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2. Discussion of outcomes of experiment
During the moving of charge carriers in 

semiconductor sample in magnetic field, 
transversal to the direction of movement, the 
Lorentz force acts on them. It deflects charge 
carriers to one of the sides of semiconductor, 
consequently their concentration there increases, 
and decreases on the opposite side. Therefore, in 
the semiconductor, that is placed in transversal 
magnetic field, at electric current passing because 
of acting Lorentz force curvature of current line 
happens. However, as a result of spatial separation 
of charges, an electric field, that will impede 
charges separation, arises, and as soon as force, 
produced by this field, becomes equal to Lorentz 
force, further separation of charges by magnetic 
field stops and current lines straighten out. Thus, 
in semiconductor sample placed into magnetic 
field the transversal Hall’s voltage appears, that 
depends on both charge carriers’ concentration 
and size of magnetic field. Owing to this Hall’s 
effect different sensors of magnetic field are 
constructed.

1. Introduction
Development of the modern informational 

technologies and communication systems requires 
diversification of elements of optoelectronics, 
development of new and improvement of existing 
electronic devices of generation, receiving and 
storage of the optical information. Though 
optoelectronic devices are principal components 
of telecommunication webs, however even more 
often they are used in industrial measurements, 
in data reduction systems, etc. Expansion of 
application area of optoelectronic systems gives 
the chance to use specified devices as sensors 
of certain physical quantities, in particular - of 
magnetic field [1, 2].

In the paper the new effects of modification 
of spectrum of radiation of light-emitting diode 
(LED) in magnetic field, which give the chance 
to use a LED as an optoelectronic magnetic field 
sensor, are investigated. Physical phenomena that 
appear in light-emitting diodes in a magnetic field 
are considered.

UDC 621.315.592

V. I. Irkha, V. E. Gorbachev, I. M. Vikulin

Odessa National Academy of Communications named after A.S. Popov, 
1, Kuznechna Str., Odessa, 65020, Ukraine

e-mail: phys@onat.edu.ua

SENSOR OF MAGNETIC FIELD BASED ON A LIGHT-EMITTING DIODE

New effects of modification of spectrum of radiation of light-emitting diode in magnetic field, which give 
the chance to use a LED as an optoelectronic magnetic field sensor, are discovered. Physical phenomena that 
appear in light-emitting diodes in a magnetic field are considered. 

Amplitude-modulated by a magnetic field the optical signal can be obtained if to use a LED with narrow 
base, where it is possible to gain 50 % magnification of energy of an emission light in a magnetic field. If a LED 
with long vary-band base is being used as magneto-sensitive element, the magnetic field will shift effective 
region of recombination to a section with other energy gap, and the LED's radiated frequency will change. 
Thus, we obtain a frequency-modulated by a magnetic field optical signal, which is resistant to noises in optical 
channels.

Such detectors of magnetic field are expedient for using in systems with optical processing methods of the 
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If we place diode into magnetic field, then 
it is possible to determine three main physical 
phenomena:

Firstly, in consequence of magnetoresistance 
effect, charge carriers’ mobility decreases, 
and, subsequently, diode conductivity strongly 
decreases. Meanwhile the magnetoresistance 
effect will be increasing in tens and hundreds 
times due to the change of injection of charge 
carriers.

Secondly, curvature of current lines increases 
concentration of charge carriers on one side and 
decreases on another side. Since effective lifetime 
of carriers in thin plat is determined by surface 
recombination, then redistribution of carriers 
leads to change of role of surface recombination 
and effective lifetime of carriers. Role of 
recombination on the side, to which the charge 
carriers deflect, increases, and recombination on 
another side almost doesn’t play any role.

Thirdly, since concentrations of electrons and 
holes nearby p-n junction are practically identical, 
the Hall’s electric field will be absent. That’s why 
current lines will always be curved. Elongation 
of current line leads to reduction of penetration 
depth of unbalanced carriers and extra reduction 
of modulation of base region conductivity by 
injected carriers.

Such phenomena were also observed in 
magnetotransistors. It is obvious that in transistor, 
placed into magnetic field, increasing of average 
path, which charge carriers pass in base region, 
happens as well. That leads to increase of quantity 
of charge carriers, whic h will recombine in 
transistor’s base region. Current transmission 
coefficient increases.

First two phenomena are well studied. We 
researched magnetic field impact on characteristics 
of semiconductor radiating heterostructures, 
taking into account

As a sensing element of optoelectronic’s sensor 
of some physical quantity it is possible to use either 
a LED, or a light guide, or a photodetector. The 
operating principle of the majority optoelectronic 
sensors is based on a changing of absorption 
coefficient at light transiting through medium or 
on a modification of a transmission factor of light 
during the reflection from interfaces of mediums.

Magneto-sensitive properties of light-emitting 
diodes we tested in papers [3]. We have obtained, 
that intensity and spectrum of radiation of a light-
emitting diodes varies in a crosswise magnetic 
field.

The emission intensity of light-emitting diodes 
in a magnetic field can be either increased up to 
50 % or decreased depending on diode structure.

Only in light-emitting diodes with vary-band 
structure a changing of spectrum of radiation 
is detected. For these light-emitting diodes the 
energy of a maximum of a spectrum of radiation 
in a magnetic field with an induction 0.4 Tesla 
shifts on 10-15 % relative to the position in lack 
of a magnetic field.

We experimentally researched the AlAsGa 
triple-compound light-emitting diodes doped 
by silicon with a heterojunction as an injecting 
contact. Samples have been made on substrates of 
gallium arsenide on which the epitaxial method 
spliced two stratums: light-emitting p-layer from 
Ga1-xAlxAs<Ge> and electrons-injecting n-layer 
from Ga1-yAlyAs<Te>, where х=0,5…0,6 and 
у=0,22…0,25. The radiating layer had a thickness 
4,9 mm, and injecting layer - 11,2 mm. Traversal 
sizes of samples were 500×500 mm. The working 
current of light-emitting diode samples had 
value 10 mA. We applied a magnetic field with 
an induction up to 0.4 Tesla across to a direction 
of motion of the injected charge carriers in light-
emitting diodes.

Two types of samples with various structure 
of base were investigated. For the first type of 
samples, the semiconductor had an equal energy 
gap on all volume of base. Base length W was 
less, than a diffusion length L of injected charge 
carriers. In this case the injected charge carriers 
recombine with radiation in whole bulk of base. 
But a part of charge carriers near the lateral 
surface of base, through which there is a radiation, 
recombine without radiation through the surface 
states.

The transverse magnetic field bends a 
mechanical trajectory of the injected charge 
carriers, deflecting them from a surface. The 
angle j on which the injected charge carriers are 
being deviated from an electric field direction, is 
being defined as
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                               tgj = mB,                         (1)
where m – mobility of injected charge carriers; B 
– induction of external magnetic field.

Thus in an optimum case the linear deviation 
of the injected charge carriers from an electric 
field direction 

D = Lcosj = Lcos[arctg(mB)] ,           (2)

as only on this area of p-region equal to diffusion 
length L there is light generation.

At big values of D only the passive part of p-
region is being increased, that leads to decrease 
of efficiency of LED. Recombination rate of the 
injected charge carriers near the current-carrying 
contact of p-region is essential more than in its 
volume. Therefore near the contact there is no ac-
cumulation of charge carriers.

At a forward bias of the light-emitting diode 
there is an injection of electrons from n-region to 
a p-region where they radiative recombine with 
holes. The radiation output is carried out through 
n-region perpendicular to plane of p-n- junction. 
In a traversal magnetic field the trajectory of the 
injected charge carriers is bent, therefore their path 
through radiating area of p-region is increased, 
that is equivalent to increasing of effective length 
of radiating area. Thus, the amount of recombined 
electrons in radiating field is increased.

The part of a surface nonradiative recom-bina-
tion decreases, that leads to growing of effective 
diffusion length L of injected carriers and to in-
creasing of intensity of radiation of LED. In this 
case for light-emitting diodes with small length 
W of base the radiation spectrum does not vary.

The other type of light-emitting diodes had 
variband base with decreasing of an energy gap 
from n – region to p – region, and length of 
base W turned out more than diffusion length L. 
Therefore the injected charge carriers recombine 
in a narrow section of base with a certain energy 
gap (see fig. 1).

Fig. 1. Structure of magneto-sensitive LED with 
variband base in a magnetic field

Effect of the surface recombination was in-
significant in contrast to light-emitting diodes 
with small length of base. At turning on of a 
magnetic field we have obtained some decreas-
ing of radiant intensity of these light-emitting di-
odes. Obviously, because of the elongated shape 
of base, the magnetic field presses the injected 
charge carriers to one of surfaces of base, where 
they nonradiatively recombine.

In light-emitting diodes with variband base in 
a transversal magnetic field we observed phenom-
enon of displacement of a maximum of a spec-
trum of radiation relative to its position in lack of 
a magnetic field (fig.2). It can be explained that 
the region of a recombination of charge carriers 
is being translated along base (on fig. 1 is marked 
out by a dot line B>0), therefore charge carriers 
will radiatively recombine in the region of base 
with other energy gap E.

As diffusion length L in a magnetic field is be-
ing decreased, we expected that the spectrum of ra-
diation of a LED will become narrower. However 
experimental measurements have shown that the 
half-width of a spectrum of radiation in a mag-
netic field does not vary.

In some samples at turning on of a magnetic 
field we have obtained displacement of a spec-
trum of radiation in other side. As the half-width 
of a spectrum of radiation of a LED in a magnetic 
field does not vary, therefore the displacement to 
one or another side of electron-hole plasma in a 
magnetic field we explain by a change of sign of 
bipolar mobility. This phenomenon is observed in 
p-n-junctions with high-resistance base [4].

Fig. 2. Spectrums of an electroluminescence of a 
LED with variband base without a magnetic field 
(1) and at affecting of a magnetic field (2 – 0.37 

Tesla, 3 – 0.4 Tesla)
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On fig. 2 the dependence from magnetic 
induction B of relative photon energy in a 
maximum of radiation E and relative intensity 
of radiation Ф for a LED with variband base 
are presented. We can see that the effect of 
displacement of frequency of photon energy in 
a maximum of a spectrum of radiation is more 
essential, than decreasing of intensity of radiation 
of a LED at magnetic field turning on.

Fig. 3 Dependence of photon energy in a maximum 
of radiation (1) and intensity of radiation (2) of a 
LED with variband base from magnetic induction

As seen on fig. 2 and 3, key parameter depending 
on a magnetic field can be either light intensity, 
or frequency of radiation. Advantage of using 
of light intensity as an informative parameter is 
a simplicity of registration of its variations by a 
usual photodetector. However, in this case certain 
difficulty arises if it is necessary to consider 
absorption of light during its transmission through 
a light guide, especially at switching of optical 
channels.

If one uses the frequency of radiation 
as informative parameter, then necessity of 
consideration of properties of a LED and optical 
channels disappears, but transformation of a 
variation of frequency of radiation to a variation of 
amplitude of an output current of a photodetector is 
more difficult, than light intensity transformation.

3 Conclusion
We have considered two possibilities of 

making optoelectronic magnetic field detectors. 
At first we used a usual LED with narrow 

base. The transversal magnetic field deflects the 
injected charge carriers from a base surface where 

they recombine without radiation through the 
superficial states. In volume of base the charge 
carriers recombine with radiation therefore 
radiation intensity of a LED is being increased. 
If one correctly uses features of structure of such 
light-emitting diodes, it is possible to obtain 
50 % magnification of energy of radiation in a 
magnetic field. For photoelectric registration of a 
variation of radiant intensity it is possible to use 
usual the photodetector. For production of such 
magneto-optical devices a special manufacturing 
methods is not required, therefore they are low-
price. However at using of such devices in optical 
information processing systems it is necessary to 
consider absorption in transmission channels. 

For elimination of influence of absorption in 
optical channels on the level of useful signal it 
is possible to use more complex structure of 
the detector in which magnetic field changes 
frequency of radiation. As a magneto-sensitive 
device we suggest a LED with long base along 
which an energy gap of the semiconductor 
should be various. At such structure the radiation 
recombination of charge carriers happens in 
narrow region of base with a certain energy 
gap. The magnetic field shifts the effective field 
of a recombination along the base on a section 
with other energy gap, as a result the frequency 
of radiation will be changed. Thus, we obtain a 
frequency-modulated by a magnetic field optical 
signal, which resistant to noise in optical channels. 
However, for monitoring of modifications of 
frequency the special photodetector or the 
multiplexer in this case is required. 

Such detectors of magnetic field are expedient 
for using in systems with optical processing 
methods of the information.

References
1. 1. Kai X.Dezhi Y.and all. Magnetic 

field effects on electroluminescence in 
phosphorescence organic light emitting 
diodes// Organic Electronics, –2014, 
V.15, N.2, –P. 590-594.

2. 2. Sun L., Jiang S., Marciante J. R. All-
fiber optical magnetic-field sensor based 
on Faraday rotation in highly terbium-
doped fiber// Optics express, –2010, 



10

V.18, N. 6. – P. 5407-5412.
3. V. Irkha, V. Gorbachev, I. Vikulin. 

Light-emitting diode as a magnetic 
field sensor. / Proceedings of XIII 
International Conference TCSET’2016, 
Lviv, February 23-26, 2016. P. 79-81.

