of rapid re-
combination and their gradual accumulation in the 
anode, then such processes should be expected:

When changing the sign of the pulling field 
(the light continues to operate and, therefore, 
the centers retain the charging state), the defects 

must migrate in the opposite direction. During 
the time comparable with the time of the pre-
vious relaxation, they first dissipate over the 
crystal (due to the spread of mobility and fluc-
tuations of the diffusion jumps of  vacan-
cies). The sample returns to the pre-relaxation 
state with low sensitivity.  And  then, even for 
the same period of time, there is a spatial repo-
larization of S-centers with their accumulation 
at the opposite contact.

Instead, we observed a slight change in the 
photocurrent within 20-25 minutes no more 
than 10 – 20 % of the initial value.  Given the 
inefficient process of moving S-centers through 
the crystal grate as already noted, such time in-
tervals are completely inadequate diffusion of 
defects of this type.

Thus, the features of the time dependence 
of the current require to exclude from consid-
eration in our case the movement of S-centers. 
The difference between this model and the situ-
ation under study is the state of contacts to the 
sample. The study of the light current-voltage 
characteristics both at different moments of re-
laxation (instantaneous or almost instantaneous 
values) and in a stationary, sensitive state, in-
dicates the presence of locking barriers in the 
entire temperature range and the light intensities 
used. The curves of the current-voltage char-
acteristic had the form typical for the reverse 
branches of the diodes. Moreover, we are talk-
ing about both contacts, since there were no 
fundamental differences in the applied voltage 
at opposite polarities.

The non-ohmic contact with the crystal is 
also reflected in the volt-farad dependencies. 
During the measurement times excluding the 
diffusion of impurities, in the case of anti-lock 
contacts, the sample capacity should not change 
at all with the applied voltage. Instead, we ob-
served a volt-farad dependence, although not 
straightening in standard coordinates C-2(U).

With the increase in temperature, the relax-
ation process was revived.  However, it seems 
anomaly practically no differences in the graphs 
in the temperature range from slightly increased 
to 80 °C.

"
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Сontrariwise, temperature rise has proved 
to be an effective way of returning cadmium 
sulfide crystals to photosensitivity. Even after 
long exposure in the dark (situation of “a” Fig. 
3.1) as a result of subsequent heating (without 
photoexcitation and voltage) at a temperature of 
40 °C for 4 to 6 hours, the crystal passed to the 
state characteristic of the dependence “b” Fig. 
3.1.  At the same time, no accumulation from 
the photo effect was observed. However, even 
in this case, we could not achieve an improve-
ment in the transfer of the sample to a state with 
increased photosensitivity by simply increasing 
the temperature. The effect of infrared light on 
our crystals also increased their photo response 
to their own excitation after a long stay in the 
dark. The combination of a small heating and 
IR – effect almost completely removed the re-
laxation of the photocurrent.

Since the investigated chronological depen-
dence of the current in the samples occurred un-
der the conditions of photoexcitation with the si-
multaneous presence in the electric field, it was 
of interest to study the effect of each of these 
effects individually. 

Curve "a    fig. 3.2 measured under the same 
conditions as the curve “a” in fig. 3.1 and transferred 
here as a reference. Curves "b” and» “c” «Fig. 3.2 
is obtained according to the scenario based on 
“c” Fig. 3.1 however, an additional stage has 
been introduced. The sample was kept for one 
hour either in a light without a field or in the 
dark but under voltage.

Fig. 3.2  Discrete process impact.

As can be seen from the figure, the introduc-
tion of such an additional effect significantly 
modifies the relaxation graph. In both situations, 
an initial conduction spike appears, the causes 
of which are discussed below.

The totality of the data obtained was inter-
preted as follows. 

Direct experiments have proved the pres-
ence of S – and R-centers in the studied crys-
tals. The observed duration of current relaxation 
excludes purely electronic interpretations. At 
the same time, these intervals are too small, as 
shown earlier, to participate in the processes of 
rapid recombination centers. Therefore, in con-
sideration of the concentration changes are in-
troduced for R – centers.

When the external voltage is turned on, the 
role of the pelotons from the R-centers at the 
contacts is different.  Let the field be directed in 
such a way that it causes the charged R-centers 
to move from right to left. Then the left contact 
centers are compacted and would have to lower 
the height of this barrier. But at the same time, 
since its intensity coincides with the external 
field, it must increase. Because of this competi-
tion, the changes taking place here practically 
do not affect the relaxation of the current of pho-
to excited carriers.

The right peloton has a significant impact. 
The external field pulls out of it the sensitive 
centers from a potential hole in the middle part 
of the crystal, significantly increasing the life 
time of the main carriers. From the outside, this 
is manifested in the form of current relaxation. 
While remaining small due to shut-off contacts, 
it nevertheless increases from 10-10  – 10-9 А to 
10-7 А (Fig. 3.1). It is obvious that  the barri-
ers are approximately symmetrical, the effect 
is insensitive to the sign of the applied voltage. 
When the polarity changes, the left and right 
barriers change roles. 

This also explains the indifference to the sign 
of the field after the relaxation. A small decline 
here may be due to the fact that some of the free 
R-centers of the middle band of the crystal (see 
Fig. 3.4) goes faster to your contact that they 
are replaced with the held field R-centers of 
the opposite potential well. It is clear that the 

"
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longer the Central part, the less influence the 
field injection of the sensitive centers has on it.  
 It is clear that the longer the Central part, the 
less influence the field injection of the sensitive 
centers has on it. Especially in the initial periods 
of time, while the concentration of additional 
agents here is small.

Especially in the initial periods of time, while 
the concentration of additional agents here is 
small. Having a depth of about 1 eV, R-centers 
are capable of holding captured non-equilibrium 
holes at room temperature for a long time. This, 
obviously, determines the processes of redistribu-
tion of the concentration of the sensitive centers 
after the light is turned off (Fig. 3.1), if the time 
spent in the dark was not too long. We see this as 
a “remembering” the previous crystal effects.

The developed concept easily explains why 
the increase in stationary current decreases with 
increasing lighting cycles. At first, when there 
are many centers in the SCR, their transition to 
the  central part is massive. In descending or-
der of their concentration in the SCR for the 
subsequent cycles of illumination, the intensity 
of all the considered processes decreases. The 
photocurrent is higher due to the sensitive action 
of R-centers, while the subsequent relaxation 
is more lively (curves “b“ and “c“ Fig. 3.1). 
Limit relaxed sensitivity to external influence 
in this case is limited to the total concentration 
of  R-centers. No combination of effects on the 
crystal can increase its conductivity in our mod-
el, if all the sensitive centers from the contact 
area are already involved, which could take part 
in these processes (curve “c” Fig. 3.1).

Obviously, heating increases the mobility of 
the centers and accelerates relaxation. However, 
with increasing temperature there is a competing 
process – due to the thermal emptying of traps, 
part of the R-centers, losing charge, ceases to 
respond to the external field.

The same action produces IR radiation. This 
explains its ability to return to crystals sensitivity 
in combination with a small heating. R-centers 
in those conditions is a Central part of the crys-
tal, sensing it due to the usual mechanisms of 
diffusion due to concentration gradients from 
the contacts to the center. Current surges at the 

initial moments of time in Fig. 3.2 (curves “b“ 
and “c“ ) have different nature. With the prelim-
inary influence on the crystal field in the dark, 
we lower the height of the barrier, the intensity 
of which is opposite to the external. He is no 
longer able to hold R-centers in a potential pit 
and there is a perception of the crystal (curve 
“b“ Fig. 3.2).  On the contrary, if the crystal was 
exposed to illumination without a field, in both 
contact SCR appear R-centers, captured   no 
equilibrium holes. Because of their charge they 
lower retaining their intensity of the internal 
fields, the injection of excess with the appropri-
ate sensitizing. Because both areas at the same 
time participate in sensitizing, the magnitude of 
the emission is somewhat larger (Fig. 3.2, curve 
“c“).

In conclusion, we indicate several ways of 
recycling the discovered patterns [10]. The re-
laxation process itself allows the use of CdS 
samples with locking contacts as timers for tens 
of minutes. The process of returning to balance, 
which has lasted for dozens of days, allows for 
the implementation of long-term devices. In 
turn, since both processes-increasing relaxation 
in their own light and their dark aging depend 
from temperature and IR effects, it is possible to 
create appropriate sensors with memory. In ad-
dition, the relaxation process itself is dependent 
on the previous exposure to white light, which 
allows the use of such samples as photorecep-
tors for illumination.

3.2. Average time (minutes) relaxation of 
the photocurrent in crystals with inhomoge-
neous focus

Because the barriers in contacts play an im-
portant role in the implementation of long-term 
relaxation of the photocurrent, it was of interest 
to strengthen this effect. To do this, the contacts 
were shifted to 0,1-0,2 mm. In this case, the in-
terelectrode distance is comparable in magni-
tude to the SCR width. Thus, the contact barri-
ers and the processes taking place there become 
current controlling. An unusual form of photo 
current relaxation was found on crystals with a 
small distance between the contacts after stay-
ing in equilibrium conditions [5,11].
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With a small level of its own lighting (1-3 
lx), the photocurrent was installed in a few min-
utes.  For large illuminances (10-15 lx) the pho-
tocurrents first also increased during 3-4 min (1 
stage); then during the time up to 15 minutes ~ 
30 % (2 stage) decreased; and later returned to 
the same value and stabilized during the period 
of 45-50 minutes.

Fig. 3.3. Relaxation of own photocurrent at the level of 
illumination: (1) – 10-15 lx and (2) – 1-3 lx.

When illuminated with its own light (515 
nm) in the sensitive samples CdS  have been 
long time relaxation of the photocurrent in the 
range of 50-60 min (Fig. 3.3).

Typically, that at low light the photocurrent 
stabilized within 10 minutes. When the light 
flux was increasing, a disproportionate increase 
in the photocurrent occurred. With the increase 
in the order of the level of illumination, the 
magnitude of the photocurrent increased only 
several times. This indicates the flow of several 
competing processes in the crystal.

In addition, for some crystals, relaxation was 
accompanied by a decrease of the photocurrent 
for 10 to 15 minutes. And then the restoration of 
its value for the period of about 40-50 minutes.

Times like these flowing processes exclude 
purely electronic interpretation and are typi-
cal for migration-ionic phenomena. It was also 
shown that in the fields 104 – 105 V/sm it is pos-
sible to move the impurity ions along the crys-
tal grate.  When the barrier height is about 1 eV 
and the width is ~1µm, it is possible to reaching  
such fields in the contact areas of crystals.

At the same time, the fields of the barriers are 
directed in such a way that they contribute to 
the outflow of the negatively charged impurity 
to the Central part and the extraction of the posi-
tively charged impurity to the SCR contacts.

In the first approximation for the present 
consideration it is assumed that in the electric 
field used the distribution of S-centers remains 
uniform. They cannot have any noticeable mo-
bility to move around the crystal grate. On the 
contrary, the R-center is copper in the cadmium 
sublattice, which is able to move relatively eas-
ily through the crystal.

According to the Baby-Rose model, R-centers 
create levels in the forbidden zone with a depth 
of 0,9-1,1 eV. It is obvious that in equilibrium 
conditions, capturing their own holes, these cen-
ters are able to hold them for a long time. At 
the same time, as shown in chapter 2.1 (part I), 
they charge positively. Under these conditions, 
under the action of Schottky barrier fields, they 
are extracted from the crystal areas of the width 
of the order of diffusion length from the inner 
boundary of the barriers and the accumulation 
of this impurity in the  SCR contacts.

In General, the distribution of the concen-
tration of R-centers takes the form, as shown 
in Fig. 3.4. As a result of sluggish recombina-
tion processes, some of these centers lose their 
charge. Therefore, under equilibrium condi-
tions, the concentration of charged N2

+  centers 
in the contact areas is much less than their total 
concentration of  N2.

When exposed at the same time its own light 
and external voltage to the crystal (Fig. 3.3) the 
situation in the crystal changes. Let’s first con-
sider the initial state of the contacts.

In the dark, in conditions N N+ < , the 
charge in the SCR is concentrated on ionized 
donors. Since the barrier is locking, the influ-
ence of free electric charge is neglected. Then 

                           .

The potential distribution in the SCR is found 
from the Poisson equation

                          

2 2

2

4
d

d e N
dx
j p

e
= ,                (3.1)
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the standard solution is:

     
( ) ( )

2
22

d
ex N L xpj
e

= -  .                  (3.2) 

The value L in (3.2) sets the width of the SCR 
at the equilibrium height of the barrier φ0 :

                
02

1
2dark

d

L
e N
e j
p

= .            (3.3)

When the light intensity is high, the condi-

tion N N+ <  is violated. R-centers, already 
located in the SCR and distributed there evenly, 
capture appeared in a large number of no equi-
librium holes and are completely ionized. We 
used high-resistance crystals. Consequently, the 
concentration of donors is low. At the same time, 
a bright effect of infrared extinction indicates 
the presence of a large concentration of second-

class centers. As a result 2 2 dN N N+ = >> .
 

Fig. 3.4. Migration processes in the crystal in the light 
under the influence of the field.

Positive charge in the SCR  is now fixed on 
R-centers and formulas (3.2) – (3.3) are modi-
fied:

         
( )

2
2illum

2
2( )big

ex N L xpj
e

= - ;           (3.4)

            
( )illum

02
2

1
2bigL eU

e N
e j
p

= - .          (3.5)

Here it is taken into account that under the in-
fluence of external voltage the height of the bar-

rier has decreased to a value ( ) 00 eUj j= - . 
It will be shown below that the changes on the 
second barrier increasing in the same field are 
insignificant.

Formulas (3.3),(3.5) allow to explain the in-
crease in the photocurrent in the region “a” Fig. 3.3.

It is seen that the light width of the barrier 
(3.5) because of the conditions decreased in 
comparison with the black values (3.3). At the 
same time it became lower.

Resistance R1 (Fig. 3.4) this part of the crys-
tal decreases. The current grows. Because pro-
cesses are limited only by the time the traps are 
captured, changes occur quickly.

However, the processes that occur with the 
barrier (in Fig. 3.4-left), more harder. If light 
quanta are small, then a small concentration of 
non-equilibrium holes is created. In SCR of the 
contact they distributed according to the law:

           
( ) ( )exp

x
p x p

kT
j 

D = D  
 

,                  (3.6)

Where Δp – is the concentration of holes at 

the bottom of the barrier; ( )xj - potential dis-
tribution. As a criterion of low light we choose

                    

( )
2exp

x
p N

kT
j 

D < 
 

.                         (3.7)

That is, at any point in the barrier holes are 
not enough to fill all the R-centers. Under these 
conditions, a fixed positive charge is the holes, 
according to (3.7) captured on the R-centers

        
( ) ( )

2 exp
x

eN x e p
kT
j

r +  
= = D  

 
.      (3.8)
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Then the Poisson equation has the form:

        

( )2 2

2

4 exp
xd e p

dx kT
jj p

e
 

= D  
 

.        (3.9)

or:

            
( )

2

2 expd z A z
dx

= ,                       (3.10)

where
z aj= ; 

          

24 1eA p
kT

p
e

 
= D 
 

;      1a
kT

= .  (3.11)
 
Integration (3.10) gives:

                   
( )

2

2 exp 1dz A z
dx

  = -     
.             (3.12)

 
The equation (3.12) requires numerical inte-

gration. However, it can be simplified. The con-
dition (3.7) assumes a small number of holes at 
the sole of the barrier and, accordingly, a small 
charge at the centers of the sensitivity. In other 
words, the far edge of the barrier again depends 
on ionized donors:

             
( ) ( )exp d

L
p L N

kT
j + 

D < 
 

.      (3.13)

Here, small levels of illumination and a 
small barrier potential are taken into account

( ) 0Lj → . Thus, the barrier now consists of 
two parts, most of which are subject to (3.12), 
and the edge is defined similarly (3.2). To es-
timate the width of the SCR of such a bar-
rier is sufficient to use (3.12) in the conditions 

>> .
Then

               
2 exp

2
dz zA
dx

 = ±  
 

.          (3.14)
 
In all of the SCR with the increasing coor-

dinate value , and hence z, is decreasing (see 
Fig. 3.4, left barrier). Then, in (3.14), the “+” 
sign should be discarded as having no physical 
meaning. We have in view (3.11)
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kT kT
j p

e
D - = - + 

 
.(3.15)

It is not difficult to obtain an explicit form of 
potential distribution
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moreover, because of the conditions (3.7), equa-
tion (3.16) still need to sew with (3.2). However, 
(3.15) is sufficient to estimate the width of the 

SCR. On the left border, at 
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It is taken into account that voltage is ap-
plied together with the light (as shown in Fig. 
3.4), which lowers the height of the barrier. And 

- is only part of the barrier, although large, 
which is determined by the charge captured on 
the R-centers:
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Calculate, taking into account (3.5) for large 
levels of illumination, the ratio
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Or applying (3.13),
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And the equation for  solved, due to the 

condition 
( )exp
x

kT
j 
 
 

»1 for large barriers. 

Therefore, the unit in the numerator (3.20) can 
be discarded. It is obvious that any exponent 
with an exponent greater than one is greater than 
its degree. Therefore, finally,
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Here  – only part of the barrier in low light 
conditions. Finally

                 

illum

illum 1small

big

L
L

>> .                          (3.21)

That is, at low light conditions the barrier, 
having the same height, is considerably broad-
ened. And this is the second reason that the cur-
rent on the curve 2 in the “A” region of Fig. 3.3 
much less.