4. Vikulin I.M., Stafeev V.I. Physics of 
Semiconducting Devices. – М.: Radio 
and communications. 1998. -264 p.

This article has been   received in April  2016

UDC 621.315.592

V. I. Irkha, V. E. Gorbachev, I. M. Vikulin

SENSOR OF MAGNETIC FIELD BASED ON A LIGHT-EMITTING DIODE

Summary
New effects of modification of spectrum of radiation of light-emitting diode in magnetic field, 

which give the chance to use a LED as an optoelectronic magnetic field sensor, are discovered. 
Physical phenomena that appear in light-emitting diodes in a magnetic field are considered. Amplitude-
modulated by a magnetic field the optical signal can be obtained if to use a LED with narrow base, 
where it is possible to gain 50 % magnification of energy of an emission light in a magnetic field. If 
a LED with long vary-band base is being used as magneto-sensitive element, the magnetic field will 
shift effective region of recombination to a section with other energy gap, and the LED’s radiated 
frequency will change. Thus, we obtain a frequency-modulated by a magnetic field optical signal, 
which is resistant to noises in optical channels. Such detectors of magnetic field are expedient for 
using in systems with optical processing methods of the information.
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ДАТЧИК МАГНІТНОГО ПОЛЯ НА ОСНОВІ СВІТЛОВИПРОМІНЮЮЧОГО ДІОДА

Резюме
Виявлені нові ефекти зміни спектру випромінювання світлодіода в магнітному полі, які 

дають можливість використати світлодіод, як оптоелектронний датчик магнітного поля. 
Розглядаються фізичні явища, які відбуваються у світлодіодах під дією магнітного поля. У 
роботі досліджені нові фізичні механізми для створення оптоелектронного магнитодатчика і 
процеси, що протікають у світлодіодах під дією магнітного поля. Амплітудно-модульований 
магнітним полем оптичний сигнал можна отримати, якщо використати звичайний світлодіод 
з вузькою базою, де можна отримати 50% збільшення енергії випромінювання в магнітному 
полі. Якщо в якості магниточутливого елементу використати світлодіод з варізонною довгою 
базою, то магнітне поле зрушуватиме ефективну область рекомбінації на ділянку з іншою 
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шириною забороненої зони, і частота випромінювання світлодіода зміниться. Таким чином, ми 
отримуємо частотно-модульований магнітним полем оптичний сигнал стійкий до перешкод в 
оптичних каналах. Такі датчики доцільно використовувати в системах з оптичними методами 
обробки інформації.

Ключові слова: магнітооптичний сенсор, світлодіод, варізонна структура, магнітне поле, 
частотно-модульоване світло.

УДК 621.315.592

В. И. Ирха,  В. Э. Горбачев, И. M. Викулин

ДАТЧИК МАГНИТНОГО ПОЛЯ НА ОСНОВЕ СВЕТОИЗЛУЧАЮЩЕГО ДИОДА

Резюме
Обнаружены новые эффекты изменения спектра излучения светодиода в магнитном поле, 

которые дают возможность использовать светодиод, как оптоэлектронный датчик магнитного 
поля. Рассматриваются физические явления, которые происходят в светодиодах под действием 
магнитного поля. В работе исследованы новые физические механизмы для создания 
оптоэлектронного магнитодатчика и процессы, протекающие в светодиодах под действием 
магнитного поля. Амплитудно-модулированный магнитным полем оптический сигнал можно 
получить, если использовать обычный светодиод с узкой базой, где можно получить 50% 
увеличение энергии излучения в магнитном поле. Если в качестве магниточувствительного 
элемента использовать светодиод с варизонной длинной базой, то магнитное поле будет 
сдвигать эффективную область рекомбинации на участок с другой шириной запрещенной 
зоны, и частота излучения светодиода изменится. Таким образом, мы получаем частотно 
модулированный магнитным полем оптический сигнал устойчивый к помехам в оптических 
каналах. Такие датчики целесообразно использовать в системах с оптическими методами 
обработки информации.

Ключевые слова: магнитооптический сенсор, светодиод, варизонная структура, магнитное 
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RELATIVISTIC THEORY OF THE NEGATIVE MUON CAPTURE BY AN ATOM

We reviewed an effective consistent approach to determination of the  cross-section for the negative muon 
capture by an atomic system. The approach is based on the relativistic many-body perturbation (PT) theory 
with using the Feynman diagram technique and a generalized relativistic energy approach in a gauge-invariant 
formulation. The corresponding capture cross-section is connected with an imaginary (scattering) part of the 
electron subsystem energy shift ImδE  (till the QED perturbation theory order). The some calculation results 
for cross-section of the negative muon μ - capture by He atom are listed and reviewed. The theoretical and 
experimental studying the muon-γ-nuclear interaction effects opens prospects for nuclear quantum optics, 
probing the structural features of a nucleus and muon spectroscopy in atomic and molecular photophysics.

1.  Introduction
Muonic atoms have always been useful tools for 

nuclear (atomic) spectroscopy employing atomic-
physics techniques. Electrons, muons (other 
particles such as kaons, pions etc) originally in 
the ground state of the target atom can be excited 
reversibly either to the bound or continuum 
states. With appearance of the intensive neutron 
pencils, laser sources studying the g-m-nuclear 
interactions is of a great importance [1-20]. The 
rapid progress in laser technology even opens 
prospects for nuclear quantum optics via direct 
laser-nucleus coupling [19-26]. It is known that 
a negative muon m- captured by a metastable 
nucleus may accelerate a discharge of the latter by 
many orders of magnitude [18-22]. The m-atom 
system differs advantageously of the usual atom; 
the relation rn/ra  (rn is a radius of a nucleus and 
ra is a radius of an atom) can vary in the wide 
limits in dependence upon the nuclear charge. 
The estimates of probabilities for discharge of a 
nucleus with emission of g quantum and further 
muon or electron conversion are presented in ref. 
[2-4,19,20,22]. Despite the relatively long history, 
studying  processes of the muon-atom and muon-
nucleus interactions hitherto remains very actual 
and complicated problem. Theoretical estimates 
in different models differ significantly [1-4,22]. 
According to Mann & Rose, the m capture occurs 

mainly at the energies of Е~10кeV, but according 
to Bayer, muons survive till thermal energies 
[2,20]. In many papers different authors predicted 
the m capture energies in the range from a few 
dozens to thousands eV. The standard theoretical 
approach to problem bases on the known Born 
approximation with the plane or disturbed wave 
functions and the hydrogen-like functions for the 
discrete states. In papers by Vogel etal and Leon-
Miller the well-known Fermi-Teller model is used 
(the atomic electrons are treated as an electron 
gas and a muon is classically described) [2-4]. 
In paper by Cherepkov and Chernysheva [2] the 
Hartree-Fock (HF) method is used to calculate the 
cross-sections of the capture, elastic and inelastic 
scattering of the negative m on the He atom. In 
recent years more advanced approaches using the 
fermion molecular dynamics method are used to 
solve the scattering and capture problem [4,5]. 
The Kravtsov-Mikhailov model [4] describes 
transition of a muon from the excited muonic 
H to He based on quasimolecular concept. The 
series of papers by Ponomarev et al on treating 
the muonic nuclear catalysis use ideas of Alvarets 
et al [5]. More sophisticated methods of the 
relativistic (QED) PT should be used for correct 
treating the muon capture effects by multielectron 
atoms (nuclei). In Refs. [20] it has been presented 
the theoretical basis of a new relativistic energy 
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formalism. Here we reviewed some aspects of 
this approach to calculation of the cross-section 
of the negative muon capture by atoms, using 
relativistic many-body PT [20,24-27] and listed 
some computing results for the cross-section of 
m- capture by the He atom.

2.  Relativistic energy approach to the muon-
atom interaction

2.1. General Formalism

In atomic theory, a convenient field procedure 
is known for calculating the energy shifts DE 
of the degenerate states. Secular matrix M 
diagonalization is used. In constructing M, the 
Gell-Mann and Low adiabatic formula for DE 
is used. A similar approach, using this formula 
with the QED scattering matrix, is applicable 
in the relativistic theory [20,24-27]). In contrast 
to the non-relativistic case, the secular matrix 
elements are already complex in the PT second 
order (first order of the inter-electron interaction). 
Their imaginary parts relate to radiation decay 
(transition) probability. The total energy shift of 
the state is usually presented as follows: 

                  DE = ReDE + i ImDE,                                   (1a)

                                    Im DE = -G/2,                             (1b)

where G is interpreted as the level width, 
and the decay possibility P=G. The whole 
calculation of energies and decay probabilities 
of a non-degenerate excited state is reduced to 
calculation and diagonalization of the complex 
matrix M. To start with the Gell-Mann and 
Low formula it is necessary to choose the PT 
zero-order approximation. Usually, the one-
electron Hamiltonian is used, with a central 
potential that can be treated as a bare potential 
in the formally exact QED PT. There are many 
well-known attempts to find the fundamental 
optimization principle for construction of the 
bare one-electron Hamiltonian (for free atom or 
atom in a field) or (what is the same) for the set 
of the one-quasiparticle (QP) functions, which 
represent such a Hamiltonian [24-27]. Here we 
consider closed electron shell atoms (ions). For 

example, the ground state 1s2 of the He atom or 
He-like ion. As the bare potential, one usually 
includes the electric nuclear potential VN and 
some parameterized screening potential VC.  The 
parameters of the bare potential may be chosen 
to generate the accurate eigen-energies of all 
two-QP states. In the PT second order the energy 
shift is expressed in terms of the two-QP matrix 
elements [20,24-27]:    
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where Rλ(1,2;4,3) is the radial integral of the 
Coulomb inter-QP interaction with large radial 
Dirac components; the tilde denotes a small Dirac 
component; Sλ is the angular multiplier (see details 
in Refs.[20,24-30]). To calculate all necessary 
matrix elements one must have the 1QP relativistic 
functions. Further we briefly outline the main 
idea using, as an example, the negative muon 
capture by He atom: ((ls)2[JiMi], εin

μ)→(lsεl,εnl
μ). 

Here Ji is the total angular moment of the initial 
target state; indices εin

μ
 and εfk

μ
 are the incident and 

discrete state energies, respectively to the incident 
and captured muons. Further it is convenient to 
use the second quantization representation. In 
particular, the initial state of the system “atom 

plus free muon” can be written as 0Φm+ina   state. 
The final state is that of an atom with the discrete 
state electron, removed electron and captured 
muon; in further |I> represents one-particle (1QP) 
state, and |F> represents the three-quasiparticle 
(3QP) state.  The imaginary (scattering) part of 
the energy shift Im ∆E in the atomic PT second 
order (fourth order of the QED PT) is as follows 
[20,24,25]:     
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where R(1,2;4,3) is the radial integral of the 
Coulomb inter-QP interaction with large 
radial Dirac components; the tilde denotes a 
small Dirac component; S is the angular 
multiplier (see details in Refs.[20,24-30]). To 
calculate all necessary matrix elements one 
must have the 1QP relativistic functions. 
Further we briefly outline the main idea 
using, as an example, the negative muon 
capture by He atom: ((1s)2[JiMi], 
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energies, respectively to the incident and 
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where indices e,v are corresponding to atomic 
electrons and G is a definite squired combination 
of the two-QP matrix elements (2). The value σ=-2 
Im∆E  represents the capture cross-section if the 
incident muon eigen-function is normalized by the 
unit flow condition. The different normalization 
conditions are used for the incident and captured 
state QP wave functions. The details of the whole 
numerical procedure of calculation of the cross-
sections can be found in Refs. [20,24-27]. 

2.2 The Dirac-Kohn-Sham Relativistic Wave 
Functions

Usually, a multielectron atom is defined by a  
relativistic Dirac Hamiltonian( the a.u. used):

                ( ).i i j
i i j

H h(r ) V r r
>

= +∑ ∑                           (5) 

Here, h(r) is one-particle Dirac Hamiltonian 
for electron in a field of the finite size nucleus and 
V is potential of the inter-electron interaction. The 
relativistic  inter electron potential is as follows 
[20,24,25]: 
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where ωij is the transition frequency; αi ,αj are 
the Dirac matrices. The Dirac equation potential 
includes the electric potential of a nucleus and 
exchange-correlation potential. One of the 
variants is the Kohn-Sham-like  (KS) exchange 
relativistic potential, which is obtained from a 
Hamiltonian having a transverse vector potential 
describing the photons, is as follows  [31]:
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where 

                      2 1/3[3 ( )] /r cb p ρ=                       (8)

The corresponding correlation functional is 
[20,31]:
                           

1/3[ ( ), ] 0.0333 ln[1 18.3768 ( ) ]CV r r b rρ ρ= - ⋅ ⋅ + ⋅ ,    (9)

where b is the optimization parameter (see details 
in Refs. [20,27,32]). Earlier it has been shown 
[27-32] that an adequate description of the atomic 
characteristics requires using an optimized base 
of the wave functions. In Ref. [24b] a new ab 
initio optimization procedure is proposed. It is 
reduced to minimization of the gauge dependent 
multielectron contribution Im∆Eninv of the lowest 
QED PT corrections to the radiation widths of 
atomic levels. In the fourth order of QED PT 
(the second order of the atomic PT) there appear 
the diagrams, whose contribution to the Im∆Eninv 
accounts for correlation effects. This contribution 
is determined by the electromagnetic potential 
gauge (the gauge dependent contribution). All the 
gauge dependent terms are multielectron by their 
nature. The dependent contribution to imaginary 
part of the electron energy is obtained after 
involved calculation, as [24b]: 
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Here, C is the gauge constant, f is the boundary of 
the closed shells; n ≥ f  indicating the vacant band 
and the upper continuum electron states;  m ≤ f 
indicates the finite number of states in the atomic 
core). The minimization of the Im∆Eninv leads to 
the Dirac-like equations. In concrete calculation 
it is sufficient to use the simplified procedure, 
which is reduced to the functional minimization 
using the variation of the parameter b in Eq.(9) 
[20,25]. 

2.3 Capture of negative muons by helium atom

The results of calculation of the cross-section 
for the negative muon capture by atom of He are 
shown in Figures 1-3. The scheme includes 2×103 
points till distance 25aB (aB is the Bohr radius). 
The main contribution to the capture cross-section 
is provided by transitions with the moment l=0-3. 
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removed electron and captured muon; in 
further |I> represents one-particle (1QP) 
state, and |F> represents the three-
quasiparticle (3QP) state.  The imaginary 
(scattering) part of the energy shift Im E in 
the atomic PT second order (fourth order of 
the QED PT) is as follows [20,24,25]:      
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Figure 1. The calculated dependences of the Auger 
capture cross-section (solid line– E=50eV; dotted 
line - E=20eV) on orbital number l for different n 
values for incident μ- energies 20, 50 eV (from Refs. 

[2-4,20]).

Figure 2. The capture cross-sections in dependence 
on the orbital number l after summation on the n 
number (digits in figure – the muon energies in eV; 

from Refs. [2-4,20]).

First we studied the behaviour of curves of 
the m- capture cross-section in dependence on the 
principal quantum number n with summation on 
the orbital moments l for several values of the 
muon initial energy. In whole our curves are lying a 

little higher than the corresponding curves of Refs. 
[1-3]. The analysis shows that for the incident m 
energies 16 and 50eV the capture cross-section 
begins to decrease for all n with growth of the l 
number (l>10). The states with large l for the muon 
energies (lower or higher in comparison with the 
atomic ionization potential value) are populated 
less probably than in a case of the m- energy of the 
ionization potential order. In figure 1we present 
the calculated dependences of the Auger capture 
cross-section on the orbital number l for different 
n values for the incident m energies of 20 and 50 
eV.  In figure 2 we present the calculated capture 
cross-section in the dependence on the l number 
after summation on n. 

In figure 3 we present the total capture cross-
section in terms of energy (with summation on 
all n,l): data on the Auger capture cross-section  
– curve 7 (elastic and inelastic scattering cross-
sections) – curves 2,3 [20]. We also present the 
results by Copenman and Rogova in the Born 
approximation with using the hydrogen-like wave 
functions  (curve 5) and the HF data [2]  (curve 1), 
the inelastic scattering cross-section by Rosenberg  
(curve 4), the  transport cross-section (х symbol) 
[2,3,20].  The analysis of the results shows that 
the   data [2-4, 20] are in physically reasonable 
agreement. But, there is an essential difference of 
the Mann-Rose and Bayer data [1-3].

Figure 3. Total cross-section of μ- capture in depend-
ence on an energy: the Auger capture cross-section 
– curve 7; elastic and inelastic scattering cross-sec-
tions – curves 2,3 by Glushkov et al; cross-section 
of capture by Copenman and Rogova (curve 5); 
the HaF data by Cherepkov-Chernysheva – curve 
1; inelastic scattering cross-section by Rosenberg – 
curve 4; the  transport cross-section – х (from Refs. 

[2-4,20]).

Dirac-like equations. In concrete calculation 
it is sufficient to use the simplified 
procedure, which is reduced to the functional 
minimization using the variation of the 
parameter b in Eq.(9) [20,25].  
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atom 

 
The results of calculation of the cross-section 
for the negative muon capture by atom of He 
are shown in Figures 1-3. The scheme 
includes 2103 points till distance 25aB (aB is 
the Bohr radius). The main contribution to 
the capture cross-section is provided by 
transitions with the moment l=0-3.  
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The relativistic corrections were to found to be 
small here, but computing heavy atoms (nuclei) 
requires a proper treatment for both relativistic 
and correlation effects.

3 Concluding Remarks and Future Per-
spectives

We have presented a new relativistic approach 
to calculation of the cross-section of the negative 
m capture by atoms. The approaches are based 
upon the relativistic many-body PT theory, energy 
approach. Note that further development of 
electron-m-nuclear spectroscopy of atoms (nuclei) 
is of a great theoretical and practical interest. The 
development of new approaches [2-6,21-23] to 
studying the cooperative e-,m-g-nuclear processes 
promises the rapid progress in our understanding 
of the nuclear decay. Such an approach is 
useful, providing perspective for search for  new 
cooperative effects on the boundary of atomic 
and nuclear physics, carrying out new methods 
for treating (the muonic chemistry tools) the 
spatial structure of molecular orbitals, studying 
the chemical bond nature and checking different 
models in quantum chemistry and atomic physics 
[3-8,18-23,49]. 
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RELATIVISTIC ENERGY APPROACH TO THE NEGATIVE MUON CAPTURE 
BY AN ATOM

Abstract   
We reviewed a new effective consistent approach to determination of the  cross-section for the 

negative muon capture by an atomic system. The approach is based on the relativistic many-body per-
turbation (PT) theory with using the Feynman diagram technique and a generalized relativistic energy 
approach in a gauge-invariant formulation. The corresponding capture cross-section is connected with 
an imaginary (scattering) part of the electron subsystem energy shift ImdE  (till the QED perturbation 
theory order). The some calculation results for cross-section of the negative muon m- capture by He 
atom are listed and reviewed. The theoretical and experimental studying the muon-g-nuclear interac-
tion effects opens prospects for nuclear quantum optics, probing the structural features of a nucleus 
and muon spectroscopy in atomic and molecular photophysics.

Key words: Cooperative muon-g-nuclear processes,  muon capture by an atom, Relativistic energy 
formalism
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РЕЛЯТИВИСТСКИЙ ЭНЕРГЕТИЧЕСКИЙ ПОДХОД К ОПИСАНИЮ ПРОЦЕССA 
ЗАХВАТА ОТРИЦАТЕЛЬНОГО МЮОНА АТОМОМ

Резюме
В работе обзорно изложены основы нового эффективного подхода к определению сечений 

захвата отрицательного мюона атомной системой, основанного на  релятивистской многоча-
стичной теории возмущения с использованием фейнмановской диаграммной техники и обоб-
щенном релятивистском энергетическом формализме в калибровочно-инвариантной формули-
ровке.  Соответствующее сечение захвата отрицательного мюона атомом определяется мнимой 
частью энергетического сдвига ImdE  электронной подсистемы. Обзорно представлены резуль-
таты некоторых расчетов сечения захвата отрицательного мюона атомом Не. Теоретическое и 
экспериментальное изучение эффектов мюон-гамма-ядерных взаимодействий открывает пер-
спективы развития новой области квантовой оптики, а именно,  ядерной квантовой оптики,  
возможности зондирования структурных особенностей ядра (атома) и дальнейшего развития 
направления мюонной спектроскопии в атомной и молекулярной физике.

Ключевые слова: кооперативные мюон-гамма-ядерные процессы, захват мюона атомом, 
релятивистский энергетический формализм

УДК 539.182
О. В. Глушков 

PЕЛЯТИВІСТСЬКИЙ ЕНЕРГЕТИЧНИЙ ПІДХІД ДО ОПИСУ ПРОЦЕСА 
ЗАХОПЛЕННЯ  НЕГАТИВНОГО МЮОНА АТОМОМ

Резюме
У роботі оглядово викладені основи нового ефективного підходу до визначення перетинів 

захоплення негативного мюона атомної системою, заснованого на релятивістській багаточас-
тинковій  теорії збурень з використанням фейнманівськох діаграмної техніки і узагальненому 
релятивістському енергетичному формалізмі у калібрувально-інваріантному формулюванні. 
Відповідний перетин захоплення негативного мюона атомом визначається уявною частиною 
енергетичного зсуву ImdE  електронної підсистеми. Оглядово представлені результати деяких 
розрахунків перетину захоплення негативного мюона атомом гелія. Теоретичне і експеримен-
тальне вивчення ефектів мюон-гамма-ядерних взаємодій відкриває перспективи розвитку нової 
галузі квантової оптики, а саме, ядерної квантової оптики, нові можливості зондування струк-
турних особливостей ядра (атома) і подальшого розвитку напрямку мюонної спектроскопії в 
атомній і молекулярної фотофізиці.

Ключові слова: кооперативні мюон-гамма-ядерні процеси, захоплення мюона атомом, ре-
лятивістський енергетичний формалізм
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STUDY OF THE IMPURITY PHOTOCONDUCTIVITY AND LUMINESCENCE IN ZNTE:V 
CRYSTALS

The photoconductivity and photoluminescence spectra of ZnTe:V crystals in the visible spectral 
region are studied. It is established that the high-temperature impurity photoconductivity of ZnTe:V 
crystals is controlled by the optical transitions of electrons from the ground state 4T1(F) to high-
energy excited states, with subsequent thermally activated transitions of electrons to the conduction 
band. A photoconductivity band associated with the photoionization of V impurities is revealed. The 
intracenter luminescence of ZnTe:V crystals is efficiently excited with light corresponding to the 
intrinsic absorption region of V2+ ion

Introduction
In the last few years, ZnTe crystals doped with 

transition metals have been extensively used as 
materials for various laser- and nonlinear-opti-
cal applications. ZnTe:Cr crystals were used to 
achieve lasing at 2.5 μm [1]. ZnTe:Fe crystals 
served as a basis for the production of tunable la-
sers emitting in the wavelength range from 4.35 
to 5.45 μm [2]. The use of ZnTe:V crystals for at-
taining lasing in the IR region is hindered by the 
problem of the observation of IR luminescence at 
temperatures higher than 150 K [3].

At the same time, the above-mentioned crys-
tals can be used as photodetectors for visible and 
microwave radiation [4]. Therefore, studies of the 
photoconductivity and luminescence of ZnTe:V 
crystals in the visible spectral region present a 
topical problem.

In this study, we explore and identify struc-
tural features of the photoconductivity and lumi-
nescence spectra of ZnTe:V crystals in the visible 
spectral region. It is shown that, in the spectra, 
there are photoconductivity and luminescence 
bands associated with the V impurity.

The goals of this study is to identify structural 
features of the photoconductivity and lumines-

cence spectra of ZnTe:V crystals in the visible 
spectral region.

Experimental
The samples to be studied were produced by 

the diffusion doping of initially pure ZnTe crys-
tals with V. The nominally undoped crystals were 
produced by the free growth method on a ZnSe 
single crystal substrate oriented in the (111) plane. 
The advantage of diffusion doping is the possibil-
ity of obtaining specified impurity concentrations 
and doping profiles. The V content in the crystals 
was determined from the variation in the band gap 
of ZnTe crystals under variations in the V impu-
rity concentration. The vanadium concentration 
varies from 3∙1017 to 3∙1019 cm-3. For reference 
samples, we used specially produced and studied 
ZnTe samples subjected to heat treatments at the 
same temperatures as those of the treatments of 
V-doped crystals.

The photoconductivity spectra were recorded 
with an MUM-2 monochromator with a 1200 
grove mm–1 diffraction grating. A halogen lamp 
served as the source of light. The power of the 
light flux from the lamp was kept constant at dif-
ferent wavelengths. 



21

The photoluminescence (PL) spectra were re-
corded with an ISP-51 prism spectrograph. The 
emission was detected with an FEU-100 photo-
electric multiplier. The luminescence signal was 
excited with Edison Opto Corporation light-emit-
ting diodes (LEDs) and an ILGI-503 nitrogen 
pulse laser. The photon energies corresponding to 
the emission peak of the LEDs were 3.1, 2.69 and 
2.25 eV, and the photon energy of laser emission 
was 3.74 eV.

Analysis of the photoconductivity spectra
The undoped ZnTe crystals exhibit only one 

photoconductivity band with a peak at 2.26 eV 
at 300 K (Fig. 1, curve 1). This band arises from 
interband optical transitions. On doping of the 
crystals with vanadium, this band shifts to lower 
energies. As the V concentration is increased, the 
shift increases and corresponds to a change in the 
band gap determined from the optical absorption 
spectra.

Doping with vanadium brings about the appear-
ance of series photoconductivity bands in the pho-
ton energy range from 1.4 to 2.1 eV (Fig.1, curves 
2–3). The intensity of these bands increases, as the 
V concentration is increased. In the spectra, we 
can distinguish bands at 1.47, 1.55, 1.7, 1.8, 1.87 
and 2.09 eV. It is established that the 2.09 eV band 
changes position under variations in the V concen-
tration. The position of other bands remains un-
changed, as the degree of doping is increased.

At the temperature T = 77 K, only one inter-
band photoconductivity band is observed in all 
of the crystals under study. As the temperature is 
elevated from 77 to 350 K, the impurity photo-
conductivity makes a weightier contribution to 
the spectrum. We observed a similar effect previ-
ously in studying the photoconductivity of ZnSe 
crystals doped with Fe, Ni, Cr [5,6].

As the temperature is elevated from 300 to 350 
K the 2.09 eV photoconductivity band shifts to 
lower photon energies by 20 meV. Such shift cor-
responds to the temperature change in the band 
gap of ZnTe. Other impurity photoconductivity 
bands do not change their position with tempera-
ture, suggesting that the corresponding transitions 
are of intracenter character. In addition, the po-
sition of the above mentioned bands agrees well 

with the position of optical absorption bands de-
tected for these crystals previously. In [7] visible 
absorption bands were attributed to intracenter 
optical transitions that occur within the V2+ ions. 
The above result suggests that these photocon-
ductivity bands are due to the same optical transi-
tions as those involved in optical absorption. The 
energies and identification of optical transitions 
are given in the table. The table summarizes the 
data obtained in studies of optical absorption, 
photoconductivity and luminescence.

Fig. 1. Photoconductivity spectra of (1) ZnTe and 
(2, 3) ZnTe:V crystals. The V dopant concentra-

tions are [V] = (2) 5∙1018 and (3) 3∙1019 cm–3.

The photoconductivity process in the crys-
tals under study occurs in the manner briefly de-
scribed below. The 2.09 eV photoconductivity 
band is associated with optical transitions from 
the 4T1(F) ground state of the V2+ ion into the con-
duction band. Comparison of the photon energy 
corresponding to the peak of this photoconductiv-
ity band with the energy position of the intrinsic 
photoconductivity peak for the crystals with the V 
concentration [V] = 5∙1018cm–3 (2.23 eV) allows 
us to believe that the level of the ground state of 
the V2+ ion is 140 meV above the top of the va-
lence band.

the LEDs were 3.1, 2.69 and 2.25 eV, and the 
photon energy of laser emission was 3.74 eV.

Analysis Of The Photoconductivity Spectra
The undoped ZnTe crystals exhibit only one 

photoconductivity band with a peak at 2.26 eV at 
300 K (Fig. 1, curve 1). This band arises from 
interband optical transitions. On doping of the 
crystals with vanadium, this band shifts to lower 
energies. As the V concentration is increased, 
the shift increases and corresponds to a change 
in the band gap determined from the optical 
absorption spectra.