Note also that the 2 2 dN N N+ = >>  compari-

son of (3.3) and (3.5) follows dark illum
bigL L> . At the 

same time, any appearance of a positive charge 
in the SCR in the light should reduce its width. 
Therefore, the logical chain of (3.3), (3.5) and 

(3.21) is built as dark illum illum
small bigL L L> > . When 

lighting SCR width is reduced, and the more, the 
higher the light intensity. This is also consistent 

with ( 3.18) (  in the denominator) and (3.5).
Now let’s consider the influence of Seth on 

the formation of ion-coordination mechanisms.
For times of about tens of minutes (area “B” 

Fig. 3.3) the charged - impurity can already 
be moved in the applied electric field. The fate 
of SCR at both ends of the crystal is different.

Let the polarity of the applied field be as 
shown in Fig. 3.4. Then it should cause outflow 

-centers from the left barrier and increase 

their concentration due to the drift component 

in the right. At the same time, since - cen-
ters in the light are charged there and there, a 

diffusion outflow of the centers from both 
contacts is formed. The figure shows that for the 
left barrier both reasons are formed, and for the 
right – compete with each other. As a result, the 
applied field and light cause much greater ex-
traction of R-centers from the left contact to the 
Central part. In this case, its height is reduced by 
an external field. In the right contact, the outer 
field would have to raise the height. However, 
a much greater concentration of the residual 

charge - it lowers. Thus, the parameters of 
the right SCR are controlled by a set of mutually 
competing causes. In the first approximation, 
it can be considered stable and changes in Fig. 
3.3 bind to the left contact only. The dominant 
mechanism for it is the broadening, as shown 
above. The height of this barrier can also be 
considered to be slightly changing, since the 
external field reduces it, and the departure of a 

positive charge  – increases it.
Thus, area "B" Fig. 3.3 controlled by only 

one process: the left SCR expands, its resistance 
increases, the current drops. This process will be 
the stronger the greater the light intensity. First, 
then there is more concentration of charged cen-
ters. And secondly, as can be seen from (3.21), 
the twilight lighting barrier and so wide. Its rela-
tive changes are much smaller. That is why we 
have not recorded a long-term decrease in the 
current on the curve 2 Fig.3.3.

Note that the change of polarity of the ap-
plied voltage does not change the picture. Just 
the barriers are reversed and their roles.

Extracting of contact of the SCR, the centers 
of tactile sensing include two other mechanisms 
beyond. Depending on the intensity of the light, 
as shown above, in the near-surface layer is more 
or less increased concentration captured on the 
centers of the positive charge. Accordingly, they 
leave this area under the influence of diffusion 
and drift. This should be accompanied by its ex-
pansion. This changes the length of the Central 
part of the crystal.
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Since the total length of the crystal-the central 
part plus two contact areas-remains unchanged, 
the broadening of one of the contacts should in-
evitably lead to a narrowing of the central part. At 
the same time its electrical resistance (  at Fig. 
3.4) decreases due to simple length reduction. 
The resistance of the entire tandem increases 
as part of the inter-electrode space has to be re-
placed by the high resistance region of the barrier.

This would have to lead to further stimula-
tion to reduce the photocurrent. However, this 
process is superimposed on another.

Getting into the central part, R-centers are 
sensitive to it. At the same time, the life time of 
the main carriers can increase to five orders of 
magnitude. We were able to show (Chapter 2.1 
Part I) that this will be when the concentrations 
of S - and R - centers are roughly compared: 

2 1~N N .
In turn, the increase in life time causes an in-

crease in conductivity

              ( )en e fσ m t m= = .           (3.22)

Since the decrease in conductivity with the 
broadening of the barrier is approximately lin-
ear and even sublinear, and (3.22) accompanied 
by an avalanche increase, the current in the “C” 
figure. 3.3 increase as shown by dotted line. 
However, this process is longer. First, unlike 
area “B “and the more area” A” Fig. 3.3 it is 
called by several competing mechanisms. And 
secondly, a simple increase in the concentration 
of sensory centers in the sole of the SCR does 
not cause additional changes. It takes time for 
the resorption of the peloton of the R-centers on 
the crystal. This is what causes the asymmetry 
of the pit walls in relaxation in Fig. 3.3. 

It is also obvious that in low light conditions 
these processes are absent (curve 2 Fig. 3.3).  - 
centers are much smaller, and their addition in 
the Central part of the crystal is insignificant. In 
addition, the barrier is initially much wider [see 
(3.21)]. For relatively short samples, the SCR 
contacts in General can be gathered. Sensitive 
centers extract nowhere. It is with this that we 
connect the experimentally observed absence of 
an increase in the current in the area “C” of the 
curve 2 Fig. 3.3.

Note in conclusion that at the end of all the 
redistribution processes for the curve 1 Fig. 3.3 
as expected, the current stabilizes again at the 
same level in the “C” area as in the maximum 
after the capture processes in the area “A”. This 
is not difficult to explain, given that just as many 
of the sensory centers have left the SCR, exactly 
the same amount eventually caused changes in 
the Central part of the crystal.

3.3. Experimental confirmation of mobile 
R-centers model

Thus, we link the peculiarities of relaxation 
processes of the own photocurrent in samples 
with two types of recombination centers with 
the redistribution of charged R-centers from the 
regions of the space charge in the contact parts 
of the crystals. To test this model, a special ex-
periment was carried out to artificially change 
the concentration of such centers. Of course, it 
is quite difficult to model the physical amount of 
l ligand in the element under study.

However, in our case we are talking about 
the charged admixture after the capture of non-
primary carriers. The number of holes located 
on the R-levels and providing a change of state 
[12], is easily regulated by infrared radiation in 
accordance with the model of the Bube-Rose.  
Long-wave photons, knocking holes from 
R-centers, return them to a neutral state, which 
completely excludes them from drift processes 
under the influence of an external field. 

In addition, since the concentration of the li-
gand is, of course, much less than the number 
of basic atoms of the substance, the distance be-
tween the neighboring R-centers exceeds sever-
al translations of the crystal lattice. This means 
that the uncharged impurity practically does not 
interact with each other, which completely ex-
cludes the formation of diffusion flows. Thus, 
the use of IR radiation is a good modulating 
means for virtual change of the concentration 
of R-centers, turning them off from the ongoing 
processes (see also chapter 2.2 Part I).

Figure 3.5 shows the change in the relaxation 
curve when the crystal is exposed to additional 
infrared illumination. The curves were normal-
ized to the maximum of the curve 1 photocur-
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rent in the region of 10 minutes. It is seen that 
the additional effect of IR photons, and thus re-
ducing the effective number of R-centers, com-
pletely eliminates the feature of the relaxation 
process with the formation of a cavity (area 
“B” Fig. 3.3). The photocurrent curve 2 Fig. 3.5 
smoothly went to saturation for much longer 
times several times longer than the time to reach 
the maximum on curve 1.

Fig. 3.5. Change of photocurrent with time under the 
action of only self-illuminating (1) and using IR illu-

mination (2).

The absolute value of the photocurrent was 
almost an order of magnitude less than in the 
initial state without IR radiation. This is the ex-
pected result, given that under the action of IR 
radiation from SCR contact areas disappears 
fixed positive charge. In accordance with the 
conclusion of  chapter 3.2, both barriers become 
higher and wider, the resistance R1 and R3 in 
the equivalent circuit Fig. 3.4 increases, the cur-
rent drops.

 
3.4. Fast (seconds) relaxation of the photocur-
rent at excitation by own and infrared light

Long-term processes of spatial redistribution 
of impurities in the sensitive crystals described 
in sections 2.1 – 2.2 of Part I camouflage fast 
electronic relaxation. In this regard, it is of inter-
est to study the changes of the photocurrent for 
the times excluding the influence of ion process-
es – 101-102 sec, (tens of seconds, up to several 
minutes). For its observation, the samples were 
kept for a long time in their own light. The situ-

ations considered in this section occur [8] under 
already established conditions of dynamic equi-
librium and correspond to the ends of the graphs 
Fig. 3.1 and 3.3.

The sample was illuminated with its own 
light of different intensity. The luminous flux 
was regulated stepwise by varying the annular 
diaphragms in the region of the focusing lens. 
Usually, the relaxation of the photocurrent is 
measured from the initial state, i.e. darkness, 
to a fully steady state, i.e. saturation on the 
If(t) chart.  At the same time, they are limited 
to someone fixed light intensity. Note that the 
proposed method for the first time to study the 
comparative changes in the relaxation of the 
photocurrent with a step change in the inten-
sity of light has a number of advantages over 
the traditional excitation of “dark→  full light” 
or “light→dark”. This is especially noticeable 
for complex capture centers, such as R-centers, 
with the possibility of internal transitions to ex-
cited R` states.

In the traditional method, a large number of 
photons with a wavelength from the self-ab-
sorption band appear at once and at the same 
time a huge number of non-basic carriers are 
formed, which are able to fill both the main and 
excited States of the R-centers from the V-zone. 
Redistribution processes between them are sim-
ply not included.

If the photoexcitation and disappears imme-
diately to zero, the effective S-centers of a large 
concentration of free carriers take to recombine. 
Against the background of this intensive pro-
cess, weak amendments related to changes in 
the population of the R and R´, and even more 
so, its redistribution between them, are not no-
ticeable.

And of course, apply low light, when the 
concentration of non-equilibrium charge will be 
less than the number of free places on the impu-
rity levels. However, since both the concentra-
tion of recombination S-centers and the concen-
tration of capture traps for holes are not known 
in advance, groping for this ratio will lead to the 
same stepwise method.

The process of changing the flowing current 
consists of at least two fundamentally differ-
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ent phases. At the initial stage, the photo exci-
tation of free media is carried out (area I Fig. 
3.6), most of which go to fill existing traps and 
recombination centers. In the studied sensitive 
crystals, there are definitely at least effective 
R-centers for this. The usual mechanisms of 
perception due to redistribution of carriers be-
tween the centers of the first and second classes, 
and even more so, the center-to-center distribu-
tion between R and R` centers have not yet been 
included. Especially for small light intensities, 
when the number of photons absorbed is less 
than the concentration of traps, the non-equi-
librium charge capture process dominates. The 
conditions for the formation of the photocurrent 
are unfavorable.

Fig. 3.6. The kinetics of infrared quenching of pho-
tocurrent in the highs quenches at wavelengths of 1100 
nm (1) and 1380 nm (2).

1. – from  4,25  to   9,8 lx; 
2. – from  9,8  to 4,25 lx;
3. – from  1,35  to 4,25 lx;
4. – from 4,25 to 1,35 lx;
5. – from  0,6    to 1,35 lx;
6. – from 1,35 to 0,6  lx.

On the contrary, the final stages of relaxation 
take place in the conditions of quasi-steady equi-
librium between the capture-release processes. 
For our samples, this is done for at least four 
channels: in addition to the always present ad-
hesion centers, recombination at the S-centers, 
captures and emissions from the ground and 
excited States of the R-centers and intra-center 
transitions between them.

It is this complex ensemble of interactions 
that mainly represented the subject of research. 
Therefore, the measurements were carried out 
under conditions of the existing intensity of the 

natural light and the steady-state photocurrent 
in the transition to higher illumination [13]. For 
the moment t=0 inclusion of additional light was 
accepted (Fig. 3.6).

Fig. 3.7. The kinetics of infrared quenching of photo-
current in the highs quenches at wavelengths of 1100 

nm (1) and 1380 nm (2).

The measurement results were compared 
with the reverse process, when the illumination 
returned to its original value. In this case, the 
determining process becomes a competing-the 
centers are emptied.

Indeed, the measurements under low illumi-
nation, we observed a relatively tight region of 
the exit to the plateau of the graph If(t). At the 
same time, the decreasing relaxation was faster.

For transitions from smaller to larger illumi-
nation at large light fluxes, in addition to the nat-
ural increase in the absolute values of the photo-
current, the increasing part increased slightly in 
time. This is because it is not determined by the 
parameters of light, and the presence of empty 
spaces on the traps. The decaying part of the If(t) 
dependence was delayed to a greater extent be-
cause it was determined by the large charge ac-
cumulated on the traps.

Finally, for relatively high light intensities, as 
seen in Fig. 3.6, the magnitude of the photocur-
rent itself depended on the intensity of the light 
used. The kinetics of its change-both increas-
ing and decreasing, since the time of about two 
minutes, became more and more identical. With 
visual superposition of graphs at light intensities 
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of more than 10 Lux, these parts of the curves 
coincided.

In addition, it is characteristic that the value of the 
relaxation interval for the recession (Fig. 3.6 area III) 
also increased with increasing light intensity.

Short-term plot, less than 2 minutes, was de-
pendent on the temperature at which the mea-
surement was made. The absolute values of the 
current with increasing temperature decreased 
both in the saturation region and the current 
value. In order to exclude the collapse reduction 
of currents associated with the effect of tem-
perature quenching, not considered in this work, 
the temperature change region was used below 
50-60 °C, characteristic for the beginning of 
T-quenching. The increase in temperature led to 
a noticeable recovery of relaxation by 2-3 times. 
Given the seconds of the duration of the evolu-
tions of the current, we connected the observed 
variation exclusively with electronic processes. 
In contact with own light on the sample there 
is a release of no equilibrium charge carriers. A 
number of them take part in the formation of the 
photocurrent. And a significant part, especially 
in the initial moments of time, goes to fill deep 
traps. It is obvious that the number of such cap-
tured carriers on the traps is large at first, be-
cause the traps were empty. But over time it is 
reduced as the traps are filled. This ensures an 
increase in the proportion of carriers remaining 
in the free state with a corresponding relaxation 
increase in the photocurrent.

At the same time, it is superimposed by a 
competing process – as the traps are filled un-
der the influence of temperature, the number of 
thermally ejected carriers increases. In General, 
the presence of equilibrium is characterized by 
the approximate equality of the flows of cap-
tured and discarded carriers from the traps. As 
the temperature increases with the same cap-
ture intensity, the number of thermal emissions 
increases. This provides a more rapid achieve-
ment of the saturation current. 

As noted, when excited by its own light, the 
formation of the photocurrent is controlled by 
the recombination processes at the S-centers. 
The role of R-centers can be made decisive, if 
you do otherwise-without changing the current 

intensity of this light, turn on the infrared. The 
relaxation curves of the effect of infrared quench-
ing of the photocurrent, not studied earlier, are 
shown in Fig. 3.7. To observe the relaxation of 
the photocurrent under the influence of radiation 
from the long – wave part of the spectrum, the 
wavelengths corresponding to the damping maxi-
ma of 1100 and 1380 nm were used. Optimal val-
ues of the Eigen frequency and quenching light 
intensities were chosen in accordance with [14] 
– [17] (see chapter 1.1. Part I ).

With an ongoing and exciting light, when the 
photocurrent I0  achieved relaxation, including 
infrared light, pre-set to the wavelength of the 
corresponding maximum damping and starred 
time dependence of the photocurrent.

Both curves start from a single point cor-
responding to the value of the self-excitation. 
When the infrared illumination is switched on, 
the photocurrent is quenched and its value de-
creases-and the curve 1 corresponding to the 
wavelength of the short-wave maximum (see 
Fig.1.1. Part I) is above the curve 2 for the wave-
length maximum and relaxes to the steady-state 
value longer.

This is explained as follows. Since there is 
a thermal transition from level R to level R´, 
the probability of transition from this level is 
greater due to the greater population of the ex-
cited States.  This determines that the curve 2 
corresponding to the transition from levels R´ 
is lower than the curve 1 corresponding to the 
transition from levels R.

As you can see from figure 3.7, curve 2 re-
laxes to steady value faster. This is due to only 
one process, namely-transitions from the levels 
R´. At the same time, the curve 1 is due to transi-
tions from the levels R and R´, plus thermal tran-
sitions within the centers of sensitivity from the 
ground to the excited States. In addition, there is 
a possibility of reverse capture of the hole from 
the valence band to the R-centers. In General, 
the existence of such a complex combination of 
processes and causes a more protracted front of 
the observed curve.

Thus, the considered model assumes a large 
population of  R´ level holes due to thermal tran-
sitions to them from the main state of  R-centers.
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SPECTROSCOPY OF MULTIELECTRON ATOM IN A DC ELECTRIC FIELD: 
MODIFIED OPERATOR PERTURBATION THEORY APPROACH 

TO STARK RESONANCES

It is presented a new modified method to calculation of the Stark resonances energies characteristics (energies and 
widths) for the multielectron  atomic systems in a DC electric field. The method is based on the modified operator 
perturbation theory. The latter allows an accurate, consistent treatment of a strong field DC Stark effect and includes 
the physically reasonable distorted-waves approximation in the frame of the formally exact quantum-mechanical 
procedure. As illustration, some  test data for the  Stark resonances energies and widths in the lithium atom spectrum 
are presented and compared with  results of calculations  within the alternative consistent sophisticated methods.   

1.  Introduction
At last years it attracts a great interest especially 

in the multielectron atoms that is stimulated by a 
whole range of interesting phenomena to be stud-
ied (such as quasi-discrete state mixing, a zoo of 
Landau- Zener anticrossings, autoionization in the 
multielectron atoms, the effects of potential barri-
ers (shape resonances), new kinds of resonances  
above threshold etc) and by many applications on 
atoic, laser and plasmas physics [1-54].

An external electric field shifts and broad-
ens the bound state atomic levels.  The stan-
dard quantum-mechanical approach relates the 
complex eigenenergies (EE)  and 
complex eigenfunctions (EF) to the shape res-
onances.  The field effects drastically increase 
upon going from one excited level to another. 
The highest levels overlap forming a “new con-
tinuum” with lowered boundary. 

The calculation difficulties inherent to the 
standard  quantum mechanical approach are 
well known. Here one should mention the 
well-known Dyson phenomenon. The Wentzel-
Kramers-Brillouin (WKB) approximation over-
comes these difficulties for the states lying far 

from the “ new continuum” boundary. Some 
modifications  of the WKB  method (see review 
in Ref. [1]) are introduced by Stebbings and 
Dunning, Kondratovich and Ostrovsky, Popov 
et al. Ivanov-Letokhov [5] have fulfilled the 
first estimations of the effectiviness of the se-
lective ionization of the  Rydberg atom using a 
DC electric and laser fields within the quasiclas-
sical model. Different calculational procedures 
are used in the Pade and then Borel summation 
of the divergent Rayleigh-Schrödinger perturba-
tion theory (PT) series (Franceschini et al 1985, 
Popov et al 1990) and in the sufficiently exact 
numerical solution  of the  difference equations  
following from expansion of the  wave function 
over finite basis  (Benassi ans Grecchi 1980, 
Maquet et al 1983, Kolosov 1987, Telnov 1989, 
Anokhin-Ivanov 1994), complex-coordinate 
method, quantum defect approximation etc (see 
review in Ref. [1]). 

Hehenberger, McIntosh and E. Brändas [10] 
have applied the Weyl’s theory to the Stark ef-
fect in the hydrogen atom. 

Themelis and Nicolaides [42] adopted an ab 
initio theory to compute the complex energy 
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of multielectron atomic states. Their approach 
is based on the state-specific construction of 
a non-Hermitian matrix according to the form 
of the decaying-state EF which emerges from 
the complex eigenvalue Schrodinger equation 
(CESE) theory.  Sahoo and Ho [45] carried out  
the calculation the Stark resonances energies 
and widths in the lithium atom on the basis of 
the  complex absorbing potential (CAP) formal-
ism. Jianguo Rao et al and Hui-Yan Meng et al 
[40] have presented the B-spline-based coordi-
nate rotation method plus the model potential 
approach and  applied it to investigate the com-
plex energies of low-lying resonances of the hy-
drogen and lithium atoms in an electric field. 

In Refs.[5,16] it has been presented a consis-
tent uniform quantum approach to the solution 
of the non-stationary state problems including 
the DC (Direct Current) strong-field Stark effect 
and also scattering problem It is based on the 
operator form of the perturbation theory (OPT) 
for the Schrödinger equation of an atom in a 
strong DC electric field.  ё

In this work we present a new modified ver-
sion of the OPT  method for the non-H atomic 
systems and test it by studying the Stark reso-
nances parameters for some lithium atom states 
in a DC electric field. Besides, a relativistic gen-
eralization is presented too. The Stark resonanc-
es parameters energies and widths are calculated 
and compared with the data of calculations on 
the basis of the alternative sophisticated com-
plex eigenvalue approaches [40,42,45]. 

2.Modified operator perturbation theory 
to Stark resonances for atoms in a DC elec-
tric field

As usually [16,47], the Schrödinger equation 
for the electron function taking into account the 
uniform electric field and field of the nucleus 
(Coulomb units are used: for length, 1 unit is 

mZeh 22 ; for energy 1 unit is 242 hemZ ) is: 

[-(1 - N/Z) / r+Vm(r) + e z –1/2D -E ] y = 0,    (1)

where E  is the electron energy, Z is the nucleus 
charge, N is the number of electrons in the atom-

ic core (for the hydrogen atom: Z=1, N=0), Vm is 
a model potential that describes interaction with 
the electron shells for multi-electron atom (for 
the hydrogen atom Vm=0). Firstly, we only deal 
with the Coulomb part of the electron-atomic 
residue interaction. The non-Coulomb part, as 
well as relativistic effects, can be approximately 
accounted for next step. The separation of vari-
ables in the parabolic coordinates:

                    y(z,h,j)=f (z) g(h)(z× h )|m|/2×

                                     exp(imj)/(2p)1/2                           (2)

transforms it to the system of two equations for 
the functions  f, g:

f¢¢+
t

m 1|| +  f¢+[1/2E +(b1 -N/Z /t-1/4e (t)t ]
f =0                     

                                                                   (3)
g²+ | |m

t
+1g¢+[1/2E+b2  / t + 1/4e (t)  t ] g = 0,                              

                                                                   (4)
coupled through the constraint on the separa-

tion constants:
                                                 (5)

Here and below variable t denotes the argu-
ment common for the whole differential equa-
tions system (4). For the uniform electric field 
( ) ee =t . Potential energy in equation (4)  has 

the barrier. Two turning points for the classical 
motion along the  axis,  and  , at a given 
energy E are the solutions of the quadratic equa-
tion ( ):

               t2 ={[ E2
0 - 4e (1-b)] 1/2 - E0 }/e,     (6)

       t1 ={-[E2
0  - 4e (1-b)] 1/2 - E0 }/e,   t1< t2   (7)

To simplify the calculational procedure, the 
uniform electric field  in (3) and (4)  should be 
substituted by the function [16]:   
   

e (t)  = 1
t
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                                                                  (8)

with sufficiently large t (t=1.5t2). The motiva-
tion of a choice of the ( )te  and some physical 
features of electron motion along the h-axis are 
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Themelis and Nicolaides [42] adopted an 
ab initio theory to compute the complex 
energy of multielectron atomic states. Their 
approach is based on the state-specific 
construction of a non-Hermitian matrix 
according to the form of the decaying-state 
EF which emerges from the complex 
eigenvalue Schrodinger equation (CESE) 
theory.  Sahoo and Ho [45] carried out  the 
calculation the Stark resonances energies and 
widths in the lithium atom on the basis of the  
complex absorbing potential (CAP) 
formalism. Jianguo Rao et al and Hui-Yan 
Meng et al [40] have presented the B-spline-
based coordinate rotation method plus the 
model potential approach and  applied it to 
investigate the complex energies of low-lying 
resonances of the hydrogen and lithium 
atoms in an electric field.  

In Refs.[5,16] it has been presented a 
consistent uniform quantum approach to the 
solution of the non-stationary state problems 
including the DC (Direct Current) strong-
field Stark effect and also scattering problem 
It is based on the operator form of the 
perturbation theory (OPT) for the 
Schrödinger equation of an atom in a strong 
DC electric field.   

In this work we present a new modified 
version of the OPT  method for the non-H 
atomic systems and test it by studying the 
Stark resonances parameters for some lithium 
atom states in a DC electric field. Besides, a 
relativistic generalization is presented too. 
The Stark resonances parameters energies 
and widths are calculated and compared with 
the data of calculations on the basis of the 
alternative sophisticated complex eigenvalue 
approaches [40,42,45].  
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presented in Refs. [1,2,16]. Here we only under-
line that  the function ( )te  practically coincides 
with the constant in the inner barrier motion 
region, i.e. < and disappears at > . It is 
important that the final results do not depend on 
the parameter t. It is carefully checked in the nu-
merical calculation. The scattering states energy 
spectrum now spreads over the range ( )∞+- ,2et
, compared with  ( )∞+∞- ,  in the uniform field. 
In contrast to the case of a free atom in scatter-
ing states in the presence of the uniform electric 
field remain quantified at any energy E, i.e. only 
definite values of  are possible. The latter are 
determined by the confinement condition for 
the motion along the h-axis. The same is true in 

our case, but only for E 
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2
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1 .  Ulti-

mately, such a procedure provides construction 
of realistic functions of the bound and scattering 
states. In a certain sense, this completely corre-
sponds to the advantages of the distorted-wave 
approximation known in scattering theory [2].

The total Hamiltonian ( )jνς ,,H  does not 
possess the bound stationary states. According 
to OPT [16]), one has to define the zero order 
Hamiltonian H0, so that its spectrum reproduces 
qualitatively that of the initial one. To calcu-
late the width G of the concrete quasistation-
ary state in the lowest PT order one needs only 
two zeroth–order EF of H0: bound state func-
tion ( )jηe ,,EbΨ  and scattering state function 

( )jηe ,,EsΨ  with the same EE. It can be solved 
a more  general problem: a construction of the 
bound  state function along with its complete 
orthogonal complementary of  scattering func-
tions  with  E 






 ∞+-⊂ ,

2
1 et . First, one has 

to define the EE of the expected bound state. It is 
the well-known problem of states quantification 
in the case of the penetrable barrier [16]. The  
system (3) and (4) with the total Hamiltonian  
is solved under the conditions:

                           f(t)® 0 at t Þ ¥ ,              (9) 

¶x(b, E) / ¶E = 0  with

x(b, E) = 
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lim [ g2 (t) + {g¢(t) / k}2 ] t| m| + 1.         (10)

These two conditions quantify the bound en-
ergy E and separation constant . Further one 
should solve the system of the ordinary differen-
tial equations (3) and (4) with probe pairs of  E, 

. The corresponding EF:
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where  ( )tf Eb   is the solution of (3) ( with the 
just determined E, ) at ( )∞⊂ ,0t   and ( )tg Eb  is 
the solution of (4) (with the same E, ) at  
(inside barrier) and  ( ) 0=tg  otherwise.  

These bound state EE, eigenvalue  and 
EF for the zero-order Hamiltonian  coincide  
with those  for the total Hamiltonian  at  ⇒
, where all the states can be classified  due  to 
the quantum numbers  (principal, 
parabolic, azimuthal) connected with E, , m 
by the well-known expressions. The scattering 
state functions:
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is orthogonal to the above defined bound state 
function and to each other. In addition, these 
functions must describe the motion of the eject-
ed electron, i.e. ′  must satisfy the equation 
(4) asymptotically. Following the OPT ideology 
[16], we choose the next form of ′ :
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| |m

t
+1 f¢E¢s+[1/2E¢+(b1¢-N/Z)/t-1/4 e 

(t)t] f E¢s = 0,
g1²+

| |m
t
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g2²+
| |m

t
+1g2¢+[1/2E+b2¢/t +1/4e (t)t]g2=2gEb,

                                                                   (14)

To simplify the calculational procedure, the 
uniform electric field   in (3) and (4)  should 
be substituted by the function [16]:  
     

 (t)  = 1
t

  ( )t
t













 




4

4 4
                                   

                                                                  (8) 
with sufficiently large  (=1.5t2). The 
motivation of a choice of the  t  and some 
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the -axis are presented in Refs. [1,2,16]. 
Here we only underline that  the function 
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energy E and separation constant 1 . Further 
one should solve the system of the ordinary 
differential equations (3) and (4) with probe 
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energy E and separation constant 1 . Further 
one should solve the system of the ordinary 
differential equations (3) and (4) with probe 
pairs of  E, 1 . The corresponding EF: 

 
Eb (  = fEb () gEb ()( )|m|/2  

                          exp (im)(2--1/2 ,           (11) 
 
where   tf Eb   is the solution of (3) ( with the 
just determined E, 1 ) at   ,0t   and  tgEb  
is the solution of (4) (with the same E, 1 ) at 

2tt   (inside barrier) and    0tg  otherwise.   
These bound state EE, eigenvalue 1  and 

EF for the zero-order Hamiltonian 0H  
coincide  with those  for the total 
Hamiltonian H  at  0 , where all the states 
can be classified  due  to the quantum 
numbers mnnn ,,, 21  (principal, parabolic, 
azimuthal) connected with E, 1 , m by the 
well-known expressions. The scattering state 
functions: 

Es  (  = f Es () gE’s () ( )|m|/2  

                                   exp (im)(2-1/2                (12) 
 
is orthogonal to the above defined bound 
state function and to each other. In addition, 
these functions must describe the motion of 
the ejected electron, i.e. sEg   must satisfy the 
equation (4) asymptotically. Following the 
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with sufficiently large  (=1.5t2). The 
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  

2
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2
1 .  Ultimately, 
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
  ,

2
1  . First, one has to 
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These two conditions quantify the bound 
energy E and separation constant 1 . Further 
one should solve the system of the ordinary 
differential equations (3) and (4) with probe 
pairs of  E, 1 . The corresponding EF: 
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                          exp (im)(2--1/2 ,           (11) 
 
where   tf Eb   is the solution of (3) ( with the 
just determined E, 1 ) at   ,0t   and  tgEb  
is the solution of (4) (with the same E, 1 ) at 

2tt   (inside barrier) and    0tg  otherwise.   
These bound state EE, eigenvalue 1  and 

EF for the zero-order Hamiltonian 0H  
coincide  with those  for the total 
Hamiltonian H  at  0 , where all the states 
can be classified  due  to the quantum 
numbers mnnn ,,, 21  (principal, parabolic, 
azimuthal) connected with E, 1 , m by the 
well-known expressions. The scattering state 
functions: 

Es  (  = f Es () gE’s () ( )|m|/2  
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is orthogonal to the above defined bound 
state function and to each other. In addition, 
these functions must describe the motion of 
the ejected electron, i.e. sEg   must satisfy the 
equation (4) asymptotically. Following the 

OPT ideology [16], we choose the next form 
of sEg  : 

                  gEs(t) = g1 (t) - z2 g2(t)       (13) 
 
with sEf   and  tg1  satisfying the differential 
equations (3) and (4). The function  tg2  
satisfies the non-homogeneous differential 
equation, which differs from (4) only by the 
right-hand term, disappearing at t . The 
total equation system, determining the 
scattering function, reads 
fEs+ | |m

t
1 fEs+[1/2E+(1-N/Z)/t-1/4  (t)t] 

f Es = 0, 
g1+ | |m

t
1g1+[1/2E+2/t +1/4 (t)t]g1=0,                                      

g2+ | |m
t
1g2+[1/2E+2/t +1/4 (t)t]g2=2gEb, 

                                                                   (14) 
( 121   ). At the given E , the only 
quantum parameter 1   is determined by the 
natural boundary condition: fEs at t . 
Of course:  11   , EbsE ff    at EE  ; only 
this case is needed in the particular problem 
we deal with here. The coefficient 2z  ensures 
the orthogonality condition:  

                                                                          
                          0 sEEb .                  (15) 
The imaginary part of state energy in the 
lowest PT order is as follows: 
 
          ImE = /2 = |<Eb |H|Es>|2     (16)   
 
with the total Hamiltonian H . The state 
functions Eb  and Es  are assumed to be 
normalized to 1 and by the  kk   
condition, accordingly. The matrix elements 

sEEb H   entering the high- order PT 
corrections can be determined in the same 
way. They can be expressed through the set 
of one-dimensional integrals, described in 
details in Refs. [1,16].  

In contrast to the hydrogen atom, the non-
relativistic Schrödinger equation for an 
electron moving in the field of the atomic 
core in many-electron atom (in particular, an 
alkali element) and a uniform external 

electric field does not allow separation of 
variables in the parabolic coordinates , ,  
[2].One of the ways this problem could be 
related to the use of effective potentials, 
chosen in such a way (for example, in the 
Miller-Green approximation; look review in 
ref [2]) that to achieve the separation of 
variables in the Schrödinger equation. Here 
the model potential approach [2] is used. One 
may introduce the ion core charge z  for the 
multielectron atom. According to standard 
quantum defect theory, the relation between 
quantum defect value 1 , electron energy E 
and principal quantum number n is: 

  21
1 2   Ezт . The quantum defect in 

the parabolic coordinates  mnn 21  is 
connected to the quantum defect value of the 
free  0  atom by the following relation 
[25,47]:  
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Using the quantum defect approximation 
allows to modify the OPT method for the 
non-H atoms. All calculations are performed 
on the basis of the numeral code Superatom-
ISAN (version 93). The details of the used 
method can be found in the references 
[1,2,16,25,47].  
  

3. Results and Conclusions 
 

We have applied the developed 
computational approach to calculating the 
complex energy eigenvalues representing the 
shifted and broadened 2s state of lithium 
atom as a function of electric field strength. 
Sahoo and Ho [45] performed the calculation 
on the basis of a complex absorbing potential 
(CAP) method. Themelis and Nicolaides [42] 
adopted ab initio theory to compute the 
complex energy of multielectron atomic 
states. Their approach is based on the state-
specific construction of a non-Hermitian 
matrix according to the form of the decaying-
state eigenfunction which emerges from the 
complex eigenvalue Schrodinger equation 
(CESE) theory. Meng et al [40] has 

OPT ideology [16], we choose the next form 
of sEg  : 
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with sEf   and  tg1  satisfying the differential 
equations (3) and (4). The function  tg2  
satisfies the non-homogeneous differential 
equation, which differs from (4) only by the 
right-hand term, disappearing at t . The 
total equation system, determining the 
scattering function, reads 
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t
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t
1g2+[1/2E+2/t +1/4 (t)t]g2=2gEb, 

                                                                   (14) 
( 121   ). At the given E , the only 
quantum parameter 1   is determined by the 
natural boundary condition: fEs at t . 
Of course:  11   , EbsE ff    at EE  ; only 
this case is needed in the particular problem 
we deal with here. The coefficient 2z  ensures 
the orthogonality condition:  

                                                                          
                          0 sEEb .                  (15) 
The imaginary part of state energy in the 
lowest PT order is as follows: 
 
          ImE = /2 = |<Eb |H|Es>|2     (16)   
 
with the total Hamiltonian H . The state 
functions Eb  and Es  are assumed to be 
normalized to 1 and by the  kk   
condition, accordingly. The matrix elements 

sEEb H   entering the high- order PT 
corrections can be determined in the same 
way. They can be expressed through the set 
of one-dimensional integrals, described in 
details in Refs. [1,16].  