Doping with vanadium brings about the 
appearance of series photoconductivity bands in 
the photon energy range from 1.4 to 2.1 eV 
(Fig.1, curves 2–3). The intensity of these bands 
increases, as the V concentration is increased. In 
the spectra, we can distinguish bands at 1.47,
1.55, 1.7, 1.8, 1.87 and 2.09 eV. It is established 
that the 2.09 eV band changes position under 
variations in the V concentration. The position 
of other bands remains unchanged, as the degree 
of doping is increased.

At the temperature T = 77 K, only one 

interband photoconductivity band is observed in 
all of the crystals under study. As the 
temperature is elevated from 77 to 350 K, the 
impurity photoconductivity makes a weightier
contribution to the spectrum. We observed a 
similar effect previously in studying the 
photoconductivity of ZnSe crystals doped with 
Fe, Ni, Cr [5,6].

As the temperature is elevated from 300 to 
350 K the 2.09 eV photoconductivity band 
shifts to lower photon energies by 20 meV. 
Such shift corresponds to the temperature 
change in the band gap of ZnTe. Other impurity 
photoconductivity bands do not change their 
position with temperature, suggesting that the 
corresponding transitions are of intracenter 
character. In addition, the position of the above
mentioned bands agrees well with the position
of optical absorption bands detected for these 
crystals previously. In [7] visible absorption 
bands were attributed to intracenter optical 
transitions that occur within the V2+ ions. The 
above result suggests that these 
photoconductivity bands are due to the same
optical transitions as those involved in optical 
absorption. The energies and identification of 
optical transitions are given in the table. The 
table summarizes the data obtained in studies of 
optical absorption, photoconductivity and 
luminescence.

The photoconductivity process in the crystals
under study occurs in the manner briefly 
described below. The 2.09 eV 
photoconductivity band is associated with 
optical transitions from the 4T1(F) ground state 
of the V2+ ion into the conduction band. 
Comparison of the photon energy 
corresponding to the peak of this 
photoconductivity band with the energy 
position of the intrinsic photoconductivity peak 
for the crystals with the V concentration [V] = 
5∙1018cm–3 (2.23 eV) allows us to believe that 
the level of the ground state of the V2+ ion is 
140 meV above the top of the valence band.
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Fig.1. Photoconductivity spectra of (1) ZnTe
and (2, 3) ZnTe:V crystals. The V dopant 
concentrations are [V] = (2) 5∙1018 and (3) 
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The other photoconductivity bands are formed 
in a two-stage process. Initially, the intracenter 
optical transitions of electrons from the 4T1(F)  
ground state to the higher excited states of the V2+ 
ions (table) occur; then thermally activated transi-
tions of these electrons to the conduction band are 
observed. As a result the local centers transit to the 
V3+ charged state. Later the V3+ centers trap elec-
trons and the centers transit to their initial V2+ state.

It should be noted that the results of studies of 
the thermoelectric power are indicative of the elec-
tron photoconductivity of the ZnTe:V crystals.

Аnalysis of luminescence properties
The PL spectra were studied in the tempera-

ture range from 77 to 300 K. The PL spectra of 
undoped crystals excited with nitrogen laser ra-
diation (λ =337 nm) at T = 77 K exhibit one emis-
sion band with peak at 2.31 eV (Fig. 2, curve 1). 
In previous studies the 2.31 eV emission band 
was attributed to emission of excitons localized at 
neutral zinc vacancies [6].

Upon doping of the crystals with vanadium, 
the excitonic emission bands shift to lower ener-
gies (Fig. 2, curve 2). The shift corresponds to the 
change in the band gap with the vanadium con-
centration [V] in ZnTe.

Doping of the crystals with vanadium brings 
about a series of long-wavelength emission lines 
with peaks at 1.20, 1.24, 1.33, 1.42, 1.52, 1.67, 
1.78, 1.85, 2.06, 2.13 eV (Fig. 2, curve 2). As 
the V concentration is increased, the intensity of 

these emission lines increases, whereas their posi-
tion remains unchanged.

Figure 2 (curve 3) shows the absorption spec-
trum of the ZnTe:V crystals at T = 77 K. The 
spectrum involves lines that correlate with the 
emission lines observed in this study. As can be 
seen from the table, the Stokes shifts of the PL 
lines with respect to the corresponding absorption 
lines are in the range 20–60 meV.

It is established that the relative luminescence 
intensity of the ZnTe:V crystals heavily depends 
on the photon energy of excitation light.

Emission with the lowest intensity is excit-
ed with a nitrogen laser with the photon energy 
3.67 eV. The highest emission intensity is attained 
on excitation with LEDs with the photon energy 
in the emission peak 2.25 eV. This suggests that 
the band-to-band excitation of long-wavelength 
luminescence of the ZnTe:V crystals is ineffi-
cient. At the same time, under changes in the ex-
citation photon energy, the position of emission 
peaks remains unchanged. It is also established 
that, as the excitation photon energy is lowered, 
the contribution of low-energy bands to the lumi-
nescence spectrum increases. This effect is typi-
cal of intracenter luminescence.

As the temperature is elevated from 77 to 
300 K, the intensity of all emission lines de-
creases, while the positions of the peaks remain 
unchanged. Similar temperature behavior was ob-
served for the corresponding absorption lines. 

The other photoconductivity bands are
formed in a two-stage process. Initially, the 
intracenter optical transitions of electrons from 
the 4T1(F) ground state to the higher excited 
states of the V2+ ions (table) occur; then 
thermally activated transitions of these electrons
to the conduction band are observed. As a result 
the local centers transit to the V3+ charged state. 
Later the V3+ centers trap electrons and the 
centers transit to their initial V2+ state.

It should be noted that the results of studies of 
the thermoelectric power are indicative of the 
electron photoconductivity of the ZnTe:V
crystals.

Аnalysis of luminescence 
properties 
The PL spectra were studied in the 

temperature range from 77 to 300 K. The PL 
spectra of undoped crystals excited with nitrogen 
laser radiation (λ =337 nm) at T = 77 K exhibit 
one emission band with peak at 2.31 eV (Fig. 2, 
curve 1). In previous studies the 2.31 eV 
emission band was attributed to emission of
excitons localized at neutral zinc vacancies [6].

Upon doping of the crystals with vanadium,
the excitonic emission bands shift to lower 
energies (Fig. 2, curve 2). The shift corresponds 
to the change in the band gap with the vanadium
concentration [V] in ZnTe.

Doping of the crystals with vanadium brings 
about a series of long-wavelength emission lines 
with peaks at 1.20, 1.24, 1.33, 1.42, 1.52, 1.67,
1.78, 1.85, 2.06, 2.13 eV (Fig. 2, curve 2). As 

the V concentration is increased, the intensity of 
these emission lines increases, whereas their 
position remains unchanged.

Figure 2 (curve 3) shows the absorption 
spectrum of the ZnTe:V crystals at T = 77 K. 
The spectrum involves lines that correlate with 
the emission lines observed in this study. As 
can be seen from the table, the Stokes shifts of 
the PL lines with respect to the corresponding 
absorption lines are in the range 20–60 meV.

It is established that the relative 
luminescence intensity of the ZnTe:V crystals 
heavily depends on the photon energy of 
excitation light.

Energies of optical transitions in ZnTe:V crystals
Line 
No

Absorption Photoconductivity, 
E, eV

Luminescence,
E, eV

Stokes shift,
E, meVE, eV Transition

1 --- 4T1(F)→ 3А2(F) +e-
c.b 2.09 --- ---

2 2.19 4T1(F)→2E(D) --- 2.13 60
3 2.08 4T1(F)→2E(G) --- 2.06 20
4 1.87 4T1(F)→2T2(D) 1.87 1.85 20
5 1.80 4T1(F)→2T1(P) 1.80 1.78 20
6 1.70 4T1(F)→2T1(H) 1.7 1.67 30
7 1.54 4T1(F)→2E(H) 1.55 1.52 20
8 1.46 4T1(F)→2T1(H) 1.47 1.42 40
9 1.36 4T1(F)→2T2(H) --- 1.33 30

10 1.26 4T1(F)→4T1(P) --- 1.24 20
11 1.23 4T1(F)→2T2(G) --- 1.20 30
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Fig. 2. (1, 2) Photoluminescence and (3) 
absorption spectra of (1) ZnTe and (2, 3) 
ZnTe:V crystals.
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Fig. 2. (1, 2) Photoluminescence and (3) absorption 
spectra of (1) ZnTe and (2, 3) ZnTe:V crystals.

This suggests that the absorption and lumines-
cence lines under study are due to intracenter op-
tical transitions that occur within vanadium ions.

Conclusions
1. It is shown that the high-temperature long-

wavelength photoconductivity of the ZnTe:V 
crystals is controlled by intracenter optical ransi-
tions within the V2+ ions and by subsequent ther-
mally induced transitions of electrons from the 
levels of the excited V3+ states into the conduc-
tion band.

2. It is established that doping with vanadium 
gives rise to a series of emission lines in the vis-
ible spectral region. The luminescence bands de-
tected for the ZnTe:V crystals are attributed to 
intracenter transitions in the V2+ ions.

3. Efficient excitation in impurity-related lu-
minescence of the ZnTe:V crystals is attained 
with light corresponding to the region of intrinsic 
absorption in the V2+ ions.
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The other photoconductivity bands are
formed in a two-stage process. Initially, the 
intracenter optical transitions of electrons from 
the 4T1(F) ground state to the higher excited 
states of the V2+ ions (table) occur; then 
thermally activated transitions of these electrons
to the conduction band are observed. As a result 
the local centers transit to the V3+ charged state. 
Later the V3+ centers trap electrons and the 
centers transit to their initial V2+ state.

It should be noted that the results of studies of 
the thermoelectric power are indicative of the 
electron photoconductivity of the ZnTe:V
crystals.

Аnalysis of luminescence 
properties 
The PL spectra were studied in the 

temperature range from 77 to 300 K. The PL 
spectra of undoped crystals excited with nitrogen 
laser radiation (λ =337 nm) at T = 77 K exhibit 
one emission band with peak at 2.31 eV (Fig. 2, 
curve 1). In previous studies the 2.31 eV 
emission band was attributed to emission of
excitons localized at neutral zinc vacancies [6].

Upon doping of the crystals with vanadium,
the excitonic emission bands shift to lower 
energies (Fig. 2, curve 2). The shift corresponds 
to the change in the band gap with the vanadium
concentration [V] in ZnTe.

Doping of the crystals with vanadium brings 
about a series of long-wavelength emission lines 
with peaks at 1.20, 1.24, 1.33, 1.42, 1.52, 1.67,
1.78, 1.85, 2.06, 2.13 eV (Fig. 2, curve 2). As 

the V concentration is increased, the intensity of 
these emission lines increases, whereas their 
position remains unchanged.

Figure 2 (curve 3) shows the absorption 
spectrum of the ZnTe:V crystals at T = 77 K. 
The spectrum involves lines that correlate with 
the emission lines observed in this study. As 
can be seen from the table, the Stokes shifts of 
the PL lines with respect to the corresponding 
absorption lines are in the range 20–60 meV.

It is established that the relative 
luminescence intensity of the ZnTe:V crystals 
heavily depends on the photon energy of 
excitation light.
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STUDY OF THE IMPURITY PHOTOCONDUCTIVITY AND LUMINESCENCE IN ZnTe:V 
CRYSTALS

Abstract
The photoconductivity and photoluminescence spectra of ZnTe:V crystals in the visible spectral 

region are studied. It is established that the high-temperature impurity photoconductivity of ZnTe:V 
crystals is controlled by the optical transitions of electrons from the ground state 4T1(F) to high-energy 
excited states, with subsequent thermally activated transitions of electrons to the conduction band. 
A photoconductivity band associated with the photoionization of V impurities is revealed. The intra-
center luminescence of ZnTe:V crystals is efficiently excited with light corresponding to the intrinsic 
absorption region of V2+ ion
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nescence.
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ИССЛЕДОВАНИЕ ПРИМЕСНОЙ ФОТОПРОВОДИМОСТИ И ЛЮМИНЕСЦЕНЦИИ                                
В КРИСТАЛЛАХ ZnTe:V

Резюме
Исследована фотопроводимость и фотолюминесценция кристаллов ZnTe:V в видимой об-

ласти спектра. Установлено, что высокотемпературная фотопроводимость кристаллов ZnTe:V 
обусловлена оптическими переходами электронов из основного состояния 4T1(F) на более вы-
сокие возбужденные энергетические уровни иона V2+ с их последующей термической актива-
цией в зону проводимости. Эффективное возбуждение внутрицентровой люминесценции кри-
сталлов ZnTe:V осуществляется светом из области примесного поглощения ионов V2+.

Ключевые слова: теллурид цинка, диффузионное легирование, примесь ванадия, фотопро-
водимость, фотолюминесценция.
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ДОСЛІДЖЕННЯ ДОМІШКОВОЇ ФОТОПРОВІДНОСТІ ТА ЛЮМІНЕСЦЕНЦІЇ В 
КРИСТАЛАХ ZnTe:V

Резюме
Досліджено фотопровідність і фотолюмінесценцію кристалів ZnTe:V у видимій області 

спектру. Встановлено, що високотемпературна фотопровідність кристалів ZnTe:V обумовлена 
оптичними переходами електронів з основного стану 4T1(F) на більш високі збуджені енерге-
тичні рівні іону V2+ з їх подальшою термічною активацією в зону провідності. Ефективне збу-
дження внутришньоцентрової люмінесценції кристалів ZnTe:V відбувається світлом з області 
домішкового поглинання іонів V2+.

Ключові слова: телурид цинку, дифузійне легування, домішка ванадію, фотопровідність, 
фотолюмінесценція.
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SPECTROSCOPY OF THE COMPLEX AUTOIONIZATION RESONANCES IN 
SPECTRUM OF BERYLLIUM 

We applied a generalized energy approach (Gell-Mann and Low S-matrix formalism) combined 
with the relativistic multi-quasiparticle (QP) perturbation theory (PT) with the Dirac-Kohn-Sham 
zeroth approximation and accounting for the exchange-correlation, relativistic corrections to studying  
autoionization resonances in the beryllium Be spectrum, in particular, we predicted the energies and 
widths of the number of the 2pns resonances. There are presented the results of comparison of our 
theory data for the autoionization resonances 2pnl  with the available experimental data and those 
results of other theories, including, methods  by  Greene, by Tully-Seaton-Berrington and by Kim-
Tayal-Zhou-Manson etc.