In contrast to the hydrogen atom, the non-
relativistic Schrödinger equation for an 
electron moving in the field of the atomic 
core in many-electron atom (in particular, an 
alkali element) and a uniform external 

electric field does not allow separation of 
variables in the parabolic coordinates , ,  
[2].One of the ways this problem could be 
related to the use of effective potentials, 
chosen in such a way (for example, in the 
Miller-Green approximation; look review in 
ref [2]) that to achieve the separation of 
variables in the Schrödinger equation. Here 
the model potential approach [2] is used. One 
may introduce the ion core charge z  for the 
multielectron atom. According to standard 
quantum defect theory, the relation between 
quantum defect value 1 , electron energy E 
and principal quantum number n is: 

  21
1 2   Ezт . The quantum defect in 

the parabolic coordinates  mnn 21  is 
connected to the quantum defect value of the 
free  0  atom by the following relation 
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Using the quantum defect approximation 
allows to modify the OPT method for the 
non-H atoms. All calculations are performed 
on the basis of the numeral code Superatom-
ISAN (version 93). The details of the used 
method can be found in the references 
[1,2,16,25,47].  
  

3. Results and Conclusions 
 

We have applied the developed 
computational approach to calculating the 
complex energy eigenvalues representing the 
shifted and broadened 2s state of lithium 
atom as a function of electric field strength. 
Sahoo and Ho [45] performed the calculation 
on the basis of a complex absorbing potential 
(CAP) method. Themelis and Nicolaides [42] 
adopted ab initio theory to compute the 
complex energy of multielectron atomic 
states. Their approach is based on the state-
specific construction of a non-Hermitian 
matrix according to the form of the decaying-
state eigenfunction which emerges from the 
complex eigenvalue Schrodinger equation 
(CESE) theory. Meng et al [40] has 
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( ′′ ). At the given ′ , the only quan-
tum parameter ′  is determined by the natural 
boundary condition: fE¢sÞ0 at t Þ ¥. Of course:  
′ , EbsE ff =′   at ′ ; only this case is 

needed in the particular problem we deal with 
here. The coefficient ′  ensures the orthogonal-
ity condition: 

                          0=ΨΨ ′sEEb .                  (15)

The imaginary part of state energy in the 
lowest PT order is as follows:

            ImE = G/2 = p|<YEb |H|YEs>|2     (16)  

with the total Hamiltonian . The state func-
tions 

EbΨ  and EsΨ  are assumed to be normalized 
to 1 and by the ( )kk ′-d  condition, accordingly. 
The matrix elements 

sEEb H ′ΨΨ  entering the 
high- order PT corrections can be determined in 
the same way. They can be expressed through 
the set of one-dimensional integrals, described 
in details in Refs. [1,16]. 

In contrast to the hydrogen atom, the non-
relativistic Schrödinger equation for an electron 
moving in the field of the atomic core in many-
electron atom (in particular, an alkali element) 
and a uniform external electric field does not al-
low separation of variables in the parabolic co-
ordinates x, h, j [2].One of the ways this problem 
could be related to the use of effective potentials, 
chosen in such a way (for example, in the Mill-
er-Green approximation; look review in ref [2]) 
that to achieve the separation of variables in the 
Schrödinger equation. Here the model potential 
approach [2] is used. One may introduce the ion 
core charge  for the multielectron atom. Ac-
cording to standard quantum defect theory, the 
relation between quantum defect value , elec-
tron energy E and principal quantum number n 
is: ( ) 21

1 2 -∗ --= Ezòm . The quantum defect in 
the parabolic coordinates ( )mnn 21d  is connected 
to the quantum defect value of the free ( )0=e  
atom by the following relation [25,47]: 
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Using the quantum defect approximation al-
lows to modify the OPT method for the non-H 
atoms. All calculations are performed on the ba-
sis of the numeral code Superatom-ISAN (ver-
sion 93). The details of the used method can be 
found in the references [1,2,16,25,47]. 

 
3. Results and Conclusions
We have applied the developed computational 

approach to calculating the complex energy ei-
genvalues representing the shifted and broadened 
2s state of lithium atom as a function of electric 
field strength. Sahoo and Ho [45] performed the 
calculation on the basis of a complex absorbing 
potential (CAP) method. Themelis and Nicolaides 
[42] adopted ab initio theory to compute the com-
plex energy of multielectron atomic states. Their 
approach is based on the state-specific construc-
tion of a non-Hermitian matrix according to the 
form of the decaying-state eigenfunction which 
emerges from the complex eigenvalue Schro-
dinger equation (CESE) theory. Meng et al [40] 
has elaborated the B-spline based coordinate ro-
tation (B-CR) approach. In Table 1 we present 
our data on the eigenvalues EE (in atomic units: 
a.u.) representing the shifted and broadened 2s 
state of lithium atom as a function of electric field 
strength (in a.u.). 

Table 1. 
Complex eigenvalues for the shifted and 
broadened 2s state of lithium atom as a func-
tion of the field strength, calculated by differ-

ent methods (see text)

Li 2s B-CR  
[40]

B-CR 
[40]

CAP 
[45]

CAP 
[45]

ε (a.u.) Er (a.u.) G/2 (a.u) Er (a.u.) G/2 (a.u)
0.0050 −0.20009 – −0.20019 7.20[−9]
0.0100 −0.20642 4.50[−5] −0.20651 4.77[−5]
0.0125 −0.21147 4.76[−4] −0.21155 4.68[−4]
0.0175 −0.22393 4.03[−3] −0.22397 4.06[−3]
Li 2s CESE 

[42]
WKB
[42]

This 
work  

This 
work  

e (a.u.) G/2 (a.u) G/2 (a.u) Er (a.u.) G/2 (a.u)
0.0050 – 4.6[−11] −0.20012 7.80[−9]
0.0100 5.50[−5 ] 1.72[−4 ] −0.20645 4.81[−5]
0.0125 5.46[−4 ] 2.95[−3 ] −0.21149 4.96[−4]
0.0175 4.35[−3 ] 6.35[−2 ] −0.22394 4.24[−3]

OPT ideology [16], we choose the next form 
of sEg  : 

                  gEs(t) = g1 (t) - z2 g2(t)       (13) 
 
with sEf   and  tg1  satisfying the differential 
equations (3) and (4). The function  tg2  
satisfies the non-homogeneous differential 
equation, which differs from (4) only by the 
right-hand term, disappearing at t . The 
total equation system, determining the 
scattering function, reads 
fEs+ | |m

t
1 fEs+[1/2E+(1-N/Z)/t-1/4  (t)t] 

f Es = 0, 
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                                                                   (14) 
( 121   ). At the given E , the only 
quantum parameter 1   is determined by the 
natural boundary condition: fEs at t . 
Of course:  11   , EbsE ff    at EE  ; only 
this case is needed in the particular problem 
we deal with here. The coefficient 2z  ensures 
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The imaginary part of state energy in the 
lowest PT order is as follows: 
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with the total Hamiltonian H . The state 
functions Eb  and Es  are assumed to be 
normalized to 1 and by the  kk   
condition, accordingly. The matrix elements 

sEEb H   entering the high- order PT 
corrections can be determined in the same 
way. They can be expressed through the set 
of one-dimensional integrals, described in 
details in Refs. [1,16].  

In contrast to the hydrogen atom, the non-
relativistic Schrödinger equation for an 
electron moving in the field of the atomic 
core in many-electron atom (in particular, an 
alkali element) and a uniform external 

electric field does not allow separation of 
variables in the parabolic coordinates , ,  
[2].One of the ways this problem could be 
related to the use of effective potentials, 
chosen in such a way (for example, in the 
Miller-Green approximation; look review in 
ref [2]) that to achieve the separation of 
variables in the Schrödinger equation. Here 
the model potential approach [2] is used. One 
may introduce the ion core charge z  for the 
multielectron atom. According to standard 
quantum defect theory, the relation between 
quantum defect value 1 , electron energy E 
and principal quantum number n is: 

  21
1 2   Ezт . The quantum defect in 

the parabolic coordinates  mnn 21  is 
connected to the quantum defect value of the 
free  0  atom by the following relation 
[25,47]:  
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Using the quantum defect approximation 
allows to modify the OPT method for the 
non-H atoms. All calculations are performed 
on the basis of the numeral code Superatom-
ISAN (version 93). The details of the used 
method can be found in the references 
[1,2,16,25,47].  
  

3. Results and Conclusions 
 

We have applied the developed 
computational approach to calculating the 
complex energy eigenvalues representing the 
shifted and broadened 2s state of lithium 
atom as a function of electric field strength. 
Sahoo and Ho [45] performed the calculation 
on the basis of a complex absorbing potential 
(CAP) method. Themelis and Nicolaides [42] 
adopted ab initio theory to compute the 
complex energy of multielectron atomic 
states. Their approach is based on the state-
specific construction of a non-Hermitian 
matrix according to the form of the decaying-
state eigenfunction which emerges from the 
complex eigenvalue Schrodinger equation 
(CESE) theory. Meng et al [40] has 
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For comparison the analogous results, ob-
tained on the basis of the CAP, CESE, B-CR 
methods [40,42,45] are presented. Analysis of 
the data shows that the positions (energies) of 
the Stark resonances in the present calculation 
are in a physically reasonable agreement with 
theoretical data obtained by other, in particular, 
CESE and B-CR methods.  However, the results 
for the width of resonance differ more signifi-
cantly from each other. For example, the CAP 
calculation for the width of the 2s state at strength 
F< 0.0060 a.u. gives systematically larger val-
ues than obtained by the CESE, B-CR and our 
methods. The resonance width values are higher 
than the corresponding B-CR data and corre-
spondingly a little less than the values, obtained 
within the CESE method for all strengths of the 
electric field under consideration. Concerning 
the widths of resonances it should paid to at-
tention on convergence aspect for the CAP and 
CESE method. As it has been underlined in [40], 
in the case of a weak electric field (naturally the 
widths of resonances became very small), the 
methods have difficulties in obtaining a stable 
value of a width. In order to obtain the well-con-
verged results, it is necessary to use larger basis 
size. Naturally, in a limit of a weak electric field 
the well-known quasiclassical WKB approxi-
mation and standard PT [1,2] calculation will be 
more appropriate. One of the advantages of the 
B-CR method is possibility to apply in the case 
of increasing field strengths without a signifi-
cant computational effort growth, however, the 
convergence of the width  G to obtain reliable 
complex eigenvalues should be carefully carried 
out. In the CAP method, there is no systematic 
way of choosing a scaling factor in an quite ar-
tificial complex potential, which is added to the 
original atomic Hamiltonian.  One of the serious 
advantages of the modified OPT method is that 
an increasing a field strength does not lead to an 
increase of computational effort and there is no 
a convergence problem.
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SPECTROSCOPY OF MULTIELECTRON ATOM IN A DC ELECTRIC FIELD: 
MODIFIED OPERATOR PERTURBATION THEORY APPROACH 

TO STARK RESONANCES

Summary
It is presented a new modified method to calculation of the Stark resonances energies character-

istics (energies and widths) for the multielectron  atomic systems in a DC electric field. The method 
is based on the modified operator perturbation theory. The latter allows an accurate, consistent 
treatment of a strong field DC Stark effect and includes the physically reasonable distorted-waves 
approximation in the frame of the formally exact quantum-mechanical procedure. As illustration, 
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some  test data for the  Stark resonances energies and widths in the lithium atom spectrum are pre-
sented and compared with  results of calculations  within the alternative consistent sophisticated 
methods.   

Keywords: multielectron atom in a dc electric field – modified operator perturbation theory – 
Stark resonances
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СПЕКТРОСКОПИЯ МНОГОЭЛЕКТРОННОГО АТОМА В DC ЭЛЕКТРИЧЕСКОМ 
ПОЛЕ: МОДИФИЦИРОВАННЫЙ МЕТОД ОПЕРАТОРНОЙ ТЕОРИИ 
ВОЗМУЩЕНИЙ ДЛЯ ОПИСАНИЯ ШТАРКОВСКИХ РЕЗОНАНСОВ

Резюме
Представлен новый модифицированный метод расчета характеристик энергий штарков-

ских резонансов (энергии и ширины) для многоэлектронных атомных систем в электриче-
ском поле. Метод основан на модифицированной операторной теории возмущений, которая 
обеспечивает последовательное, корректное описнаие эффекта Штарка в сильном поле для 
многоэлектронных атомов и базируется на использовании физически обоснованного при-
ближения искаженных волн в рамках формально точной квантово-механической процедуры. 
В качестве иллюстрации представлены некоторые тестовые данные для энергий и ширин 
резонансов Штарка в спектре атомов лития, которые сравниваются с результатами расчетов 
в рамках альтернативных последовательных теоретических методов. 

Ключевые слова:  Многоэлектронный атом в электрическом поле – модифицированная 
операторная теория возмущений – штарковские резонансы
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СПЕКТРОСКОПІЯ БАГАТОЕЛЕКТРОННОГО АТОМА В DC ЕЛЕКТРИЧНОМУ 
ПОЛІ: МОДИФІКОВАНИЙ МЕТОД ОПЕРАТОРНОЇ ТЕОРІЇ ЗБУРЕНЬ ДЛЯ 

ОПИСУ ШТАРКIВСЬКИХ РЕЗОНАНСІВ

Резюме
Представлений новий модифікований метод розрахунку характеристик енергій штарків-

ських резонансів (енергії і ширини) для багатоелектронних атомних систем в електричному 
полі. Метод заснований на модифікованій операторної теорії збурень, яка забезпечує послі-
довний, коректний опис  ефекту Штарка в сильному полі для багатоелектронних атомів і ба-
зується на використанні фізично обґрунтованого наближення перекручених хвиль в рамках 
формально точної квантово-механічної процедури. В якості ілюстрації представлені деякі 
тестові дані для енергій і ширин резонансів Штарка в спектрі атомів літію, які порівнюються 
з результатами розрахунків в рамках альтернативних послідовних теоретичних методів.

Ключові слова: багатоелектронний атом у електричному полі – модифікована оператор-
на теорія збурень – штарківські резонанси
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CHAOTIC DYNAMICS OF DIATOMIC MOLECULES 
IN AN ELECTROMAGNETIC FIELD 

Nonlinear chaotic dynamics of the diatomic molecules interacting with a resonant linearly polarized electromagnetic 
field is computationally modelled. It is presented an effective quantum-mechanical  model for diatomic molecule in 
an electromagnetic field, based on the Schrödinger equation and model potential method. To detect the elements of 
a chaotic dynamics, we used the known chaos theory and non-linear analysis methods such as a correlation integral 
algorithm, the Lyapunov’s exponents and  Kolmogorov entropy analysis, prediction model etc. There are listed the data 
of computing dynamical and topological invariants such as the correlation, embedding and Kaplan-Yorke dimensions, 
Lyapunov’s exponents, Kolmogorov entropy etc, for polarization time series of the ZrO molecule interacting with 
a linearly polarized electromagnetic field. The results obtained are  in a physically reasonable agreement with the 
conclusions by Berman, Kolovskii, Zaslavsky, Zganh et al, Glushkov et al.  

Introduction
Theoretical and experimental studying regu-

lar and chaotic dynamics of nonlinear processes 
in the different classes of quantum systems (in 
particular, atomic and molecular systems in an 
external electromagnetic field) attracts a great 
interest that is of a significant importance for 
multiple scientific and technical applications etc 
[1-70]. Some of the beauty of quantum chaos is 
that it has developed a set of tools which have 
found applications in a large variety of differ-
ent physical contexts, ranging from atomic, mo-
lecular and nuclear physics (Chirijov, 1979, De-
lande-Gay 1986, Wintgen-Friedrich 1986, Win-
tgen 1987, Zaslavsky, Berman, Kolovsky, 1988, 
1992, Meredith et al, 1988, Chelkowski et al, 
1991,  Delande et al 1991, Zhang, Katsouleas, 
Joshi, 1993,  Cassati et al 1994, Glushkov et al 
1993, 1997, 2014, Bohigas and Leboeuf 2002, 
Olofsson et al 2006, López, Mercado, 2015 et 
al), optical (Nockel-Stone 1997, Gmachl et 
al 1998) or microwave (Stockmann and Stein 
1990, Sridhar 1991, Alt et al 1995, Kudrolli et al 
1995, Pradhan and Sridhar 2000) resonators and 
mesoscopic physics (Richter et al 1996b, Rich-
ter 2000, Alhassid 2000, Glushkov et al, 2005-

2007) and others (see review [11]). New field of 
investigations of the quantum and other systems 
has been provided by the known  progress in a 
development of a nonlinear analysis and chaos 
theory methods [1-12,17-30]. In Refs. [11,27-
33] the authors applied different approaches 
to quantitative studying regular and chaotic 
dynamics of atomic and molecular systems in-
teracting with a strong electromagnetic field 
and laser systems. The most popular approach 
includes the combined using the advanced non-
linear analysis and a chaos theory methods such 
as the autocorrelation function method, multi-
fractal formalism, mutual information approach, 
correlation integral analysis, false nearest 
neighbour algorithm, Lyapunov exponent’s 
analysis, surrogate data method, stochastic 
propagators method, memory and Green’s 
functions approaches etc (see details in Refs. 
[17-33]). 

In this paper we present the results of com-
puting chaotic dynamics of the concrete molec-
ular systems (diatomic molecules) interacting 
with a linearly polarized resonant electromag-
netic field. The  quantum-dynamic approach to 
diatomic molecule in an electromagnetic field 
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is used and based on the solution of the time-
dependent Schrödinger equation, optimized op-
erator perturbation theory and realistic model 
potential method.

2. Quantum-dynamical and chaos-geomet-
ric modeling dynamics of diatomic molecule 
in a field

Below we briefly consider a quantum dy-
namical approach to studying  a regular and 
chaotic dynamics of diatomic molecules in a 
resonant electromagnetic field  [11]. It is based 
on the numerical solution of the time-dependent 
Schrödinger equation and realistic Simons-Parr-
Finlan model for the diatomic molecule poten-
tial U (x).  The Simons-Parr-Finlan formulae for 
the molecular potential is:

∑ [(1{]/)[()( 2
0               

                                                                  (1a)
or introducing x= r - r0 :

∑ /([1{]/([)( 0
2

00                                   
                                                                 (1b)

where the coefficients bi  are linked with corre-
sponding molecular constants. 

The problem of dynamics of diatomic mol-
ecules in an infrared field is reduced to solving 
the Schrödinger equation:
                    

∂∂ )]cos()()()([/ 0 ttExdxUHti LM we  (2)

where EM - the maximum field strength, 
ε(t)=E0cos(υt) corresponds the pulse envelope 
(chosen equal to one at the maximum value of 
electric field). A molecule in the field gets the in-
duced polarization and its high-frequency com-
ponent can be defined as:
                                        

,               (3а)

                                          
       ,        (3b)

                                       

    
,         (3c)

where T ― period of the external field, d –di-
pole moment. As usually, the power spectrum 
can be further determined as follows: 

                 .                  (4)

To  avoid the numerical noise during the Fou-
rier transformation, the attenuation technique 
used,i.e. at t> tp, p (t) is replaced by
                         

)   (5)
with T=1.5tp. 

It is understood that in the regular case of 
molecular dynamics, a spectrum will consist of 
a small number of the well resolved lines. In the 
case of chaotic dynamics of molecule in a field 
situation changes essentially. The correspond-
ing energy of interaction with the field is much 
higher than anharmonicity constant . It 
is obvious that a spectrum in this case become 
more complicated [7-12]. 

The theoretical foundations of the universal 
approach to analysis of chaotic dynamics of the 
quantum systems in an electromagnetic field  
have been presented earlier (see, c.g., [11,17-
33]). Here we are limited only by the key mo-
ments. Generally speaking, the approach in-
cludes a set of such non-linear analysis and a 
chaos theory methods as the correlation integral 
approach, multi-fractal and wavelet analysis, 
average mutual information, surrogate data, 
Lyapunov’s exponents and Kolmogorov entropy 
approach, spectral methods, nonlinear predic-
tion (predicted trajectories, neural network etc) 
algorithms. 

The goal of the embedding dimension deter-
mination is to reconstruct a Euclidean space Rd 
large enough so that the set of points dA can be 
unfolded without ambiguity. In accordance with 
the embedding theorem, the embedding dimen-
sion, dE, must be greater, or at least equal, than a 
dimension of attractor, dA, i.e. dE > dA. There are 
several standard approaches to reconstruction of 
the attractor dimension (see, e.g., [17-33]). The 
correlation integral analysis is one of the widely 
used techniques to investigate the signatures of 

perturbation theory and realistic model potential 
method. 
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dependent Schrödinger equation and realistic 
Simons-Parr-Finlan model for the diatomic 
molecule potential U (x).  The Simons-Parr-
Finlan formulae for the molecular potential 
is: 
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where the coefficients bi  are linked with 
corresponding molecular constants.  
The problem of dynamics of diatomic 
molecules in an infrared field is reduced to 
solving the Schrödinger equation: 

                    
 )]cos()()()([/ 0 ttExdxUHti LM                     
(2) 

 
where EM - the maximum field strength, 
(t)=E0cos(t) corresponds the pulse 
envelope (chosen equal to one at the 
maximum value of electric field). A molecule 
in the field gets the induced polarization and 
its high-frequency component can be defined 
as:                                         
         ,           
                                                                  (3а)                                           
           ,                        
                                                                  (3b) 
                                        
          ,                  
                                                                  (3c) 

 
where T ― period of the external field, d –
dipole moment. As usually, the power 
spectrum can be further determined as 
follows:  

                                                           
                 .                  (4) 

 
To  avoid the numerical noise during the 
Fourier transformation, the attenuation 
technique used,i.e. at t> tp, p (t) is replaced 
by 

                         
)                 

                                                                 (5) 
with T=1.5tp.  

It is understood that in the regular case of 
molecular dynamics, a spectrum will consist 
of a small number of the well resolved lines. 
In the case of chaotic dynamics of molecule 
in a field situation changes essentially. The 
corresponding energy of interaction with the 
field is much higher than anharmonicity 
constant . It is obvious that a 
spectrum in this case become more 
complicated [7-12].  

The theoretical foundations of the 
universal approach to analysis of chaotic 
dynamics of the quantum systems in an 
electromagnetic field  have been presented 
earlier (see, c.g., [11,17-33]). Here we are 
limited only by the key moments. Generally 
speaking, the approach includes a set of such 
non-linear analysis and a chaos theory 
methods as the correlation integral approach, 
multi-fractal and wavelet analysis, average 
mutual information, surrogate data, 
Lyapunov’s exponents and Kolmogorov 
entropy approach, spectral methods, 
nonlinear prediction (predicted trajectories, 
neural network etc) algorithms.  

The goal of the embedding dimension 
determination is to reconstruct a Euclidean 
space Rd large enough so that the set of 
points dA can be unfolded without ambiguity. 
In accordance with the embedding theorem, 
the embedding dimension, dE, must be 
greater, or at least equal, than a dimension of 
attractor, dA, i.e. dE > dA. There are several 
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chaos in a time series. The analysis uses the cor-
relation integral, C(r), to distinguish between 
chaotic and stochastic systems. 

To compute the correlation integral, the algo-
rithm of Grassberger and Procaccia [24] is the 
most commonly used approach. According to 
this algorithm, the correlation integral is 

    ( )∑
≤<≤
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where H is the Heaviside step function with 
H(u) = 1 for u > 0 and H(u) = 0 for u ≤ 0, r is 
the radius of sphere centered on yi or yj, and N 
is the number of data measurements. To verify 
the results obtained by the correlation integral 
analysis, one could use the surrogate data meth-
od. This approach makes use of the substitute 
data generated in accordance to the probabilistic 
structure underlying the original data.

The important dynamical invariants of a cha-
otic system are the Lyapunov’s exponents (see, 
c.g., [11,25-30]). They are usually defined as as-
ymptotic average rates, they are independent of 
the initial conditions, and therefore they do com-
prise an invariant measure of attractor. Saying 
simply, the Lyapunov’s exponents are a param-
eter to detect whether the system is chaotic or not.  

The Kolmogorov entropy  Kent  measures the 
average rate at which information about the state 
is lost with time. An estimate of this measure is 
the sum of the positive Lyapunov’s exponents. 
The estimate of the dimension of the attractor 
is provided by the Kaplan and York conjecture:
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+
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where j is such that  ∑  and ∑ , and 

the Lyapunov’s exponents la are taken in de-
scending order. 

There are a few approaches to computing the 
Lyapunov’s exponents. One of them computes 
the whole spectrum and is based on the Jacobi 
matrix of system.  In our work we use the meth-
od with the linear fitted map proposed by Sano 
and Sawada [58], although the maps with higher 
order polynomials can be also used. 

3. Some results and conclusions
Here we present the results of numerical 

simulation of the time dynamics for diatomic 
molecule ZrO in the electromagnetic field. An 
electromagnetic field is characterized by the pa-
rameter:  S = cE /8p. where c is the velocity of 
light and E is a field strength. The parameter W 
of interaction of an electromagnetic radiation 
with a molecule is as follows: 

               1 1/2
0 0[ ] 120.3( / )( / )ecm d rW S Mw- =      (8) 

where an interatomic distance r0 in Å, dipole 
moment do in D, ωe in cm-1, M in a.u.m., and the 
field parameter S  in GW/cm2 . In Table 1 we list 
a set of the ZrO molecules and field parameters 
[68-70]. 

The corresponding Chirikov parameter [10] 
in this case is as:    The typi-
cal theoretical time dependence of polarization 
for ZrO molecule in the field in a chaotic regime 
is presented in Ref. [11]. The concrete  step is an 
analysis of the corresponding  time series with  
the n=7.6×103 and Dt=5×10-14s. 

In Table 3 we list the computed values of the 
correlation dimension d2, the Kaplan-York attrac-
tor dimension (dL), the Lyapunov’s exponents (li, 
i=1-3), the Kolmogorov entropy (Kentr), and the 
Gottwald-Melbourne  parameter

Table 1. 
Set of the ZrO molecular constants and elec-

tromagnetic field parameters

Parameters ZrO

we= (cm-1) 969.7

wexe= (cm-1) 4.90

Be (cm-1) 0.423
De (cm-1) 3.19×10-7

d0 (D) 2.55
r0 (Å) 1.72

M (a.u.m) 13.58
W (cm-1) 15.5-49.1
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Table 2. 
The correlation dimension d2, Lyapunov’s 
exponents (λi, i=1,2),  Kaplan-York attractor 
dimension (dL), Kolmogorov entropy (Kentr), 

the Gottwald-Melbourne  parameter KGW

d2 l1 l2 dL Kentr KGW

2.76 0.147 0.018 2.53 0.165 0.73

Analysis of the presented data allows to make 
conclusions that the dynamics of the ZrO mole-
cule in a resonant linearly polarized electromag-
netic field has the elements of a deterministic 
chaos (the strange attractor) and this conclusion 
is entirely agreed with the results of modelling 
for other diatomic molecules [3,7-11]. 
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A. A. Mashkantsev, A. V. Ignatenko, S. V. Kirianov, E. V. Pavlov

CHAOTIC DYNAMICS OF DIATOMIC MOLECULES 
IN AN ELECTROMAGNETIC FIELD 

Summary
Nonlinear chaotic dynamics of the diatomic molecules interacting with a resonant linearly po-

larized electromagnetic field is computationally modelled. It is presented an effective quantum-
mechanical  model for diatomic molecule in an electromagnetic field, based on the Schrödinger 
equation and model potential method. To detect the elements of a chaotic dynamics, we used the 
known chaos theory and non-linear analysis methods such as a correlation integral algorithm, the 
Lyapunov’s exponents and  Kolmogorov entropy analysis, prediction model etc. There are listed 
the data of computing dynamical and topological invariants such as the correlation, embedding and 
Kaplan-Yorke dimensions, Lyapunov’s exponents, Kolmogorov entropy etc, for polarization time 
series of the ZrO molecule interacting with a linearly polarized electromagnetic field. The results 
obtained are in a physically reasonable agreement with the conclusions by Berman, Kolovskii, 
Zaslavsky, Zganh et al, Glushkov et al.  

Key words: Nonlinear chaotic dynamics, diatomic molecules, electromagnetic field

PACS 31.15.-p; 33.20.-t

А. А. Машканцев, А. В. Игнатенко, С. В. Кирьянов,  Е. В. Павлов

ХАОТИЧЕСКАЯ ДИНАМИКА ДВУХАТОМНЫХ МОЛЕКУЛ
В ЭЛЕКТРОМАГНИТНОМ ПОЛЕ

Резюме
Моделируется нелинейная хаотическая динамика двухатомных молекул, взаимодейству-

ющих с резонансным линейно-поляризованным электромагнитным полем. Представлена 
эффективная квантово-механическая модель для двухатомной молекулы в электромагнит-
ном поле, базирующаяся на использовании уравнения Шредингера и метода модельного по-
тенциала. Для детектирования элементов хаотической динамики использованы методы тео-
рии хаоса и нелинейного анализа, такие как алгоритм корреляционного интеграла, анализ на 
основе показателей Ляпунова и энтропии Колмогорова, траекторная модель прогноза и др. 
Представлены данные вычисления динамических и топологических инвариантов таких как 
корреляционная размерность, размерности вложения и Каплана-Йорка, показатели Ляпуно-
ва, энтропия Колмогорова и т. д. для временной зависимости поляризации молекулы ZrO, 
взаимодействующей с линейно-поляризованным электромагнитным полем. Полученные ре-
зультаты находятся в физически разумном согласии с качественными выводами Бермана, 
Коловского, Заславского, Згана, Глушкова и др. 

Ключевые слова: нелинейная хаотическая динамика, двухатомная молекула, электро-
магнитное поле
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О. А. Машканцев, Г. В. Ігнатенко, С. В. Кір’янов,  Є. В. Павлов

ХАОТИЧНА ДИНАМІКА ДВОАТОМНИХ МОЛЕКУЛ
В ЕЛЕКТРОМАГНІТНОМУ ПОЛІ

Резюме
Моделюється нелінійна хаотична динаміка двоатомних молекул, взаємодіючих з резо-

нансним лінійно-поляризованим електромагнітним полем. Представлена   ефективна кван-
тово-механічна модель для двоатомних молекули в електромагнітному полі, що базується 
на використанні рівняння Шредінгера і методу модельного потенціалу. Для детектування 
елементів хаотичної динаміки використані методи теорії хаосу і нелінійного аналізу, такі 
як алгоритм кореляційного інтеграла, аналіз на основі показників Ляпунова і ентропії Кол-
могорова, траєкторна модель прогнозу і ін. Представлені дані обчислення динамічних і то-
пологічних інваріантів таких як кореляційна розмірність, розмірності вкладення і Каплана 
-Йорка, показники Ляпунова, ентропія Колмогорова і т. д. для часової залежності поляриза-
ції молекули ZrO, яка взаємодіє з лінійно-полярізованим електромагнітним полем. Отрима-
ні результати знаходяться в фізично розумній згоді з якісними висновками Бермана, Коло-
вського, Заславського, Згана, Глушкова та ін.

Ключові слова: нелінійна хаотична динаміка, двоатомна молекула, електромагнітне поле
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THEORETICAL STUDYING SPECTRA OF YTTERBIUM ATOM
ON THE BASIS OF RELATIVISTIC MANY-BODY PERTURBATION THEORY: 

DOUBLY EXCITED VALENCE STATES

Theoretical studying spectrum of doubly excited valence states of the ytterbium is carried out within the relativistic 
many-body perturbation theory and  generalized relativistic energy approach.  The zeroth approximation of the 
relativistic perturbation theory is provided by the optimized Dirac-Kohn-Sham ones. Optimization has been fulfilled 
by means of introduction of the parameter to the Kohn-Sham exchange potentials and further minimization of the 
gauge-non-invariant contributions into radiation width of atomic levels with using relativistic orbital set, generated by 
the corresponding zeroth approximation Hamiltonian. 

1.  Introduction
This  paper goes on our work on theoretical 

studying spectra and spectroscopic parameters 
for heavy atoms, namely, lanthanides atoms 
(see, for example [1-3]). It is well known that 
an investigation of spectra, optical and spectral, 
radiative and autoionization characteristics for  
heavy elements atoms and multicharged ions is 
traditionally of a great interest for further devel-
opment quantum atomic optics and atomic spec-
troscopy and different applications in plasma 
chemistry, astro-physics, laser physics etc. (see 
Refs. [1-31]). 

The multi-configuration Dirac-Fock method 
is the most reliable version of calculation for mul-
tielectron systems with a large nuclear charge. 
In these calculations the one- and two-particle 
relativistic and important exchange-correlation 
corrections  are taken into account (see Refs. [1] 
and Refs. therein). However, one should remem-
ber about very complicated structure of spectra 
of the lanthanides atoms and necessity of correct 
accounting the different correlation effects such 
as polarization interaction of the valent quasi-
particles and their mutual screening, iterations 
of a mass operator etc.).The known method of 
the model relativistic many-body perturbation 

theory (RMBPT) has been earlier effectively 
applied to computing spectra of low-lying states 
for some lanthanides atoms [1] (see also [2-6]).  
We use an analogous version of the perturbation 
theory (PT) to study spectrum of doubly excited 
valence states of the ytterbium, however, the 
optimized zeroth approximation is generated 
within the Dirac-Kohn-Sham model. 