1. Introduction
Here we continue our investigations of study-

ing the autoionization state and AR in spectra of 
a few electron complex atoms and ions. Let us 
note [1-5] that theoretical methods of calculation 
of the spectroscopic characteristics for heavy at-
oms and ions are usually divided into a few main 
groups [1-21]. Let us remind At first, one should 
mention the well known, classical multi-config-
uration Hartree-Fock method (as a rule, the rela-
tivistic effects are taken into account in the Pauli 
approximation or Breit hamiltonian etc.) allowed 
to get a great number of the useful spectral in-
formation about light and not heavy atomic sys-
tems, but in fact it provides only qualitative de-
scription of spectra of the heavy atoms and ions. 
Another more consistent method  is given by the 
known multi-configuration Dirac-Fock (MCDF) 
approach. Besides, different methods such as 
various forms of the R-matrix method, the multi-
configuration Tamm-Dancoff approximation, the 
hyperspherical method, a hyperspherical close-
coupling calculation, and a multiconfiguration 
relativistic random-phase approximation have 
been employed [3].

In this paper we applied a new relativistic ap-
proach [11-15] to relativistic studying the auto-
ionization characteristics of the beryllium   atom. 
The method wich has been used is in details pre-
sented in our prwvius papers (see, for example, 
[4]). LHere we remind that the new elements of the 
approach include  the combined the generalized 
energy approach and the gauge-invariant QED 
many-QP PT with the Dirac-Kohn-Sham (DKS) 
“0” approximation (optimized 1QP  representa-
tion) and an accurate accounting for relativistic, 
correlation and others  effects. The generalized 
gauge-invariant version of the energy approach 
has been further developed in Refs. [12,13]. 

2. Relativistic approach in autoionization 
spectroscopy of beryllium atom

In refs. [11-15, 17-20] it has been in details pre-
sented, so here we give only the fundamental as-
pects.  In relativistic case the Gell-Mann and Low 
formula expressed an energy shift DE through the 
QED scattering matrix including the interaction 
with as the photon vacuum field as the laser field. 
The first case is corresponding to definition of the 
traditional radiative and autoionization character-
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istics of multielectron atom. The wave function 
zeroth basis is found from the Dirac equation with 
a potential, which includes the ab initio (the op-
timized model potential or DF potentials, electric 
and polarization potentials of a nucleus) [5]. Gen-
erally speaking, the majority of complex atomic 
systems possess a dense energy spectrum of inter-
acting states with essentially relativistic proper-
ties. Further one should realize a field procedure 
for calculating the energy shifts DE of degenerate 
states, which is connected with the secular matrix 
M diagonalization [8-12]. The secular matrix ele-
ments are already complex in the second order of 
the PT. Their imaginary parts are connected with 
a decay possibility. A total energy shift of the state 
is presented in the standard form:

                                           

Re Im Im 2E i E EDΕ= D + D D =-G ,
                                                                     (1)

where G is interpreted as the level width, and the 
decay possibility Ρ = G . The whole calculation of 
the energies and decay probabilities of a non-de-
generate excited state is reduced to the calculation 
and diagonalization of the M. The complex  secu-
lar matrix M is represented in the form [9,10]:  

( ) ( ) ( ) ( )0 1 2 3 .M M M M M= + + +                                                                      (2)

where ( )0M  is the contribution of the vacuum dia-
grams of all order of PT, and ( )1M , ( )2M , ( )3M  
those of the one-, two- and three-QP diagrams 
respectively. The diagonal matrix ( )1M  can be 
presented as a sum of the independent 1QP con-
tributions. For simple systems (such as alkali 
atoms and ions) the 1QP energies can be taken 
from the experiment. Substituting these quanti-
ties into (2) one could have summarized  all the 
contributions of the 1QP diagrams of all orders 
of the formally exact QED PT. The optimized 
1-QP representation is the best one to determine 
the zeroth approximation. In the second order, 
there is important kind of diagrams: the ladder 
ones. These contributions have been summarized 
by a modification of the central potential, which 
must now include the screening (anti-screening) 
effect  of each particle by two others. The ad-
ditional potential modifies the 1QP orbitals and 

energies. Let us remind that in the QED theory, 
the photon propagator D(12) plays the role of this 
interaction. Naturally, an analytical form of D de-
pends on the gauge, in which the electrodynamic 
potentials are written. In general, the results of all 
approximate calculations depended on the gauge. 
Naturally the correct result must be gauge invari-
ant. The gauge dependence of the amplitudes of 
the photoprocesses in the approximate calcula-
tions is a well known fact and is in details inves-
tigated by Grant, Armstrong, Aymar-Luc-Koenig, 
Glushkov-Ivanov [1,2,5,9]. Grant has studied  the 
gauge connection with the limiting non-relativ-
istic form of the transition operator and has for-
mulated the conditions for approximate functions 
of the states, in which the amplitudes are gauge 
invariant (so called Grant’s theorem). These re-
sults remain true in an energy approach as the fi-
nal formulae for the probabilities coincide in both 
approaches. In ref. [16] it has been developed a 
new version of the approach to conserve gauge 
invariance. Here we applied it to get the gauge-
invariant procedure for generating the relativistic 
DKS orbital bases (abbreviator of our method: 
GIRPT). A width of  a state associated with the 
decay of the AR is determined by square of the 
matrix element of the interparticle interaction 
Г ∞ |V ( b1b2 ,  b3k ) | 2 . The total width is given by 
the expression: 

            
where the coefficients C are determined in [4].                     

The matrix element of the relativistic inter-
particle interaction 

      ( ) ( ) ijiijijji ráá1riùexprrV /)( -⋅=     (4)

(here αI –the Dirac matrices) in (3) is determined 
as follows: 
     

order of the PT. Their imaginary parts are 
connected with a decay possibility. A total 
energy shift of the state is presented in the
standard form:

Re Im Im 2E i E E∆E= ∆ + ∆ ∆ =−Γ ,

(1)

where Γ is interpreted as the level width, and 
the decay possibility Ρ = Γ . The whole 
calculation of the energies and decay 
probabilities of a non-degenerate excited state is 
reduced to the calculation and diagonalization of 
the M. The complex  secular matrix M is 
represented in the form [9,10]:  

( ) ( ) ( ) ( )0 1 2 3 .M M M M M= + + +
(2)

where ( )0M is the contribution of the vacuum 
diagrams of all order of PT, and ( )1M ,

( )2M , ( )3M those of the one-, two- and three-QP
diagrams respectively. The diagonal matrix 

( )1M can be presented as a sum of the 
independent 1QP contributions. For simple 
systems (such as alkali atoms and ions) the 1QP 
energies can be taken from the experiment. 
Substituting these quantities into (2) one could 
have summarized  all the contributions of the 
1QP diagrams of all orders of the formally exact 
QED PT. The optimized 1-QP representation is 
the best one to determine the zeroth 
approximation. In the second order, there is 
important kind of diagrams: the ladder ones. 
These contributions have been summarized by a 
modification of the central potential, which 
must now include the screening (anti-screening)
effect of each particle by two others. The 
additional potential modifies the 1QP orbitals 
and energies. Let us remind that in the QED 
theory, the photon propagator D(12) plays the 
role of this interaction. Naturally, an analytical 
form of D depends on the gauge, in which the 
electrodynamic potentials are written. In 
general, the results of all approximate 
calculations depended on the gauge. Naturally 
the correct result must be gauge invariant. The 
gauge dependence of the amplitudes of the 
photoprocesses in the approximate calculations 
is a well known fact and is in details 
investigated by Grant, Armstrong, Aymar-Luc-
Koenig, Glushkov-Ivanov [1,2,5,9]. Grant has 
studied the gauge connection with the limiting 

non-relativistic form of the transition operator 
and has formulated the conditions for 
approximate functions of the states, in which the 
amplitudes are gauge invariant (so called 
Grant’s theorem). These results remain true in 
an energy approach as the final formulae for the 
probabilities coincide in both approaches. In ref. 
[16] it has been developed a new version of the 
approach to conserve gauge invariance. Here we 
applied it to get the gauge-invariant procedure 
for generating the relativistic DKS orbital bases 
(abbreviator of our method: GIRPT). A width of  
a state associated with the decay of the AR is 
determined by square of the matrix element of 
the interparticle interaction Г∞ |V ( β1 β2 ,
β3 k ) | 2 . The total width is given by the 
expression: 

∑∑ ×=Γ
21

'
2

'
1

)(2);,( 21
0

0
2

0
2

0
1

0
1

ββ ββ

ββπε JC
K

Jjnjn

'
2

'
121 ;;

'
2

'
1 )(

ββββ
ββ

ββββββ
K

K

K
VVC J ∑× (3)

where the coefficients C are determined in [4].
The matrix element of the relativistic inter-
particle interaction 

( ) ( ) ijiijijji rαα1riωexprrV /)( −⋅=
(4)

(here αI –the Dirac matrices) in (3) is 
determined as follows: 

×++++= )12)(12)(12)(12(; 43213421 jjjjV ββββ

×−× +++++ 214321)1( mmjjjj

( )∑ ×







−








−

−
µ

µ

µµa mm
ajj

mm
ajj

42

42

31

311x

);( 333444222111 jlnjlnjlnjlnQa× ,
(5)

aQ = Qul
aQ + Br

aQ . (6)

Here Qul
aQ and Br

aQ is corresponding to the
Coulomb and Breit parts of the interlparticle 
interaction (6). The Coulomb part Qul

lQ is 

(3)

order of the PT. Their imaginary parts are 
connected with a decay possibility. A total 
energy shift of the state is presented in the
standard form:

Re Im Im 2E i E E∆E= ∆ + ∆ ∆ =−Γ ,

(1)

where Γ is interpreted as the level width, and 
the decay possibility Ρ = Γ . The whole 
calculation of the energies and decay 
probabilities of a non-degenerate excited state is 
reduced to the calculation and diagonalization of 
the M. The complex  secular matrix M is 
represented in the form [9,10]:  

( ) ( ) ( ) ( )0 1 2 3 .M M M M M= + + +
(2)

where ( )0M is the contribution of the vacuum 
diagrams of all order of PT, and ( )1M ,

( )2M , ( )3M those of the one-, two- and three-QP
diagrams respectively. The diagonal matrix 

( )1M can be presented as a sum of the 
independent 1QP contributions. For simple 
systems (such as alkali atoms and ions) the 1QP 
energies can be taken from the experiment. 
Substituting these quantities into (2) one could 
have summarized  all the contributions of the 
1QP diagrams of all orders of the formally exact 
QED PT. The optimized 1-QP representation is 
the best one to determine the zeroth 
approximation. In the second order, there is 
important kind of diagrams: the ladder ones. 
These contributions have been summarized by a 
modification of the central potential, which 
must now include the screening (anti-screening)
effect of each particle by two others. The 
additional potential modifies the 1QP orbitals 
and energies. Let us remind that in the QED 
theory, the photon propagator D(12) plays the 
role of this interaction. Naturally, an analytical 
form of D depends on the gauge, in which the 
electrodynamic potentials are written. In 
general, the results of all approximate 
calculations depended on the gauge. Naturally 
the correct result must be gauge invariant. The 
gauge dependence of the amplitudes of the 
photoprocesses in the approximate calculations 
is a well known fact and is in details 
investigated by Grant, Armstrong, Aymar-Luc-
Koenig, Glushkov-Ivanov [1,2,5,9]. Grant has 
studied the gauge connection with the limiting 

non-relativistic form of the transition operator 
and has formulated the conditions for 
approximate functions of the states, in which the 
amplitudes are gauge invariant (so called 
Grant’s theorem). These results remain true in 
an energy approach as the final formulae for the 
probabilities coincide in both approaches. In ref. 
[16] it has been developed a new version of the 
approach to conserve gauge invariance. Here we 
applied it to get the gauge-invariant procedure 
for generating the relativistic DKS orbital bases 
(abbreviator of our method: GIRPT). A width of  
a state associated with the decay of the AR is 
determined by square of the matrix element of 
the interparticle interaction Г∞ |V ( β1 β2 ,
β3 k ) | 2 . The total width is given by the 
expression: 

∑∑ ×=Γ
21

'
2

'
1

)(2);,( 21
0

0
2

0
2

0
1

0
1

ββ ββ

ββπε JC
K

Jjnjn

'
2

'
121 ;;

'
2

'
1 )(

ββββ
ββ

ββββββ
K

K

K
VVC J ∑× (3)

where the coefficients C are determined in [4].
The matrix element of the relativistic inter-
particle interaction 

( ) ( ) ijiijijji rαα1riωexprrV /)( −⋅=
(4)

(here αI –the Dirac matrices) in (3) is 
determined as follows: 

×++++= )12)(12)(12)(12(; 43213421 jjjjV ββββ

×−× +++++ 214321)1( mmjjjj

( )∑ ×







−








−

−
µ

µ

µµa mm
ajj

mm
ajj

42

42

31

311x

);( 333444222111 jlnjlnjlnjlnQa× ,
(5)

aQ = Qul
aQ + Br

aQ . (6)

Here Qul
aQ and Br

aQ is corresponding to the
Coulomb and Breit parts of the interlparticle 
interaction (6). The Coulomb part Qul

lQ is 

order of the PT. Their imaginary parts are 
connected with a decay possibility. A total 
energy shift of the state is presented in the
standard form:
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where Γ is interpreted as the level width, and 
the decay possibility Ρ = Γ . The whole 
calculation of the energies and decay 
probabilities of a non-degenerate excited state is 
reduced to the calculation and diagonalization of 
the M. The complex  secular matrix M is 
represented in the form [9,10]:  

( ) ( ) ( ) ( )0 1 2 3 .M M M M M= + + +
(2)

where ( )0M is the contribution of the vacuum 
diagrams of all order of PT, and ( )1M ,

( )2M , ( )3M those of the one-, two- and three-QP
diagrams respectively. The diagonal matrix 