2.  Advanced relativistic many-body per-
turbation theory and energy approach

As the method of computing is earlier pre-
sented in details , here we are limited only by the 
key topics [1-3]. Generally speaking, the major-
ity of complex atomic systems possess a dense 
energy spectrum of interacting states with es-
sentially relativistic properties. In the theory of 
the non-relativistic atom a convenient field pro-
cedure is known for calculating the energy shifts 
DΕ  of degenerate states. This procedure is con-
nected with the secular matrix M diagonaliza-
tion [26-30]. In constructing M, the Gell-Mann 
and Low adiabatic formula for DΕ  is used. In 
contrast to the non-relativistic case, the secular 
matrix elements are already complex in the sec-
ond order of the electrodynamical PT (first order 
of the interelectron  interaction). Their imagi-
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nary part of DΕ  is connected with the radiation 
decay (radiation) possibility. In this approach, 
the whole calculation of the energies and decay 
probabilities of a non-degenerate excited state is 
reduced to the calculation and diagonalization 
of the complex matrix M. In the papers of dif-
ferent authors, the Re ED  calculation procedure 
has been generalized for the case of nearly de-
generate states, whose levels form a more or less 
compact group. One of these variants has been 
previously introduced: for a system with a dense 
energy spectrum, a group of nearly degenerate 
states is extracted and their matrix M is calcu-
lated and diagonalized. If the states are well 
separated in energy, the matrix M reduces to one 
term, equal to . The non-relativistic secular 
matrix elements are expanded in a PT series for 
the interelectron interaction. The complex secu-
lar matrix M is represented in the form [2]:                                                          

       
             ( ) ( ) ( ) ( )0 1 2 3 .M M M M M= + + +     (1)

where ( )0M  is the contribution of the vacuum di-
agrams of all order of PT, and ( )1M , ( )2M , ( )3M  
those of the one-, two- and three- quasiparticle 
diagrams respectively. ( )0M  is a real matrix, 
proportional to the unit matrix. It determines 
only the general level shift. We have assumed 

( )0 0.M =  The diagonal matrix ( )1M  can be pre-
sented as a sum of the independent one-quasi-
particle contributions. For simple systems (such 
as alkali atoms and ions) the one-quasiparticle 
energies can be taken from the experiment. Sub-
stituting these quantities into (1) one could have 
summarized all the contributions of the one 
-quasiparticle diagrams of all orders of the for-
mally exact QED PT. However, the necessary 
experimental quantities are not often available. 
The first two order corrections to ( )2Re M  have 
been analyzed previously using Feynman dia-
grams (look Ref. in [2,3]). The contributions of 
the first-order diagrams have been completely 
calculated. In the second order, there are two 
kinds of diagrams: polarization and ladder ones.  
The polarization diagrams take into account the 
quasiparticle interaction through the polarizable 
core, and the ladder diagrams account for the im-

mediate quasiparticle interaction [11-20]. Some 
of the ladder diagram contributions as well as 
some of the three-quasiparticle diagram contri-
butions in all PT orders have the same angular 
symmetry as the two-quasiparticle diagram con-
tributions of the first order. These contributions 
have been summarized by a modification of the 
central potential, which must now include the 
screening (anti-screening) of the core potential 
of each particle by the two others. The addition-
al potential modifies the one-quasiparticle orbit-
als and energies. Then the secular matrix is as 
follows: 

                     ~~→ ,              (2) 

where ( )1M  is the modified one-quasiparticle 
matrix ( diagonal), and ( )2M  the modified two-
quasiparticle one. ( )1M  is calculated by substi-
tuting the modified one-quasiparticle energies), 
and ( )2M  by means of the first PT order formu-
lae for ( )2M , putting the modified radial func-
tions of the one-quasiparticle states in the radial  
integrals.. 

Let us remind that in the QED theory, the 
photon propagator D(12) plays the role of this 
interaction. Naturally the analytical form of 
D(12) depends on the gauge, in which the elec-
trodynamical potentials are written. Interelec-
tron interaction operator with accounting for the 
Breit interaction has been taken as follows:  

       ( ) ( ) ( )
ij

ji
ijji r

áá1
riexprrV

-
⋅= w ,             (3)

where, as usually, αi are the Dirac matrices. In 
general, the results of all approximate calcula-
tions depended on the gauge.  Naturally the cor-
rect result must be gauge-invariant. The gauge 
dependence of the amplitudes of the photo 
processes in the approximate calculations is a 
well known fact and is in details investigated 
by Grant, Armstrong, Aymar and Luc-Koenig, 
Glushkov-Ivanov et al (see [32-40] and nu-
merous Refs. therein). Grant has investigated 
the gauge connection with the limiting non-
relativistic form of the transition operator and 
has formulated the conditions for approximate 
functions of the states, in which the amplitudes 
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of the photo processes are gauge invariant [3]. 
These results remain true in the energy approach 
because the final formulae for the probabilities 
coincide in both approaches. Glushkov-Ivanov 
have developed a new relativistic gauge-con-
served version of the energy approach [32]. In 
ref. [1] it has been developed its further general-
ization. Here we applied this approach for gen-
erating the optimized relativistic orbitals basis 
in the zeroth approximation of the many-body 
PT. Optimization has been fulfilled by means of 
introduction of the parameter to the Fock and 
Kohn-Sham exchange potentials and further 
minimization of the gauge-non-invariant con-
tributions into radiation width of atomic levels 
with using relativistic orbital bases, generated 
by the corresponding zeroth approximation 
Hamiltonians. Other details can be found in 
Refs. [1-3,37-46].

3 Some illustration results and conclusion
The excited states of the  ytterbium atom can 

be treated as the states with two-quasiparticles 
above the electron core [Xe]4f14.  In table 1 the 
energies (accounted from the Yb 4f14 core ener-
gy): of the YbI excited states with doubly excit-
ed valence shell are listed: E1- the EA-MMBPT 
data (from refs. [31]); E2- the RMBPT dat from 
[1,47]; E3 – our data. 

Table 1. 
Energies (in 102cm-1) of some YbI excited 

states with doubly excited valence shell.

   Config. J Theory
             

Exp.

E1 E2 E3

6p1/2
2 0 -1067 -1064 -1062 -1062,7

6p3/2
2 2 - 987 -1004 -1003 -1008.9

6p1/26p3/2 1 -1054 -1050 -1049 -1049.0

6p1/26p3/2 2 -1032 -1036 -1035 -1039.5

5d3/2
2 2 -1034 -1032 -1030 -1010.8

5d3/25d5/2 2 - 994 - 995 - 994 -994.6

5d3/25d5/2 3 -1030 -1032 -1032 -1032.5

In table 2 our data  listed for other similar 
states. All presented MMBPT, ROMBPT and 
our data on the energies are in the physically 
reasonable agreement with experimental data. 
However, comparison of the corresponding re-
sults for widths (will be listed in another paper) 
demonstrates again sufficiently large discrep-
ancy. In our opinion, this fact is explained by 
insufficiently exact estimates of the radial inte-
grals, using the non-optimized basises and some 
other additional calculation approximations. 

Table 2. 
Theoretical energies (in 102 cm-1) of the YbI ex-
cited states with doubly excited valence shell.

   Config. J E2    Config. J E2

6p1/2
2 0 -1062 6p3/25d5/2 3 - 961

6p3/2
2 0 - 917 6p3/25d5/2 4 -1060

6p3/2
2 2 -1003 5d3/2

2 0 - 981

6p1/26p3/2 1 -1049 5d3/2
2 2 -1031

6p1/26p3/2 2 -1035 5d5/2
2 0 - 962

6p1/25d3/2 1 -1071 5d5/2
2 2 - 968

6p1/25d3/2 2 -1068 5d5/2
2 4 - 859

6p1/25d5/2 2 -1002 5d3/25d5/2 1 - 981

6p1/25d5/2 3 -1114 5d3/25d5/2 2 - 994

6p3/25d3/2 0 -1016 5d3/25d5/2 3 -1031

6p3/25d3/2 1 -1011 5d3/25d5/2 4 -1025

6p3/25d3/2 2 - 912 7s1/26p1/2 0 -886

6p3/25d3/2 3 -1034 7s1/26p1/2 1 -885.6

6p3/25d5/2 1 - 947 7s1/26p3/2 1 - 849

6p3/25d5/2 2 -1115 7s1/26p3/2 2 -860
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THEORETICAL STUDYING SPECTRA OF YTTERBIUM ATOM
ON THE BASIS OF RELATIVISTIC MANY-BODY PERTURBATION THEORY: 

DOUBLY EXCITED VALENCE STATES

Summary
Theoretical studying spectrum of doubly excited valence states of the ytterbium is carried out 

within the relativistic many-body perturbation theory and  generalized relativistic energy approach.  
The zeroth approximation of the relativistic perturbation theory is provided by the optimized Dirac-
Kohn-Sham ones. Optimization has been fulfilled by means of introduction of the parameter to the 
Fock and Kohn-Sham exchange potentials and further minimization of the gauge-non-invariant 
contributions into radiation width of atomic levels with using relativistic orbital sets, generated by 
the corresponding zeroth approximation Hamiltonian. 

PACS 32.30.-r

А. А. Свинаренко, В. Б. Терновский, И. С. Черкасова, Д. А. Мироненко

ТЕОРЕТИЧЕСКОЕ ИЗУЧЕНИЕ СПЕКТРА ИТТЕРБИЯ НА ОСНОВЕ 
РЕЛЯТИВИСТСКОЙ МНОГОЧАСТИЧНОЙ ТЕОРИИ ВОЗМУЩЕНИЙ:

ДВАЖДЫ ВОЗБУЖДЕННЫЕ ВАЛЕНТНЫЕ СОСТОЯНИЯ

Резюме
В рамках релятивистской многочастичной теории возмущений и обобщенного реляти-

вистского энергетического подхода проведено теоретическое изучение спектра дважды воз-
бужденных валентных состояний для атома иттербия. В качестве нулевого приближения 
релятивистской теории возмущений выбрано оптимизированное приближение Дирака-Ко-
на-Шэма. Оптимизация выполнена путем введения параметра в обменные потенциалы Фока 
и Кона-Шэма и дальнейшей минимизацией калибровочно-неинвариантных вкладов в ради-
ационные ширины атомных уровней с использованием релятивистского базиса орбиталей, 
сгенерированного соответствующим гамильтонианом нулевого приближения. 

Ключевые слова: Релятивистская теория возмущений, оптимизированное нулевое при-
ближение, иттербий
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А. А. Свинаренко, В. Б. Терновський,  І. С. Черкасова, Д. А. Міроненко

ТЕОРЕТИЧНЕ ВИВЧЕННЯ СПЕКТРУ ІТЕРБІЮ НА ОСНОВІ РЕЛЯТИВІСТСЬКОЇ 
БАГАТОЧАСТКОВІ ТЕОРІЇ ЗБУРЕНЬ: ДВІЧІ ЗБУДЖЕНІ ВАЛЕНТНІ СТАНИ

Резюме
В рамках релятивістської багаточастинкової  теорії збурень і узагальненого релятивіст-

ського енергетичного підходу проведено теоретичне вивчення характеристик рідбергівських 
автоіонізаційних резонансів в спектрах атомів лантанідів (ітербію). В якості нульового на-
ближення релятивістської теорії збурень обрано оптимізоване наближення Дірака-Кона-Ше-
ма. Оптимізація виконана шляхом введення параметра в обмінний потенціал Кона-Шема і 
подальшої мінімізації калібрувально-неінваріантних вкладів в радіаційні ширини атомних 
рівнів з використанням релятивістського базису орбіталей, згенерованого відповідним га-
мільтоніаном нульового наближення.

Ключові слова: Релятивістська теорія збурень, енергії і ширини резонансів, оптимізова-
не нульове наближення, ітербій
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RELATIVISTIC OPERATOR PERTURBATION THEORY IN SPECTROSCOPY 
OF MULTIELECTRON ATOM IN AN ELECTROMAGNETIC FIELD

We present the theoretical basis of a new relativistic operator perturbation theory (OPT) approach to multielectron 
atom in an electromagnetic field combined with a relativistic many-body perturbation theory (RMBPT) formalism for 
a free multielectron atom. As illustration of application of the presented formalism, the results of energy and spectral 
parameters for a number of atoms are presented. The relativistic  OPT  method is tested for the multielectron systems 
such as Fr and Tm.  New approach is elaborated for an accurate, consistent treatment of a strong field Stark effect in 
multielectron atoms.    

Keywords: multielectron atom in a dc electric field – modified operator perturbation theory – Rydberg autoionization 
resonances

1.  Introduction
An investigation of spectra, optical and spec-

tral, radiative and autoionization characteristics 
for  the rare-earth elements (isotopes) and cor-
responding ions is traditionally of a great inter-
est for further development quantum optics and 
atomic spectroscopy and different applications 
in the plasma chemistry, astrophysics, laser 
physics, quantum and nano-electronics  etc. (see 
Refs. [1–42]).  

The calculation difficulties in description of the 
multielectron atoms in electromagnetic (electric) 
field inherent to the standard  quantum mechani-
cal approach are well known. Here one should 
mention the well-known Dyson phenomenon for 
a Strong Filed AC, DC Stark effect. Besides, in 
contrast to the hydrogen atom, the non-relativis-
tic Schrödinger and relativistic Dirac equations  
for an electron moving in the field of the atomic 
core in many-electron atom  and a uniform ex-
ternal electric field does not allow separation of 
variables in the parabolic coordinates. 

The Wentzel-Kramers-Brillouin (WKB) ap-
proximation overcomes these difficulties for 

the states lying far from the “ new continuum” 
boundary. The detailed review of a modern 
states of art for spectroscopy of multielectron 
atoms in an electric (laser) field is presented in 
Refs. [8,16]. 

In this paper we present the theoretical ba-
sis of a new relativistic operator perturbation 
theory (OPT) approach to multielectron atom in 
an electromagnetic field combined with a relativ-
istic many-body perturbation theory (RMBPT) 
formalism for a free multielectron atom. The 
relativistic  OPT  approach is tested for the mul-
tielectron systems such as francium Fr and thul-
lium Tm. 

The relativistic density-functional approxima-
tion with the Kohn-Sham potential is taken as 
the zeroth approximation in the RMBPT formal-
ism. There have taken into account all exchange-
correlation corrections of the second order and 
dominated classes of the higher orders diagrams 
(polarization interaction, quasiparticles screen-
ing, etc.). New form of the multi-electron polar-
ization functional has been used. 
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As illustration of application of the presented 
formalism, new data on the energy and spec-
tral parameters for two complex multielectron 
atoms in a electrioc (electromagnetic) field are 
presented.  

2. Relativistic operator perturbation theo-
ry for multielectron atoms in an electromag-
netic field

Here we  present a new relativistic quantum  
approach to modeling the chaotic dynamics of 
atomic systems in a dc electric and ac electro-
magnetic fields, based on the theory of quasi-
stationary quasienergy states, optimized opera-
tor perturbation theory, method of model-poten-
tial, a complex rotation coordinates algorithm 
method [16,43]. The  universal chaos-geometric 
block will be used further to treat the chaotic 
ionization characteristics for a number of heavy 
atomic systems. 

Let us remind that in the case of the electro-
magnetic field atomic Hamiltonian is usually as 
follows:

           )cos()(
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0
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The field is periodic, of course one should 
use the Floquet theorem; then the eigen  Floquet 
states and quasienergies Ej are de-
fined as the eigen functions and eigen values of 
the Floquet Hamiltonian ∂ . In the 
general form with using the method of complex 
coordinates the problem reduces to the solution 
of stationary Schrödinger equation, which is as 
follows in the model potential approximation: 

at Ψ=Ψ+++∇⋅- w (2)

i.e. to the stationary eigen value and eigen vec-
tors task for some matrix A (with the consider-
ation of several Floquet zones): ( A – EjB)|Ej>=0. 
As a decomposition basis, system of the Sturm 
functions of the operator perturbation theory ba-
sis is used. 

In our new theory we start from the Dirac 
Hamiltonian (in relativistic units): 
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Here a field strength intensity is expressed 
in the relativistic units (Frel= a5/2Fat.un.; a is the 
fine structure constant). One could see that a 
relativistic wave function in the Hilbert space is 
a bi-spinor. Using the formal transformation of 
co-ordinates  exp( θirr → in the Hamilto-
nian (11), one could get:  
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In comparison with an analogous non-rela-

tivistic theory, here there is arisen a technical 
problem. In formulae (11) there is term b, which 
can not be simply transformed. One of the solv-
ing receptions os a limitation of a sub-space of 
the Hamiltonian eigen-functions by states of the 
definite symmetry  (momentum  J and parity Р). 
Thes states can be described by the following 
functions:
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Here  l (l’) and spin  ½ in the coupling scheme 
give a state with the total momentum J and  its 
projection  MJ=M. Action of the Hamiltonian (11) 
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drdripr )/)(/1(-= , , s – the Pauli 
matrices; parameter  w=-1, if l=J-1/2 and w=1, 
if l=J+1/2. 

In order to further  diagonalize the 
Hamiltonian (6), we need to choose the correct 
basis of functions in the subspace (5), in 
particular, by choosing the following functions 
(the sitter or water-like type):                                                       
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     Here  l (l’) and spin  ½ in the coupling 
scheme give a state with the total momentum 
J and  its projection  MJ=M. Action of the 
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and =1, if l=J+1/2.  
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Hamiltonian (6), we need to choose the 
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in particular, by choosing the following 
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It is easy to see that the matrix elements (6) 
will be no-zeroth only between the states with 
the same MJ. In fact this moment is a single limi-
tation of the whole approach. 

Transformation of co-ordinates in the Pauli 
Hamiltonian (in comparison with the Schrod-
inger equation Hamiltonian it contents additional 
potential term of a magnetic dipole in an external 
field) can be performed by the analogous way. 
However, procedure in this case is significantly 
simplified. They can be expressed through the set 
of one-dimensional integrals, described in details 
in Refs. [8,14,47]. 

In contrast to the hydrogen atom, the non-
relativistic Schrödinger equation for an electron 
moving in the field of the atomic core in many-
electron atom (in particular, an alkali element) 
and a uniform external electric field does not 
allow separation of variables in the parabolic 
coordinates x, h, j [14].One of the ways this 
problem could be related to the use of effective 
potentials, chosen in such a way (for example, 
in the Miller-Green approximation (see [1,2]) 
that to achieve the separation of variables in the 
Schrödinger equation. Here the model potential 
approach or the quantum defect approximation 
can be used. One may introduce the ion core 
charge  for the multielectron atom. Accord-
ing to standard quantum defect theory, the rela-
tion between quantum defect value , electron 
energy E and principal quantum number n is: 

( ) 21
1 2 -∗ --= Ezòm . The quantum defect in the 

parabolic coordinates ( )mnn 21d  is connected to 
the quantum defect value of the free ( )0=e  atom 
by the following relation [43]: 
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Such a scheme provides a general receipt to 
combine the OPT method with the RMBPT in 
spherical coordinates for a free atom. The de-
tails of the used method can be found in the ref-
erences [8,16,43]. 

3. Method of relativistic many-body per-
turbation theory

Generally speaking, the energy spectra for 
the majority of complex atomic systems (natu-
rally including the rare-earth elements) are char-
acterized by a great density. Moreover, these 
spectra have essentially relativistic properties.  
So, correct theoretical method of their studying 
can be based on the convenient field procedure, 
which includes computing the energy shifts DE 
of the degenerate electron states. More exactly, 
speech is about constructing secular matrix M 
(with using the Gell-Mann and Low adiabatic 
formula for DE), which is already complex in 
the relativistic theory, and its further diagonal-
ization [26-32]. In result one could compute 
the energies and decay probabilities of a non-
degenerate excited state for a complex atomic 
system [26].   The secular matrix elements can 
be further expanded into a PT series on the inter-
electron interaction. Here the standard Feynman 
diagrammatic technique is usually used.

Generally speaking, the secular matrix M can 
be represented as follows:  

... kMMMMMM +++++=  (10)

where ( )0M  is the contribution of the vacuum 
diagrams of all PT orders (this contribution de-
termines only the general levels spectrum shift); 

( )1M , ( )2M , ( )3M  are contributions of the 1-, 2- 
and 3- quasiparticle (QP) diagrams respectively. 
The matrix ( )1M  can be presented as a sum of the 
independent one-QP contributions. Substituting 
these quantities into (1) one could have sum-
marized all the one-QP diagrams contributions. 
In the empirical methods here one could use the 
experimental values of one-electron energies, 
however, the necessary experimental quantities 
(especially for the rare-earth and other elements) 
are not often available. The detailed procedure 
for computing ( )2Re M  is presented, for example, 
in Ref. [3]. 

We will describe an atomic multielectron 
system by the relativistic Dirac Hamiltonian 
(the atomic units are used) as follows [41-43]: 
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where Z is a charge of nucleus, ai ,aj are the Dirac 
matrices, wij is the transition frequency, c – the 
velocity of light. The interelectron interaction 
potential (second term in (3)) takes into account 
the retarding effect and magnetic interaction in 
the lowest order on parameter of the fine struc-
ture constant. In the  PT zeroth approximation it 
is used ab initio mean-field  potential:
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with the standard Coulomb, exchange Kohn-
Sham VX and correlation Lundqvist-Gunnarsson 
Vc potentials (look details in Refs. [46-49]). 
An effective approach to accounting the multi-
electron polarization contributions is described 
earlier and based on using the effective two-QP 
polarizable operator, which is included into the 
PT first order matrix elements. 

In order to calculate the radiation decay prob-
abilities and autoionization energies and widths 
a gauge invariant relativistic energy approach 
(version [43]) is used. In particular, a width of 
the state, connected with an autoionization de-
cay, is determined by a coupling with the con-
tinuum states and calculated as square of the 
matrix element [43]:
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Here = Qul
aQ + Br

aQ , where Qul
aQ , Br

aQ cor-
respond to the Coulomb and Breit parts of the 
relativistic interelectron potential in (3) and 
express through Slater-like radial integrals and 
standard angle coefficients. Other details can be 
found in Refs. [44-57]. 

The most complicated problem of the rela-
tivistic PT computing the complex multielec-
tron lements spectra is in an accurate, precise 

accounting for the multi-electron exchange-
correlation effects (including polarization and 
screening effects, a continuum pressure etc), 
which can be treated as the effects of the PT 
second and higher orders . Using the standard 
Feynman diagrammatic technique one should 
consider two kinds of diagrams (the polarization 
and ladder ones), which describe the polariza-
tion and screening exchange-correlation effects. 
The detailed description of the polarization dia-
grams and the corresponding analytical expres-
sions for matrix elements of the polarization 
QPs interaction (through the polarizable core) 
potential is presented in Refs. [34-36]. An ef-
fective approach to accounting of the polariza-
tion diagrams contributions is in adding the ef-
fective two-QP polarizable operator into the PT 
first order matrix elements. In Ref. [27] the cor-
responding non-relativistic polarization func-
tional has been derived. More correct relativis-
tic expression has been presented in the Refs. 
[2] and used in our computing. The contribution 
of the ladder diagrams (these diagrams describe 
the immediate QPs interaction) is summarized 
by a modification of the PT zeroth approxima-
tion mean-field central potential (look below), 
which include the screening (anti-screening) of 
the core potential of each particle by the two 
others. The details of this  contribution can be 
found in Refs. [44-57]. 

4. Results and Conclusions
In the framework of the development of 

spectroscopy of the AS of heavy atoms in the 
external field, a quantitative study of the ef-
fects of the non-conductive electric field on 
the parameters of the AS in the spectra of the 
lanthanide atoms was performed. Based on our 
theory, for the first time, the widths of the auto-
ionization states for the Tm  4f13

7/2,5/2 6s1/2 (3,2)
ns,np і 4f13

5/26s1/2(2)nsp1/2[3/2] (n=26,30) і Yb 
4f13 [2F7/2] 6s2np[5/2]2 4f13 [2F7/2] 6s2nf[5/2]2. In 
Table 1 we list our data on the widths of the 4f-

13
7/2,5/2 6s1/2 (3,2) ns,np states, which are mixed 

with the resonances of the opposite parity in a 
rather weak DC electric field. 

Hamiltonian (the atomic units are used) as 
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where Z is a charge of nucleus, i ,j are the 
Dirac matrices, ij is the transition 
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order on parameter of the fine structure 
constant. In the  PT zeroth approximation it 
is used ab initio mean-field  potential: 
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Table 1.
The widths Г (cm-1) of autoionization states 
of the Tm 4f-13

7/26s1/2(3)ns,np, which are mixed 
with resonances of opposite parity for differ-

ent DC electric fields

F(V/cm) 4f13
7/26s1/2(3)ns[5/2]

n=26               n=30

Г F=0 1.13D-5       6.12D-6

Г F =50 1.11D-04     5.88D-5

Г F =100 4.05D-04     2.15D-4

Г F =150 8.15D-04     4.13D-4

F(V/cm) 4f13
7/26s1/2(3)np3/2[3/2]
n=26        n=30

Г F=0 4.22D-5   2.42D-5

Г F =50 4.07D-4   2.36D-4

Г F =100 1.56D-3   8.88D-4

Г F =150 3.08D-3   1.76D-3

F(V/cm) 4f13
5/26s1/2(2)np1/2[3/2]

n=26          n=30

Г F=0 2.36D-5   1.27D-5

Г F =50 2.23D-4   1.22D-4

Г F =100 8.37D-3   4.28D-4

Г F =150 1.64D-3   8.63D-3

Note: 1.13D-5=1.13×10-5;       

From these data one could see that in this 
case there is the effect of a giant broadening of 
the resonance widths.  For the first time, for Tm, 
the possibility of such an effect was foreseen 
in the papers by Glushkov-Ivanov-Letokhov, 
which was later confirmed in the known ISAN 
experiments by V.S. Letokhov etal (look details 
in Refs. [3,8]). Similar data are obtained for Yb, 
for which we first detected the effect of strong 
amplification of the AU .

We also present our results of numerical 
modelling  ionization dynamics for Rydberg 
atoms Rb, Cs, Fr (Rb: n=50-80; Cs, Fr: n=60-
80) in a microwave field  (F=(1.2-3.2)×10-9 a.u.; 
w/2p=8.87, 36 HGz). The preliminary estimate 
a dependence of the Rb ionization probabil-
ity Р upon the F, interaction time “atom-field” 

and comparison with available data by Krug-
Buchleitner [19] and Glushkov-Ternovsky etal 
[49] shows that all listed data are in a reasonable 
agreement with experiment, however, the best 
accuracy is provided by relativistic theory. In 
Table 2 we firstly present new data on depend-
ence of the Fr ionization probability upon the 
F value, interaction time “atom-field”. Unfortu-
nately, here there are no any alternative theoreti-
cal or experimental data.

Table 2. 
Our data for  ionization probability P for Fr 
( l0=0, m0=0, n0=76-80) in dependence on n0 
F (at.units; field parameters: t = 327× 2p/w; 

frequency wc=w/2p=36 GHz, 8.87 GHz)

n0
↓

Our data Our data Our
 data

Our 
data

F=

ωc=

2.8×
10-9

36GHz

3.1×
10-9

36GHz

2.8×
10-9

8.87GHz

3.1×
10-9

8.87GHz

77 0.47 0.50 0.43 0.46

80 0.58 0.61 0.54 0.56

83* 0.56 0.60 0.51 0.53

86 0.67 0.69 0.62 0.66

In whole, our modeling relativistic dynamics 
of ionization Rb, Cs, Fr Rydberg states in the 
electromagnetic field shows that there are the 
local violations of probability smooth  growth 
associated with the complex Floquet spectrum, 
link between  the quasi-stationary states and a 
continuum, the growing influence of multipho-
ton resonances. The picture becomes  by more 
complicated  due to the single-photon near-res-
onance transitions with quasi-random detuning 
from resonance and quantum phase shift due to 
scattering Rydberg electron on the atomic core.
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V. B. Ternovsky, A. A. Kuznetsova, A. V. Glushkov, E. K. Plysetskaya

RELATIVISTIC OPERATOR PERTURBATION THEORY IN SPECTROSCOPY 
OF MULTIELECTRON ATOM IN AN ELECTROMAGNETIC FIELD

Summary
We present the theoretical basis of a new relativistic operator perturbation theory (OPT) ap-

proach to multielectron atom in an electromagnetic field combined with a relativistic many-body 
perturbation theory (RMBPT) formalism for a free multielectron atom. As illustration of applica-
tion of the presented formalism, the results of energy and spectral parameters for a number of atoms 
are presented. The relativistic  OPT  method is tested for the multielectron systems such as Fr and 
Tm.  New approach is elaborated for an accurate, consistent treatment of a strong field Stark effect 
in multielectron atoms.    

Keywords: multielectron atom in a dc electric field – modified operator perturbation theory – 
Stark resonances
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В. Б. Терновский, А. А. Кузнецова, А. В. Глушков, Е. К. Плисецкая

РЕЛЯТИВИСТСКАЯ ОПЕРАТОРНАЯ ТЕОРИЯ ВОЗМУЩЕНИЙ В 
СПЕКТРОСКОПИИ МНОГОЭЛЕКТРОННОГО АТОМА 

В ЭЛЕКТРОМАГНИТНОМ ПОЛЕ

Резюме
Изложены теоретические основы нового аппарата релятивистской операторной теории 

возмущений (ОТВ) в спектроскопии многоэлектронного атома в электромагнитном поле, 
объединенного с формализмом релятивистской многочастичной теории возмущений  для 
свободного многоэлектронного атома. В качестве иллюстрации тестирования представлен-
ного подхода представлены результаты оценки энергетических и спектральных параметров 
для ряда атомов. Релятивистский метод OPT тестируется для таких многоэлектронных си-
стем  как Fr и Tm. Новый подход разработан для последовательного описания  эффекта 
Штарка в многоэлектронных атомах в сильном внешнем электромагнитном поле. 

Ключевые слова:  Многоэлектронный атом в электрическом поле - модифицированная 
операторная теория возмущений – штарковские резонансы
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В. Б. Терновський, Г. О. Кузнецова, О. В. Глушков, Є. К. Плисецька 

РЕЛЯТИВІСТСЬКА ОПЕРАТОРНА ТЕОРІЯ ЗБУРЕНЬ В СПЕКТРОСКОПІЇ 
БАГАТОЕЛЕКТРОННОГО АТОМА В ЕЛЕКТРОМАГНІТНОМУ ПОЛІ

Резюме
Викладені теоретичні основи нового апарату релятивістської операторної теорії збурень 

(ОТЗ) в спектроскопії багатоелектронного атома в електромагнітному полі, об’єднаного з 
формалізмом релятивістської багаточастинкової теорії збурень для вільного багатоелектрон-
ного атома. В якості ілюстрації можливостей представленого підходу представлені результа-
ти оцінки деяких енергетичних і спектральних параметрів для ряду атомів. Релятивістський 
метод OPЗ тестується для таких багатоелектронних систем як Fr і Tm. Новий підхід роз-
роблений для послідовного опису ефекту Штарка в багатоелектронних атомах в сильному 
зовнішньому електромагнітному полі.

Ключові слова: багатоелектронний атом у електричному полі - модифікована операторна 
теорія збурень – штарківські резонанси
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OPTICAL PROPERTIES OF THE Ag28Ga28Ge532Er2S1123 AND Ag12Ga12Ge228Er2S483  
GLASSES

Absorption spectra of the glasses Ag28Ga28Ge532Er2S1123 and Ag12Ga12Ge228Er2S483 in the 450–1050 nm 
range at room temperature were investigated. PL bands with maxima at 980 and 1540 nm were recorded under laser 
excitation with 800 nm wavelength. PL emission mechanism is analyzed from energy transfer processes, taking into 
account partial cluster formation of erbium ions and energy transition diagram of Er3+.

Keywords: absorption spectra, photoluminescence, erbium ion, cluster formation, emission mechanism.

1. INTRODUCTION
Over the past two decades, substantial 

research interest was attracted to the study of the 
optical properties of semiconductors doped with 
rare-earth metals (RE). This is due to the growing 
needs of the industry in optoelectronic devices 
operating in the spectral range compatible with 
telecommunication gadgets. The most commonly 
used RE is erbium that has an intensive emission 
band near 1.5 μm and low energy losses in fiber 
optics at this wavelength. Additionally, erbium-
doped crystalline and amorphous materials can 
be used as active media in laser technology [1], 
displays, optical amplifiers, photonic devices [2], 
non-contact temperature [3, 4] and g-irradiation 
sensors [5, 6, 7].

Phase equilibria in the reciprocal system 
AgGaS2 + GeSe2 Û AgGaSe2 + GeS2 were 
investigated, and the glass formation region was 
determined [8]. An alloy with the composition 
Ag0.05Ga0.05Ge0.95S2 is characterized by the largest 
transparency window in this system. It was 
doped with 0.18 and 0.42 mol.% Er2S3 (samples 

Ag28Ga28Ge532Er2S1123 and Ag12Ga12Ge228Er2S483, 
respectively).

In our previous works on these glasses, we 
investigated the main structural units of the 
glass-forming matrix by Raman spectroscopy, 
as well as photoluminescence spectra under ex-
citation by 532 and 980 nm wavelengths [4, 9]. 
Partial clustering of erbium ions was established 
from EPR and static magnetization studies, and 
the effect of g-irradiation on glass photolumi-
nescence was analyzed [5].

The objective of this work is to investigate 
the absorption spectra and the mechanism of 
PL emission under laser excitation at 800 nm 
wavelength.

2. EXPERIMENTAL
The alloys were synthesized from elemental 

components (Ag, Ga, Ge, Se – 99.997 wt.% 
purity, S, 99.999 wt.%, Er, 99.9 wt.%) in 
evacuated thin-walled quartz ampoules in two 
stages. To prevent condensation losses of the 
vapor phase, the free volume of the container 
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was thermostated with asbestos cord. The 
residual pressure in ampoules was 0.1 Pa. 
Initially, the ampoules were heated in oxygen-
gas burner flame for the binding of elemental 
sulfur. Then they were placed in a shaft-type 
furnace and heated at a rate of 20 K/hr to the 
maximum temperature of 1273 K. After holding 
at this temperature for 10 hours, the alloys were 
quenched into 25% aqueous saline solution at 
room temperature. The glassy state of the alloys 
was examined by X-ray diffraction at a DRON 
4-13 diffractometer, CuKα radiation (Fig. 1).
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Fig. 1. X-ray diffraction patterns of the glasses.

The study of absorption spectra and photo-
luminescence utilized an MDR-206 monochro-
mator with Si and PbS photodetectors. Lumi-
nescence excitation was performed by a laser 
at 800 nm wavelength and 400 mW power. The 
photoluminescence signal was received from 
the same sample surface as the excitation. The 
sample thickness was 0.5 mm.

3. RESULTS AND DISCUSSION
The absorption spectra of glasses were 

investigated at room temperature in the 450–
1050 nm range (Fig. 2). The recorded absorption 
bands with maxima at 520, 550, 660, 805, and 
980 nm correspond to the transitions in the f-shell 
of Er3+ ions from the ground state to the excited 
states 2H11/2, 

4S3/2, 
4F9/2, 

4I9/2, 
4I11/2, respectively. 