( )1M can be presented as a sum of the 
independent 1QP contributions. For simple 
systems (such as alkali atoms and ions) the 1QP 
energies can be taken from the experiment. 
Substituting these quantities into (2) one could 
have summarized  all the contributions of the 
1QP diagrams of all orders of the formally exact 
QED PT. The optimized 1-QP representation is 
the best one to determine the zeroth 
approximation. In the second order, there is 
important kind of diagrams: the ladder ones. 
These contributions have been summarized by a 
modification of the central potential, which 
must now include the screening (anti-screening)
effect of each particle by two others. The 
additional potential modifies the 1QP orbitals 
and energies. Let us remind that in the QED 
theory, the photon propagator D(12) plays the 
role of this interaction. Naturally, an analytical 
form of D depends on the gauge, in which the 
electrodynamic potentials are written. In 
general, the results of all approximate 
calculations depended on the gauge. Naturally 
the correct result must be gauge invariant. The 
gauge dependence of the amplitudes of the 
photoprocesses in the approximate calculations 
is a well known fact and is in details 
investigated by Grant, Armstrong, Aymar-Luc-
Koenig, Glushkov-Ivanov [1,2,5,9]. Grant has 
studied the gauge connection with the limiting 

non-relativistic form of the transition operator 
and has formulated the conditions for 
approximate functions of the states, in which the 
amplitudes are gauge invariant (so called 
Grant’s theorem). These results remain true in 
an energy approach as the final formulae for the 
probabilities coincide in both approaches. In ref. 
[16] it has been developed a new version of the 
approach to conserve gauge invariance. Here we 
applied it to get the gauge-invariant procedure 
for generating the relativistic DKS orbital bases 
(abbreviator of our method: GIRPT). A width of  
a state associated with the decay of the AR is 
determined by square of the matrix element of 
the interparticle interaction Г∞ |V ( β1 β2 ,
β3 k ) | 2 . The total width is given by the 
expression: 
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aQ is corresponding to the 
Coulomb and Breit parts of the interlparticle in-
teraction (6). The Coulomb part Qul

lQ  is expressed 
in the radial integrals Rl , angular coefficients Sl  
as follows:

The calculation of radial integrals ReRl(1243) 
is reduced to the solution of a system of  differen-
tial equations:  
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ing this integral, the correct normalization of the 
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normalized function should have the following 
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When integrating the master system, the func-
tion is calculated simultaneously:      
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Other details can be found in refs.[10-13,16-
20] as well as description of the  “Superatom” and 
Cowan PC codes, used in all computing.
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(circles connected by a black line) and a least-
squares fit curve of Fano profiles  (gray curve) 
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(9)
When integrating the master system, the 
function is calculated simultaneously:      

(10)
Other details can be found in refs.[10-13,16-20]
as well as description of the  “Superatom” and 
Cowan PC codes, used in all computing.

3. Results and conclusions
In figure 1 there are presented the Be+ ion-yield 
scan across the 2pns and 2pnd resonances
(circles connected by a black line) and a least-
squares fit curve of Fano profiles (gray curve) 

[3]. In Fig.2  there are presented The Be+ ion-
yield scan across the 2pns and 2pnd resonances
(solid line) together with calculated cross 
sections by Green (dash-dotted line), by Tully-
Seaton-Berrington (gray solid line), and by Kim-
Tayal-Zhou-Manson (dotted line). The experimental 
data [3] were scaled to match the theoretical
cross section (from Ref.[3]). 

Figure 1. Be+ ion-yield scan across the 2pns 
and 2pnd resonances (circles connected by a 

black line) and a least-squares fit curve of Fano 
profiles (gray curve) [3]

Figure 2. The Be+ ion-yield scan across the 
2pns and 2pnd resonances (solid line) together 
with calculated cross sections by Green (dash-
dotted line), by Tully-Seaton-Berrington (gray 
solid line), and by Kim- Tayal-Zhou-Manson (dotted 
line). The experimental data [3] were scaled to 

match the theoretical cross section.

In Tables 1 we present the resonance energies 
and widths for the 2pns resonances in the 
beryllium spectrum. The experimental (by 
Wehlitz-Lukic-Bluett, WLB; by Mehlman-
Balloffet-Esteva, ME; by Esteva-Mehlman-
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5 77.(10) 78 76 73 78
6 47.(3) 42 - - 51
7 29.(3) 22 - - 33
8 16.(3) - - - 18
9 3(5) - - - 5
10 3(5) - - - 4
11 - - - 4
12 - - - 3

In the Table 2 we present the comparison of 
our data on the the resonance energies and widths 
for the AR 2pnd resonances in the beryllium spec-
trum.

Table 2. 
Theoretical data for positions (eV) of the Be 
2pnd resonances compared to previously pub-

lished resonance positions (see text)

On the one hand, there is sufficiently good 
accuracy of our theory, the secondly (bearing in 
mind that most of the listed methods are devel-
oped specifically for the study helium and can 
not be easily generalized to the case of the heavy 
multi-electron atoms) the definite advantage of 
the presented approach. Let us note that in ref. 
[14] (see also [5,12]) it had been predicted a new 
optics and spectroscopy  effect of the giant chang-
ing of the AS width in a sufficiently weak electric 
field (for two pairs of the Tm, Gd AR). Naturally  
any two states of different parity can be mixed 
by the external electric field. The mixing leads 
to redistribution of the autoionization widths. In 
a case of the heavy elements such as lanthanide 
and actinide atoms the respective redistribution 
has a giant effect. In the case of degenerate or 

In Tables 1 we present the resonance energies 
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Lukic-Bluett, WLB; by Mehlman-Balloffet-Este-
va, ME; by Esteva-Mehlman-Balloffet-Romand, 
EMR) and alternative theoretical data by Chi-
Huang- Cheng (CHC), Tully-Seaton-Berrington 
(TSB) and by Kim-  Tayal-Zhou-Manson (KTZM) 
are taken from Ref. [3]. 
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The energy position E, width Гof the Be 2pns 
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The energy position E, width Гof the Be 2pns 

resonances (see text)

The width Гof the resonance (meV)
n Exp,

WLB
Th,

(TSB)
Th,

Green
Th,

KTZM
Our 
data

3 531.
(10)

606 530 473 473

4 174.
(10)

180 168 162 176

Balloffet-Romand, EMR) and alternative 
theoretical data by Chi-Huang- Cheng (CHC),
Tully-Seaton-Berrington (TSB) and by Kim-
Tayal-Zhou-Manson (KTZM) are taken from 
Ref. [3]. 

Table 1a. The energy position E, width Гof the 
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The energy position E (eV)
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WLB
Exp,

(EMR)
(ME)

Th,
(TSB)

Th,
(CHC)

Th,
KTZM

Our 
data

3 10.889 10.933
10.71

10.915 10.63 10.910 10.903

4 12.112 12.096
11.97

12.102 12.09 12.092 12.098

5 12.571 12.572
12.53

12.571 12.64 12.558 12.570

6 12.812 12.811
12.78

12.800 12.91 12.791 12.806

7 12.944 12.945
12.92

12.932 13.06 12.924 12.952

8 13.022 13.029
13.01

- 13.15 13.007 13.028

9 13.078 13.083 - 13.21 13.062 13.092
10 13.123 13.121 - 13.25 13.101 13.130
11 13.143 13.152 - - 13.129 13.152
12 13.178 13.170 - - - 13.180
13 - - - - - 13.213
14 - - - - - 13.248

Table 1b. The energy position E, width Гof the 
Be 2pns resonances (see text)
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n Exp,
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Th,
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Th,

Green
Th,
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7 29.(3) 22 - - 33
8 16.(3) - - - 18
9 3(5) - - - 5
10 3(5) - - - 4
11 - - - 4
12 - - - 3

In the Table 2 we present the comparison of our 
data on the the resonance energies and widths

for the AR 2pnd resonances in the beryllium 
spectrum.

Table 2. Theoretical data for positions (eV) of 
the Be 2pnd resonances compared to previously 

published resonance positions (see text)

The energy position E (eV)
n Exp,

WLB
Exp,

(EMR)
(ME)

Th,
(TSB)

Th,
(CHC)

Th,
KTZM

Our 
data

3 11.840
(6)

11.855
11.862

11.840 12.03 12.831 11.848

4 12.460
(6)

12.503
12.466

12.448 12.61 12.437 12.458

5 12.742
(6)

12.789
12.757

12.735 12.89 12.727 12.746

6 - 12.952
12.919

12.893 13.05 12.886 12.908

7 - - - - - 13.092
8 - - - - - 13.262

On the one hand, there is sufficiently good 
accuracy of our theory, the secondly (bearing in 
mind that most of the listed methods are 
developed specifically for the study helium and 
can not be easily generalized to the case of the 
heavy multi-electron atoms) the definite 
advantage of the presented approach. Let us note 
that in ref. [14] (see also [5,12]) it had been 
predicted a new optics and spectroscopy  effect 
of the giant changing of the AS width in a 
sufficiently weak electric field (for two pairs of 
the Tm, Gd AR). Naturally  any two states of 
different parity can be mixed by the external 
electric field. The mixing leads to redistribution 
of the autoionization widths. In a case of the 
heavy elements such as lanthanide and actinide 
atoms the respective redistribution has a giant 
effect. In the case of degenerate or near-
degenerate resonances this effect becomes 
observable even at a moderately weak field. We 
have tried to discover the same new spectral 
effect in a case of the Be Rydberg autoionization  
states spectrum using the simplified version of 
the known strong-field operator PT formalism 
[5,14]. However, the preliminary estimates have 
indicated on the absence of the width giant 
broadening effect for the helium case, except for 
minor changes of the corresponding widths, 
which are well known in the standard atomic 
spectroscopy. In whole an detailed analysis 
shows quite physically reasonable agreement
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spectrum.

Table 2. Theoretical data for positions (eV) of 
the Be 2pnd resonances compared to previously 

published resonance positions (see text)

The energy position E (eV)
n Exp,

WLB
Exp,

(EMR)
(ME)

Th,
(TSB)

Th,
(CHC)

Th,
KTZM

Our 
data

3 11.840
(6)

11.855
11.862

11.840 12.03 12.831 11.848

4 12.460
(6)

12.503
12.466

12.448 12.61 12.437 12.458

5 12.742
(6)

12.789
12.757

12.735 12.89 12.727 12.746

6 - 12.952
12.919

12.893 13.05 12.886 12.908

7 - - - - - 13.092
8 - - - - - 13.262

On the one hand, there is sufficiently good 
accuracy of our theory, the secondly (bearing in 
mind that most of the listed methods are 
developed specifically for the study helium and 
can not be easily generalized to the case of the 
heavy multi-electron atoms) the definite 
advantage of the presented approach. Let us note 
that in ref. [14] (see also [5,12]) it had been 
predicted a new optics and spectroscopy  effect 
of the giant changing of the AS width in a 
sufficiently weak electric field (for two pairs of 
the Tm, Gd AR). Naturally  any two states of 
different parity can be mixed by the external 
electric field. The mixing leads to redistribution 
of the autoionization widths. In a case of the 
heavy elements such as lanthanide and actinide 
atoms the respective redistribution has a giant 
effect. In the case of degenerate or near-
degenerate resonances this effect becomes 
observable even at a moderately weak field. We 
have tried to discover the same new spectral 
effect in a case of the Be Rydberg autoionization  
states spectrum using the simplified version of 
the known strong-field operator PT formalism 
[5,14]. However, the preliminary estimates have 
indicated on the absence of the width giant 
broadening effect for the helium case, except for 
minor changes of the corresponding widths, 
which are well known in the standard atomic 
spectroscopy. In whole an detailed analysis 
shows quite physically reasonable agreement
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near-degenerate resonances this effect becomes 
observable even at a moderately weak field.  We 
have tried to discover the same new spectral ef-
fect in a case of the Be Rydberg autoionization  
states spectrum using the simplified version of 
the known strong-field operator PT formalism 
[5,14]. However, the preliminary estimates have 
indicated on the absence of the width giant broad-
ening effect for the helium case, except for mi-
nor changes of the corresponding widths, which 
are well known in the standard atomic spectros-
copy. In whole an detailed analysis shows quite 
physically reasonable agreement between the pre-
sented theoretical and experimental results. But 
some difference, in our opinion, can be explained 
by different accuracy of estimates of the radial 
integrals, using the different type basis’s (gauge 
invariance conservation or a degree of accounting 
for the exchange-correlation effects) and some 
other additional computing approximations. In 
our theory there are used gauge-optimized basis’s 
of the relativistic and such basis has advantage in 
comparison with the standard DF type basis’s. 
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SPECTROSCOPY OF THE COMPLEX AUTOIONIZATION RESONANCES IN 
SPECTRUM OF BERYLLIUM

Abstract
We applied a generalized energy approach (Gell-Mann and Low S-matrix formalism) combined 

with the relativistic multi-quasiparticle (QP) perturbation theory (PT) with the Dirac-Kohn-Sham ze-
roth approximation and accounting for the exchange-correlation, relativistic corrections to studying  
autoionization resonances in the beryllium Be spectrum, in particular, we predicted the energies and 
widths of the number of the Rydberg resonances. There are presented the results of comparison of our 
theory data for the autoionization resonance 3s3p 1Р0 with the available experimental data and those 
results of other theories, including, method Greene, by Tully-Seaton-Berrington and by Kim-  Tayal-
Zhou-Manson etc
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А. В. Смирнов, В. В. Буяджи, А. В. Игнатенко, А. В. Глушков, А. А. Свинаренко 

СПЕКТРОСКОПИЯ СЛОЖНЫХ АВТОИОНИЗАЦИОННЫХ РЕЗОНАНСОВ В 
СПЕКТРЕ БЕРИЛЛИЯ

Резюме
Обобщенный энергетический подход (S-матричный формализм Гелл-Мана и Лоу) и реляти-

вистская теория возмущений с дирак-кон-шэмовским нулевым приближением и учетом обмен-
но-корреляционных и релятивистских поправок применены к изучению автоионизационных 
резонансов в атоме бериллия, в частности, предсказаны энергии и ширины ряда ридберговых 
резонансов.  Представлены результаты сравнения данных нашей теории, в частности, для ав-
тоионизацийного резонанса 2pnl с имеющимися экспериментальными данными и результатами 
других теорий, в том числе, теорий Greene, Tully-Seaton-Berrington, Kim-Tayal-Zhou-Manson и т.д. 