The intensity of the absorption bands increases 
with erbium content, while their position does 
not change. We established in a previous work 
[9] that the absorption coefficient decreases 

with the increase in erbium concentration. This 
is due to the structural ordering of glass and, as 
it follows from Raman spectroscopy studies, to 
the decrease in the number of structural units 
[S3Ge(Ga)–(Ga)GeS3] and the increase of the 
[Ge(Ga)S4] units.

The photoluminescence spectra (PL) 
of glasses in the 600–2000 nm range were 
investigated at room temperature under 
excitation by 800 nm wavelength (Figs. 3, 4). 
Two maxima at about 980 and 1540 nm were 
recorded in the near infrared spectral region.
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Fig. 2. Absorption spectra of the glasses at room 
temperature.

The emission efficiency of the band at 1540 
nm wavelength is important for the use in tele-
communication devices. A parameter of the ef-
fective bandwidth (Δλeff) is used since the band 
is asymmetrical. It is calculated by the formula 
[10]:

              
max

eff

d)(

Ι

Ι
=D ∫ ll

l                         (1)

where І(λ) is the emission intensity at wavelength 
λ; Іmax is the maximum emission intensity.

The calculated Δλeff values for the glasses 
are 63 and 66 nm for Ag28Ga28Ge532Er2S1123 and 
Ag12Ga12Ge228Er2S483, respectively. Clearly, not 
only PL intensity increases with erbium content 
but also does the effective width of the emission 
band. Additionally, the Δλeff values for the exci-
tation at 800 nm is higher for these glasses than 
for the 980 nm excitation [11].
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In our previous work [9], the excitation of 
these samples by 980 nm wavelength yielded in 
the visible range a green (520 nm) and a red (660 
nm) PL band. However, no PL was detected in 
the visible spectral range when excited by 800 
nm wavelength.

This is due to the fact that anti-Stokes PL 
(under 980 nm excitation) is associated with the 
absorption of two photons by Er3+ ions which 
are promoted from the ground state 4I15/2 to the 
excited state 4F7/2 (

4I15/2 + hn980 → 4I11/2 + hn980 → 
4F7/2) with subsequent non-radiative relaxation 
to the state 2H11/2. Since 
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Fig. 3. PL spectra of the glasses excited with 800 nm 
laser (600–1050 nm range).
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Fig. 4. PL spectra of the glasses excited with 800 nm 
laser (1400–2000 nm range).

the excitation at 800 nm has higher energy 
compared to 980 nm, the absorption of two 
photons promotes erbium ions to the excited 
state 2H9/2 (

4I15/2 + hn800 → 4I9/2 + hn800 → 2H9/2) 

located above the absorption edge (Fig. 2) in the 
conduction band. 

The emission mechanism in these glasses can 
be determined from the transition chart for Er3+ 
ions (Fig. 5). Erbium ions in the state 4I13/2 are 
promoted due to absorption of 800 nm photons 
or energy transfer (ET) from adjacent ions in the 
state 4I9/2 to the state 2H11/2. These erbium ions can 
non-radiatively relax to the state 4S3/2. However, 
erbium ions can not relax non-radiatively to 
lower energy states because of the large energy 
gap and low phonon energy (about 300-400 cm–1 
[9]). Excited states 4I11/2 and 4I13/2 which yield PL 
bands with maxima at 980 and 1540 nm result 
from cross-relaxation CR1, CR2 (Fig. 5):

2H11/2 + 4I15/2 → 4I9/2 + 4I13/2  (2)

2H11/2 + 4I13/2 → 4F9/2 + 4I11/2  (3)

Fig. 5. Diagram of energy levels in Er3+ ions.

Therefore, an important role in the PL mech-
anism is played by the energy exchange (ET or 
CR) between the neighboring Er3+ ions. Such 
processes are typical of erbium ions which are 
involved in the formation of clusters [12]. It 
was established in our previous work [5] that 
clusters of up to 103 erbium ions form in the 
Ag0.05Ga0.05Ge0.95S2–Er2S3 glasses.

2

1
2

1
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4. CONCLUSIONS
Absortion spectra in the glasses 

Ag28Ga28Ge532Er2S1123 and Ag12Ga12Ge228Er2S483 
were investigated. Recorded absorption bands 
with maxima at 520, 550, 660, 805, 980 nm cor-
respond to the transitions in 4f intra-shell transi-
tions from the ground state to the excited states 
2H11/2, 

4S3/2, 
4F9/2, 

4I9/2, 
4I11/2, respectively. Stokes 

PL with maxima at 980 and 1540 nm was re-
corded upon laser excitation at 800 nm wave-
length. A model explaining PL emission mecha-
nism was elucidated from the energy level dia-
gram of Er3+ ions.
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Досліджено спектри поглинання стекол Ag28Ga28Ge532Er2S1123 та Ag12Ga12Ge228Er2S483 в діа-
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ходів в іонах Er3+, проаналізовано механізм випромінювання ФЛ.
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ОПТИЧЕСКИЕ СВОЙСТВА СТЕКОЛ Ag28Ga28Ge532Er2S1123 И Ag12Ga12Ge228Er2S483 

Исследованы спектры поглощения стекол Ag28Ga28Ge532Er2S1123 и Ag12Ga12Ge228Er2S483 в 
диапазоне 450 – 1050 нм при комнатной температуре. Зафиксировано полосы ФЛ с максиму-
мами 980 и 1540 нм при возбуждении лазером с длиной волны 800 нм. На основе процессов 
обмена энергией, учитывая частичную кластеризацию ионов эрбия и диаграмму энергетиче-
ских переходов в ионах Er3+, проанализирован механизм излучения ФЛ.

Ключевые слова: спектр поглощения, фотолюминесценция, ион эрбия, кластеризация, 
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ВАЛЕНТИНУ АНДРІЙОВИЧУ 
СМИНТИНІ – 70!

8 вересня 2018 р. виповнилося 70 років 
від дня народження зав. кафедрою експери-
ментальної фізики Одеського національного 
університету імені І. І. Мечникова, керівника 
фізико-технічного центру НАН України та 
МОН України, радника ректора ОНУ імені 
І. І. Мечникова, 

доктора фізико-математичних наук, 
професора, Заслуженого діяча науки і тех-
ніки України, лауреата Державної премії 
України в галузі науки і техніки 

СМИНТИНИ ВАЛЕНТИНА 
АНДРІЙОВИЧА

По закінченню з відзнакою фізичного 
факультету і аспірантури Одеського дер-
жавного університету імені І. І. Мечникова 
В. А. Сминтина з 1974 р. до теперішнього 
часу постійно працює там науковим спів-
робітником, заступником декана фізичного 
факультету з наукової роботи, проректо-
ром (1992-1995) та ректором (1995-2010). 
Під його керівництвом ОНУ здобуває ста-
тус національного (2000 р.), нагороджений 

Почесною Грамотою Кабінету Міністрів 
України (2000 р.) та посів перше місце у рей-
тингу класичних університетів (2005 р.). 

В. А. Сминтина – відомий і авторитетний 
фізик, праці якого визнані в Україні та за її 
межами. Він є автором 15 наукових моно-
графій (6 без співавторів), понад 300 статей у 
провідних закордонних виданнях (30 без спі-
вавторів), 38 авторських свідоцтв та патентів 
(7 без співавторів) та 15 підручників (7 без 
співавторів), рекомендованих МОН України. 
Всього наукових публікацій понад 700. 

Основні наукові результати отримані 
В. А. Сминтиною в області фізики поверх-
невих явищ та сенсорики при дослідженні 
поверхні плівок, шарів, складних макро-, мі-
кро- та нанопоруватих структур і квантових 
точок напівпровідників. Він розв’язав прин-
ципово важливу фізичну проблему цілеспря-
мованого впливу на адсорбційні властивості 
поверхні; розвинув теорію універсального 
визначення адсорбційної чутливості матері-
алів, методів її прогнозування і формування. 
Вперше запропонував метод елементної діа-
гностики складу поверхні, який базується на 
результатах взаємодії між біографічними та 
адсорбованими атомами поверхні. Виявив 
новий тип неоднорідності на поверхні – хе-
морсорбційно-електричний домен, який від-
повідає за комплекс вперше ним вивчених 
поверхневих явищ: хемосорбційно стиму-
льовані коливання струму, від’ємний дифе-
ренційний опір та насичення ВАХ, сенсибі-
лізація та десенсибілізація поверхні як на-
слідок хемосорбційної генерації і розпаду 
центрів фоточутливості. Вперше встановив 
фізичний механізм невідтворюваності влас-
тивостей поверхні плівок А2В6, розробив й 
впровадив методику управління їх адсорб-
ційними властивостями, розкрив фізичні 
закономірності немонотонної пошарової 
зміни хімічного складу їх поверхні, зробив 
вагомий внесок у розвиток фізичних основ 
процесів формування кластерних та сіткових 
структур нестехіометричних поверхневих 
атомів, запропонував експрес-методи вста-
новлення природи як центрів адсорбції, так 
й адсорбованих частинок на поверхні. Ним 
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створено і передано замовникам серію нових 
адсорбційно чутливих елементів. Цей комп-
лекс робіт, разом з іншими, відзначений у 
2007 р. Державною премією України з науки 
і техніки. 

В результаті досліджень явищ на по-
верхні та на межі розділу під керівництвом 
В. А. Сминтини отримані принципово нові на-
укові результати стосовно поверхневих ефек-
тів, встановлені фізичні механізми направле-
ного формування функціональних параметрів 
поверхні епітаксіальних структур мікро- і на-
ногетеропереходів, квантових точок в їх скла-
ді; створені нові гетеросистеми реєстрації зо-
браження; розвинуто теорію переносу заряду 
в неідеальних гетероструктурах. 

В результаті аналізу й моделювання по-
верхневих електронно-молекулярних, елек-
трофізичних процесів під керівництвом 
В. А. Сминтини створені нові мікроелек-
тронні сенсори для інтелектуальних систем 
контролю фізичних, хімічних, біологічних та 
екологічних об’єктів. 

В області нанобіофізики складних струк-
тур і систем В. А. Сминтиною отримані ваго-
мі наукові результати, що є значним внеском 
у розвиток досліджень нанобіофізичних сен-
сорів, наногетеропереходів, наноламінатів, 
нанострижнів, нанодротів та інших структур. 
У створених за новою розробленою під його 
керівництвом технологією нанобіофізичних 
сенсорах встановлено механізм взаємодії 
квантових точок CdS з біологічною матри-
цею, в якій вони виконують роль трансдюсера 
неелектричного сингалу у фотолюмінісцентне 
випромінювання, визначена роль нанообо-
лонки ZnS на нанокристалах CdS та встанов-
лено її значення у формуванні їх сенсорних 
властивостей у складі наногетеропереходу 
ZnS-CdS. Квантові точки CdS та нанооболон-
ка ZnS виготовлені за розробленою під його 
керівництвом новітньою технологією. 

Під керівництвом В.А. Сминтини розро-
блена нова технологічна платформа та на її 
основі виготовлені нанобіофізичні сенсор-
ні складні структури на базі наноламінатів 
(atomic layer deposition), нанострижнів, нано-
дротів, інших наноматеріалів у вигляді склад-

них композицій AlZnO-TiO2 та інших оксидів 
металів. Ним визначені фізичні механізми 
чутливості складних структур до біологічних 
об’єктів, зокрема, до лейкозу ВРХ та сальмо-
нели, встановлена природа центрів чутливос-
ті створених під його керівництвом нанобіо-
фізичних сенсорів до біологічних субстанцій 
як в області екситонної, так й дефектної лю-
мінесценції базових наноструктур. Методами 
XPS, SEM, AFM та іншими засобами прямих 
досліджень морфології та елементного складу 
поверхні нанобіофізичних сенсорів визначено 
характерні особливості технологічної плат-
форми для їх створення. 

За допомогою нового розробленого під ке-
рівництвом В. А. Сминтини методу неелек-
тролітичного травлення Si створені оригі-
нальні нано- та мезопоруваті біофізичні сен-
сори, чутливість яких до біологічних об’єктів 
підвищена нанесенням на поверхню та в пори 
Si (10-15 нм) методом atomic layer deposition 
наночастинок TiO2.   

Методом поверхневого плазмонного ре-
зонасу (ППР) визначені адсорбційно чутли-
ві властивості наношарів SnO2 та квантових 
точок Ag. За допомогою ППР встановлені 
оптимальні розміри квантових точок Ag, які 
успішно застосовані як складові антисептика 
та як фактор стимулювання загоєння пошко-
дженої шкіри. 

Найважливіші результати захищені у 10 
докторських та багатьох кандидатських дис-
ертаціях, отримали нагороди на міжнародних 
та вітчизняних виставках, відзначені трьома 
Державними Преміями України в галузі на-
уки і техніки (2007, 2009 та 2011 рр.).

В. А. Сминтина є визнаним керівником на-
укової школи з фізики поверхні напівпровід-
ників, яка визначає стан даної галузі на Півдні 
України і впливає на її розвиток в Україні. 
Він ефективно керує створеним ним фізико-
технічним центром НАН України та МОН 
України, є головою спеціалізованої ради по 
захисту докторських дисертацій, заступником 
голови Наукової Ради з фізики напівпровідни-
ків при Президії НАНУ, був віце-президентом 
Українського Фізичного Товариства, членом 
Комітету з Державних премій України, за-
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ступником Голови Південного наукового цен-
тру НАНУ.  Завдяки його зусиллям в останні 
роки Одеський науковий регіон став одним 
з відомих наукових центрів в галузі фізики, 
зокрема, фізики наноструктур.  

Він головний редактор журналів «Фото-
електроніка», «Сенсорна електроніка та 
мікросистемні технології» (входять до на-
укометричної бази «Index Copernicus») та 
організатор Всеукраїнського з’їзду «Фізика 
в Україні”, І і ІІІ Всеукраїнських конфе-
ренцій з фізики напівпровідників, восьми 
Міжнародних конференцій «Сенсорна елек-
троніка та мікросистемні технології», кон-
гресів EUROSENSOR. 

В. А. Сминтина створив науково-дослід-
ну лабораторію сенсорної електроніки, від-
крив навчально-науковий центр медичної та 
біологічної фізики, фізико-технічний центр 
подвійного підпорядкування НАНУ та МОН 
України, якими успішно керує.

В. А. Сминтина – єдиний від України 
постійний член відбіркового комітету 
EUROSENSOR, член Європейського фізич-
ного товариства та Оптичного Товариства 
Америки, керівник та учасник наукових 
програм в національних центрах дослі-
джень Італії, Франції, Німеччини, Фінляндії, 
Португалії та ін., в деяких з них започатку-

вав нові напрямки досліджень в галузі фізи-
ки поверхневих явищ. Він ефективно керує 
роботою українських груп у європейських 
науково-дослідних програмах FP-6, FP-7. 

В. А. Сминтина на високому науковому 
рівні читає розроблені ним новітні спецкур-
си «Поверхневі явища у напівпровідниках», 
«Фізико-хімічні явища на поверхні твердих 
тіл» й «Фотоелектричні процеси у напівпро-
відниках» та фундаментальні курси 

«Оптика», «Фізика атома» та «Фізика сен-
сорів» ефективно керує підготовкою магі-
стрів, аспірантів, докторів філософії і докто-
рантів з фізики поверхні та експерименталь-
ної фізики, як запрошений професор читає 
курси лекцій за кордоном. 

Діяльність В. А. Сминтини у галузі науки 
та освіти відзначена багатьма державними 
нагородами. Він – Заслужений діяч науки і 
техніки України, Лауреат Державної Премії 
України в галузі науки і техніки, кавалер орде-
ну «За заслуги» ІІІ ступеня, його нагородже-
но також Почесними Грамотами Верховної 
Ради України та Кабінету Міністрів України, 
Почесними відзнаками НАН України «За на-
укові досягнення» та «За підготовку наукової 
зміни», відзнаками МОН України. Валентин 
Андрійович Сминтина також відзначений 
нагородами 7 країн світу.
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Інформація для авторів наукового 
збірника «Photoelectronics»

У збірнику "Photoelectronics " друкуються статті, що містять відомості про наукові дослі-
дження і технічні розробки в напрямках:

* фізика напівпровідників;
* гетеро- і низькорозмірні структури;
* фізика мікроелектронних приладів;
* лінійна і нелінійна оптика твердого тіла;
* оптоелектроніка та оптоелектронні прилади;
* квантова електроніка;
* сенсорика

Збірник "Photoelectronics видається англійською мовою. Рукопис подається автором у двох 
примірниках   англійською і російською мовами. 

Електронна копія статті повинна відповідати наступним вимогам:
1. Для тексту дозволяються наступні формати - MS Word (rtf, doc).
2. Рисунки приймаються у форматах – EPS. TIFF. BMP, PCX, JPG. GIF, CDR. WMF, MS Word 
І MS Giaf, Micro Calc Origin (opj). 

Рукописи надсилаються за адресою:
Відп. секр. Куталовій М. І., вул. Пастера, 42. фіз. фак. ОНУ, м. Одеса, 65082
E-mail: photoelectronics@onu.du.ua 
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ис-следованиях и технических разработках в направлениях:

* физика полупроводников;
* гетеро- и низкоразмерные структуры;
* физика микроэлектронных приборов;
* линейная и нелинейная оптика твердого тела;
* оптоэлектроника и оптоэлектронные приборы;
* квантовая электроника;
* сенсорика

Сборник"Photoelectronics издаётся на английском языке. Рукопись подается автором в двух 
экземплярах на английском и русском языках. 

Электронная копия статьи должна отвечать следующим требованиям:
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