Ключевые слова: спектроскопия автоионизационных резонансов, релятивистский энергети-
ческий подход, бериллий



33

УДК 539.183

А. В. Смірнов, В. В. Буяджи, Г. В. Ігнатенко, О. В. Глушков, А. А. Свинаренко

СПЕКТРОСКОПІЯ СКЛАДНИХ АВТОІОНІЗАЦІЙНИХ РЕЗОНАНСІВ В СПЕКТРІ 
БЕРИЛІЮ 

Резюме
Узагальнений енергетичний підхід (S-матричний формалізм Гелл-Мана та Лоу) и реляти-

вістська теорія збурень з дірак-кон-шемівським нульовим наближенням та урахуванням   об-
мінно-кореляційних і релятивістських поправок застосований  до вивчення автоіонізаційних 
резонансів у атомі берилію, зокрема, передбачені енергії та ширини ряду рідбергових резонан-
сів.  Представлені результати порівняння даних нашої теорії, зокрема, для автоіонізаційного 
резонансу 2pnl з наявними експериментальними даними і результатами інших теорій, у тому 
числі, теорій Greene, Tully-Seaton-Berrington, Kim-Tayal-Zhou-Manson і т.д. 

Ключові слова: спектроскопія автоіонізаційних резонансів, релятивістський енергетичний 
підхід, берилій
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RELATIVISTIC THEORY OF SPECTRA OF USUAL AND EXOTIC ATOMS: NITROGEN 
HYPERFINE TRANSITIONS ENERGIES 

A new theoretical approach to the description of spectral parameters pionic atoms in the excited 
states with precise accounting relativistic, radiation and nuclear effects is applied to the study of 
energy and spectral  parameters of transitions between hyperfine structure components. As an example 
of the present approach presents new data on the energies of the hyperfine structure transitions 5g-
4f, 5f-4d in the spectrum of pionic  nitrogen are presented and it is performed comparison with the 
corresponding theoretical data by Trassinelli-Indelicato

1. Introduction
Our work is devoted to the further application 

of earlier developed new theoretical approach [1-
3] to the description of spectra and different spec-
tral parameters, in particular, radiative transitions 
probabilities for pionic atoms in the excited states 
with precise accouting relativistic, radiation. Here 
problem to be solved is estimate of the hyperfine 
structure components transition energies in the 
pionic atom of nitrogen. Earlier we have present-
ed the corresponsing data on the radiation prob-
abilities [1]. 

As it was indicated earlier [1-3] nowadays  in-
vestigation of the pionic and at whole the exotic 
hadronic atomic systems represents a  great inter-
est as from the viewpoint of the  further develop-
ment of atomic and nuclear spectral theories as 
creating new tools for sensing the nuclear struc-
ture and fundamental pion-nucleus strong inter-
actions [1-15]. It is, above all, the strong pion-
nucleon interaction, new information about the 
properties of nuclei and hadrons themselves and 
their interactions with the nucleus of the meas-
ured energy X-rays emitted during the transition 
pion spectrum of the atom. 

While determining the properties of pion at-
oms in theory is very simple as a series of H such 
models and more sophisticated methods such 
combination chiral perturbation theory (TC), 

adequate quantitative description of the spectral 
properties of atoms in the electromagnetic pion 
sector (not to mention even the strong interaction 
sector ) requires the development of High-preci-
sion approaches, which allow you to accurately 
describe the role of relativistic, nuclear, radiation 
QED (primarily polarization electron-positron 
vacuum, etc.). pion effects in the spectroscopy of 
atoms. The most popular theoretical models are 
naturally based on the using the Klein-Gordon-
Fock equation, but there are many important 
problems connected with accurate accounting for 
as pion-nuclear strong interaction effects as QED 
radiative corrections (firstly, the vacuum polari-
zation effect etc.). This topic has been a subject 
of intensive theoretical and experimental interest 
(see [1-16]). The perturbation theory expansion 
on the physical; parameter aZ is usually used to 
take into account the radiative QED corrections, 
first of all, effect of the polarization of electron-
positron vacuum etc. This approximation is suffi-
ciently correct and comprehensive in a case of the 
light pionic atoms, however it becomes incorrect 
in a case of the heavy atoms with large charge of 
a nucleus Z.

The  more correct accounting of the QED, fi-
nite nuclear size and electron-screening effects 
for pionic atoms is also very serious and actual 
problem to be solved more consistently in com-
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parison with available theoretical models and 
schemes.  

2. Theory
The basic topics  of our theoretical approach 

have been earlier presented [1-3], so here we are 
limited only by the key elements.  Naturally, the 
relativistic dynamic of a spinless boson (pion) 
particle is  described by the Klein-Gordon-Fock 
(KGF) equation. As usually, an electromagnetic 
interaction between a negatively charged pion and 
the atomic nucleus can be taken into account in-
troducing the nuclear potential Aν in the KG equa-
tion via the minimal coupling pν→ pν− qAν. The 
relativistic wave functions of the zeroth approxi-
mation for pionic atoms are determined from the 
KGF equation [1]: 
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where h is the Planck constant, c the velocity of 
the light and the scalar wavefunction Ψ0(x) de-
pends on the space-time coordinate x = (ct,r). 

Here it is considered a case of a central Cou-
lomb potential (V0(r),0). Then the standard   sta-
tionary equation looks as:
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where E is the total energy of the system (sum of the 
mass energy mc2 and binding energy e0). In prin-
ciple, the central potential V0 should include the 
central Coulomb potential, the radiative (in partic-
ular, vacuum-polarization) potential as well as the 
electron-screening  potential in the atomic-optical 
(electromagnetic) sector. Surely, the full solution 
of the pionic atom energy especially for the low-
excited state requires an inclusion the pion-nucle-
ar strong interaction potential. However, the main 
problem considered here is computing the radia-
tive transitions probabilities between components 
of the hyperfine structure for sufficiently high 
states, when the strong pion-nuclear interaction is 
not important from the  quantitative viewpoint.   
However, if a pion is on the high orbit of the atom, 
the strong interaction effects can not be accounted 
because of the negligible value.

The next step is accounting the  nuclear fi-
nite size effect or the Breit-Rosenthal-Crawford-

Schawlow one. In order to do it we  use the wide-
spread Gaussian model for nuclear charge distri-
bution. The advantages of this model in compari-
son with usually used models such as for example 
an uniformly charged sphere model and others 
had been analysed in Ref. [1-]. Usually the Gauss 
model is determined as follows: 
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diation QED ceffects we use the radiative potential 
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Here е – a proton charge and universal 
function B(Z) is defined by expression:  
B(Z)=0.074+0.35Za. 

At last to take into account the electron screen-
ing effect we use the  standard procedure, based on  
addition of the total interaction potential SCF po-
tential of the electrons, which can be determined 
within the Dirac-Fock method by solution of the 
standard relativistic Dirac equations. It should be 
noted however, that contribution of theses correc-
tions is practically zeroth for the pionic nitrogen, 
however it can be very important in transition to 
many-electron as a rule heave pionic atoms. 

Further in order to calculate the energies and 
probabilities of the radiative transitions between 
energy level of the pionic atoms we have used 
the well known relativistic energy approach (look 
[17-19] and Refs. in [16], which is used for com-
puting probabilities. 
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The expression for the energy of the hyperfine 
splitting (magnetic part of) the energy levels of 
the atom in the pion: 
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Here mN= cme p2/  ; other notations are stan-
dard.  In a consistent precise theory it is important 
allowance for the contribution to the energy of the 
hyperfine splitting of the levels in the spectrum of 
the pion atom due to the interaction of the orbital 
momentum of the pion with the quadrupole mo-
ment of the atomic nucleus. The corresponding 
part can be presented as follows [3]:
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Here L – is orbital moment of pion, F is a total 

moment of an atom. 

3. Results and conclusions
As example of application of the presented ap-

proach, in tables 1, 2 we present the data on ener-
gies  (in eV) of the hyperfine transitions 5g-4f in 
the spectrum of the pion nitrogen): Th1- data by 
Trassinelli-Indelicato; Th2-  our data. In theory 
by Trassinelli-Indelicato (look, for example, [4]) 
it has been used the standard atomic spectroscopy 
amplitude scheme when the transitions energies 
and probabilities are calculated in the known de-
gree separately. In  table 2 we present our data for 
energies (in eV) of the  hyperfine transitions 5f-4d 
in the spectrum of the pion nitrogen: our data

Table 1. 
The energies (in eV) of the  hyperfine tran-

sitions 5g-4f in the spectrum of the pion nitro-
gen: Th1- data by Trassinelli-Indelicato; Th2-  
our data

F-F’ Т.I : Р (5g-4f) Т.II : Р (5g-
4f) 

5-4 4055.3779 4055.3728
4-3 4055.3821 4055.3777
4-4 4055.3762 4055.3715
3-2 4055.3852 4055.3804
3-3 4055.3807 4055.3765
3-4 4055.3747 4055.3710

Table 2.
The energies (in eV) of the  hyperfine tran-

sitions 5f-4d in the spectrum of the pion nitro-
gen: our data

F-F’ Our data 
(5f-4d ) 

4-3 4057.6819
3-2 4057.6915
3-3 4057.6799
2-1 4057.6978
2-2 4057.6905
2-3 4057.6789

In whole, the computed values of energies  for 
considered transitions between hyperfine struc-
ture components in the spectrum of the pion 
within theory by Trassinelli-Indelicato and ours 
demonstrate physically reasonable agreement. 
, however our values are a little  different. This 
fact can be explained by difference in the comput-
ing schemes and different level of accounting for 
nuclear finite size, QED and other effects (look 
details [1-3,20,21]). 

electrons, which can be determined within 
the Dirac-Fock method by solution of the 
standard relativistic Dirac equations. It 
should be noted however, that contribution of 
theses corrections is practically zeroth for the 
pionic nitrogen, however it can be very 
important in transition to many-electron as a 
rule heave pionic atoms.  

Further in order to calculate the 
energies and probabilities of the radiative 
transitions between energy level of the pionic 
atoms we have used the well known 
relativistic energy approach (look [17-19] 
and Refs. in [16], which is used for 
computing probabilities.  
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Here L – is orbital moment of pion, F is a 
total moment of an atom.  
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HYPERFINE TRANSITIONS ENERGIES

Abstract
A new theoretical approach to the description of spectral parameters pionic atoms in the excited 

states with precise accounting relativistic, radiation and nuclear effects is applied to the study of 
energy and spectral  parameters of transitions between hyperfine structure components. As an example 
of the present approach presents new data on the energies of the hyperfine structure transitions 5g-
4f, 5f-4d in the spectrum of pionic  nitrogen are presented and it is performed comparison with the 
corresponding theoretical data by Trassinelli-Indelicato.
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РЕЛЯТИВИСТСКАЯ ТЕОРИЯ СПЕКТРОВ ОБЫЧНЫХ И ЭКЗОТИЧЕСКИХ 
АТОМОВ С УЧЕТОМ  РАДИАЦИОННЫХ ПОПРАВОК: ЭНЕРГИИ ПЕРЕХОДОВ 

МЕЖДУ КОМПОНЕНТАМИ СВЕРХТОНКОЙ СТРУКТУРЫ АЗОТА 

Резюме
Новый теоретический подход к описанию спектральных параметров пионных атомов в воз-

бужденном состоянии с учетом релятивистских, радиационных эффектов применен к изучению 
энергетических параметров переходов между компонентами сверхтонкой структуры. В каче-
стве примера применения представленного подхода, представлены новые данные по энергиям 
переходов между компонентами сверхтонкой структуры переходов 5g-4f, 5f-4d в спектре пион-
ного азота и проведено сравнение с соответствующими теоретическими данными Trassinelli-
Indelicato.
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Dependence of photoluminescence of high-molecular nanoformations of dyes on the basis of 
stannum (IV) complexes in porous glass on concentration of saturating solution has been researched. 
The results have been compared with photoluminescence of corresponding solutions, in which the 
effect of concentration quenching, was due to the Franck-Condon principle, was observed. It was found 
that intensity of luminescence for nanoparticle ensembles was always higher than in solution. At that, 
decrease of luminescence intensity alongside with concentration growth of saturating solution was 
observed as well. However, the observed dependence was more complicated than in solution. It can be 
explained by the fact that the pores with maximal sizes are filled at large concentrations of saturating 
solution of dye. The dye particles act almost the same as in solution, where photoluminescence is 
fainter, in such pores.

1. Introduction
It is known [1-2] that the dyes on base of the 

4-valence stannum complexes are most sensitive 
to the gas composition of environment, therefore 
they can be used for construction of gas sensors, 
used for the ecological monitoring [3]. It is a big 
group of dyes, which are close structurally and 
differ with some details of their molecular com-
position only. Previous investigations show [4] 
that the luminescence centra in specified dyes are 
probable concentrated on the surface of mole-
cules. So surface development of particles of this 
substance by creating of nanoparticles ensemble 
inside matrix of porous glass may result in in-
crease of luminescence. We created such ensem-
ble by soak glass with corresponding solution. At 
that concentration of the soaking solution is its 
most importable characteristic. Dependence of 
luminescence properties of nanoparticle ensem-
ble on concentration of the soaking solution and 
also comparison of this result with luminscence 
of the solution itself are the subject of present pa-

per. Such research will permit to elaborate ways 
of affecting their optic and photoluminescence 
features that will considerably widen the sphere 
of functional hybrid nanomaterials. An important 
factor, affecting the effectiveness of dye lumines-
cence, is interaction of separate dye molecules 
when its concentration in solution grows [5-6]. In 
this case aggregating takes place, i.e. formation of 
molecular assemblies (clusters) [7]. As centers of 
dye luminescence are concentrated on surface of 
molecule [4], aggregating causes self-passivating 
of dye [8] that must considerably decrease lumi-
nescence. Use of porous glass minimizes inter-
action between molecules and aggregations and 
also among molecules of dye inside assemblies, 
weakening this effect and strengthening lumines-
cence [9]. Quantity of nanoparticles, formed in 
pores, must depend on concentration of solution, 
saturating glass [10].

Two dyes on the basis of complexes of four-
valent stannum [11]: 4-amic-benzoyl hydrazone 
of tetra-dimethyl aminobenzaldehyde (hereinaf-



41

ter – dye (I)) and 4-hydroxyl-benzoyl hydrazone 
of tetra-dimethyl aminobenzaldehyde (hereinaf-
ter – dye (II)) was studied in the present paper. 
Dependence of luminescence spectra of nanopar-
ticle ensembles of specified dyes in porous glass 
on their concentration in dimethyl formamide 
(DMFA) solution, which was soaked glass, was 
researched. Results of research were compared 
with photoluminescence of solutions these dyes 
having correspondent concentration [12].

2. Materials аnd мethods
Ensemble of nanoparticles of dye was formed 

by way of saturation of A-type porous silica glass 
with corresponding solution in DMFA. The po-
rous glass A is obtained from sodium boro-sili-
cate glass. The glass is heated at the temperature 
of 763K at 165h in order to separate phases rich in 
silica and sodium-boron. Then it is immersed in 
0.5N hydrochloric acid and deionized water. The 
porosity determined from the mass decrement af-
ter etching was: 38%. The texture parameters of 
investigated glasses were determined by adsorp-
tion poroscopy method. The average diameter 
of pores was 30 nm, total average pore volume 
was 292 mm3/g and the average surface area was 
54,7 m2/g. The residual fine dispersed second-
ary silica gel presents in pores of glass after this 
chemical treatment.

Duration of saturation process was 10-12 hours 
and its end was fixed in accordance with visual 
changes in the system. After the end of saturation 
the sample was keeping by room temperature dur-
ing a day (so called low temperature annealing) in 
order to secure uniform enough dimensional dis-
tribution of nanoparticles in the glass [1, 10].

For experimental research of influence of satu-
rating solution concentration on photolumines-
cence of nanoparticle ensemble of dye in porous 
matrix, porous glass was saturated by two types of 
dye solutions on the basis of complexes of four-
valent stannum: dye (I) or dye (II). Structural for-
mulas of both types of dyes are shown in Fig.1. 
One can see, that both substances are very much 
similar as to their structure: they have the same 
tautomeric form «4», the same substituent type 
(benzoyl) and almost the same coodination set 
(there is “extra” hydrogen atom in dye (II), se-

curing electrical neutrality of the molecule). They 
differ in substituent: it is amic in dye (I) and hy-
droxyl in dye (II).
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Fig.1. Structural formulas of dyes, for which de-
pendence of luminescence on solution, saturating 
matrix, was researched:  dye (I) – 4-amic-benzoyl hy-
drazone of tetra-dimethyl aminobenzaldehyde,dye 
(II) – 4-hydroxyl-benzoyl hydrazone of tetra-di-
methyl aminobenzaldehyde

Saturating solutions were of five concentra-
tions (10-5, 5×10-5, 10-4, 5×10-4 and 10-3 gMole/l). 
The first one can be considered rather low, and 
the last one is close to limiting concentration of 
solution.

Photoluminescence spectra were excited with 
UV laser LCS-DTL-374QT (wavelength λ=355 
nm, power 15 mW) and were recorded by stan-
dard set-up [13].

3. Еxperimental results
Fig.2 shows the groups of luminescence spec-

tra for nanoparticle ensembles of dye (I) and dye 
(II), obtained at different concentrations of cor-
responding saturation solutions. One can see, that 
the spectra have one maximum at all concentra-
tions of saturating solution for both dyes. The 
glow intensity of dye (II) with hydroxyl substitu-
ent is more than for dye (I) with amic substitu-
ent at any concentration of saturating solution. 
Maxima of glow intensity of glow intensity are 
situated rather close to each other for all cases. 
However, whereas photoluminescence spectrum 
for dye (II) remains practically hyperchromic at 
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all concentrations of saturating solution, a small, 
but noticeable, bathochromic shift takes place for 
dye (I) if the concentration of saturating solution 
is maximal. Decrease of photoluminescence in-
tensity corresponds to this shift.

Fig. 2. Photoluminescence spectra of nanopar-
ticle ensemble of dye (I) (on the top) and dye (II) 
(on the uppon) in porous matrix at different con-
centrations of saturating solution

Fig.3 shows the experimental concentration 
dependence of photoluminescence parameters of 
nanoparticle ensemble for dye (I) (on the left) and 
for dye (II) (on the right) in silica porous glass 
matrix. Upper part of the figure corresponds to 
dependence of glow intensity on concentration of 
saturating solution, and its lower part corresponds 
to its maximum position of concentration of satu-
rating solution. One can see in Fig.3 that the in-
crease of photoluminescence intensity accords 
with “piecewise-linear” law, when concentrations 
of saturating solution are low. Photoluminescence 
intensity reduces for nanoparticles of dye (I), if 

the concentration of saturating solution is almost 
limiting one. At that, such reducing is not ob-
served, if the concentration of saturating solution 
is high, for nanoparticles of dye (II).

Fig. 3. Experimental concentration dependence of 
parameters of photoluminescence of nanoparticle 
ensemble of dye (I) (on the left) and dye (II) (on the 

right) in silica porous glass matrix
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4. Discussion 
 
«Piecewise-linear» law of increase of 

luminescence intensity of nanoparticle ensemble of 
dye (I), when concentration of saturating solution 
grows, is associated, evidently, with nonuniformity of 
filling different sizes of pores [13] when nanoparticles 
of dye are formed in porous glass. When 
concentrations of saturating solution are low not many 
molecules of dye penetrate into pores, and they either 
penetrate into the smallest pores one by one, or stay on 
surfaces of larger pores as a quantity of small dye 
particles (such as “dew”). The silica gel particles, 
which gather round these dye particles, will prevent 
merging of them [14]. Photoluminescence intensity at 
that slowly increases with concentration growth. 
Similar processes take place, when concentration of 
saturating solution reaches “middle” values. However, 
the surface of nanoparticles, appearing inside pores, 
turns out to be more developed due to increase of 
quantity of dye molecules. That leads to faster increase 
of glow intensity [15-16]. When concentration of 
saturating solution comes close to limiting one, 
luminescence intensity reduces. 

It’s interesting to compare these results with 
dependence of luminescence of dye (I) solution in 

DMFA on its concentration in solution (left part of 
Fig.4, see [12]). Intensity of glow increased linearly 
with concentration growth, when concentrations are 
low. When solution concentration comes close to 
limiting value, effect of concentration quenching was 
observed, and intensity of photoluminescence started 
decreasing almost parabolically. Concentration 
quenching of luminescence for dye (I) solution in 
DMFA is explained by presence of two competing 
processes in the system: light radiation and light 
absorption, which take place simultaneously [17] in 
according with the Franck-Condon principle. If 
concentration of solution is low, number of radiation 
transitions increases with its grow, and glow intensity 
increases too. When concentration of solution is rather 
high, the process of absorption of the light, which 
radiated by the solution, starts to prevail, obviously, 
that causes concentration quenching. This supposition 
is supported by concentration dependence of 
photoluminescence maximum position: when 
concentrations are low, spectrum is hyperchromic, and 
when they are high, bathochromic shift takes place. 
This shift indeed accords with supposition on 
prevalence of absorption process, as high energetic 
quanta of light are always absorbed first. 
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4. Discussion
«Piecewise-linear» law of increase of lumi-

nescence intensity of nanoparticle ensemble of 
dye (I), when concentration of saturating solution 
grows, is associated, evidently, with nonunifor-
mity of filling different sizes of pores [13] when 
nanoparticles of dye are formed in porous glass. 
When concentrations of saturating solution are 
low not many molecules of dye penetrate into 
pores, and they either penetrate into the smallest 
pores one by one, or stay on surfaces of larger 
pores as a quantity of small dye particles (such 
as “dew”). The silica gel particles, which gather 
round these dye particles, will prevent merging 
of them [14]. Photoluminescence intensity at 
that slowly increases with concentration growth. 
Similar processes take place, when concentration 
of saturating solution reaches “middle” values. 
However, the surface of nanoparticles, appear-
ing inside pores, turns out to be more developed 
due to increase of quantity of dye molecules. That 
leads to faster increase of glow intensity [15-16]. 
When concentration of saturating solution comes 
close to limiting one, luminescence intensity re-
duces.

It’s interesting to compare these results with 
dependence of luminescence of dye (I) solution in 
DMFA on its concentration in solution (left part of 
Fig.4, see [12]). Intensity of glow increased lin-
early with concentration growth, when concentra-
tions are low. When solution concentration comes 
close to limiting value, effect of concentration 
quenching was observed, and intensity of photo-
luminescence started decreasing almost paraboli-
cally. Concentration quenching of luminescence 
for dye (I) solution in DMFA is explained by 
presence of two competing processes in the sys-
tem: light radiation and light absorption, which 
take place simultaneously [17] in according with 
the Franck-Condon principle. If concentration of 
solution is low, number of radiation transitions in-
creases with its grow, and glow intensity increas-
es too. When concentration of solution is rather 
high, the process of absorption of the light, which 
radiated by the solution, starts to prevail, obvi-
ously, that causes concentration quenching. This 
supposition is supported by concentration depen-
dence of photoluminescence maximum position: 

when concentrations are low, spectrum is hyper-
chromic, and when they are high, bathochromic 
shift takes place. This shift indeed accords with 
supposition on prevalence of absorption process, 
as high energetic quanta of light are always ab-
sorbed first.

   

Fig. 4. Model concentration dependence of photolu-
minescence parameters of dye in solution [12]: when 
concentrations are low, both types of dye act simi-
larly, but for dye (II) parabola, which corresponds to 
concentration quenching, is beyond the figure bounds

Our results for nanoparticles ensemble are in 
accord with this statement. However, reduce of 
luminescence intensity is not associated with 
concentration quenching, in contrast to solution, 
but with the fact that the largest pores (about hun-
dreds of nanometers) turn out to be filled in this 
case. There would be so many small particles in 
the large pores, that they would merge in aggre-
gation already at the stage of their formation and 
silica gel particles would passivate surface of dye 
molecules partially only wraping around already 
formed aggregations [7, 9, 14]. That is why the 
most part of dye, which penetrated into the large 
pores, acts as in solution, i.е. decrease of pho-
toluminescence intensity, which has almost the 
same value as that for solution, is observed. This 
process is also followed by intensive absorption 
of high energy light quanta (as the lower part of 
Fig.3 shows). That leads to additional decrease of 
dye glow intensity.

For DMFA solution of dye (II) when concen-
tration of solution was high, glow intensity con-
tinued to increase linearly and no concentration 
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quenching took place (right part of Fig.4, see 
[12]). Apparently, limiting concentration for this 
dye is achieved before this effect appears. At that 
spectrum remained hyperchromic at all concen-
trations of the solution. These results reasonably 
accord with regularities, were found in our works 
[18-19]. Deviations of concentration dependence 
of photoluminescence intensity from linearity 
also take placefor ensemble of dye (II) nanopar-
ticles, as in the case with dye (I), on comparing it 
with solution. They also are associated with non-
uniformity of filling with dye molecules various 
sizes of pores. At that, decrease of glow intensity 
is not observed, when concentration of saturat-
ing solution is high, as there was no concentra-
tion quenching in solution, too. This assertion is 
supported by absence of bathochromic shift of 
spectra, is typical when absorption processes in 
the system prevail. Photoluminescence spectrum 
remains hyperchromic practically, when concen-
tration of saturating solution grows, as the lower 
part of Fig.3 shows.

5. Conclusions
Photoluminescence spectra of formed nanopar-

ticle ensembles have one maximum and differ 
only in glow intensity and position of its peak for 
all concentrations of dye solutions on the basis 
of complexes of four-valent stannum, saturating 
porous matrix. At that, both in solution and for 
nanoparticle ensemble, first increase of photolu-
minescence intensity is observed, when concen-
tration of solution grows, and when it comes to 
solubility limit, its decrease takes place, which 
is associated with prevalence of the process of 
photons’ absorption over their radiation. This is 
supported by the fact that intensity increase is 
followed by hyperchromic spectrum, and its de-
crease is followed by bathochromic shift.
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DEPENDENCE OF PHOTOLUMINESCENCE OF NANOPARTICLE ENSEMBLES
OF STANNUM (IV) COMPLEXES IN SILICA POROUS MATRIX

ON CONCENTRATION OF SATURATING SOLUTION

Abstract
Dependence of photoluminescence of high-molecular nanoformations of dyes on the basis of 

stannum (IV) complexes in porous glass on concentration of saturating solution has been researched. 
The results have been compared with photoluminescence of corresponding solutions, in which the 
effect of concentration quenching, was due to the Franck-Condon principle, was observed. It was found 
that intensity of luminescence for nanoparticle ensembles was always higher than in solution. At that, 
decrease of luminescence intensity alongside with concentration growth of saturating solution was 
observed as well. However, the observed dependence was more complicated than in solution. It can be 
explained by the fact that the pores with maximal sizes are filled at large concentrations of saturating 
solution of dye. The dye particles act almost the same as in solution, where photoluminescence is 
fainter, in such pores.
Key words: photoluminescence, porous glass, dyes on base of stannum complexes, nanoparticle 
ensembles, concentration of saturating solution
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ЗАЛЕЖНІСТЬ ФОТОЛЮМІНЕСЦЕНЦІЇ АНСАМБЛІВ НАНОЧАСТИНОК
КОМПЛЕКСІВ 4-ВАЛЕНТНОГО СТАНУМУ ВСЕРЕДИНІ ШПАРИСТОЇ 

СИЛІКАТНОЇ МАТРИЦІ ВІД КОНЦЕНТРАЦІЇ НАСИЧУЮЧОГО РОЗЧИНУ

Резюме
Досліджено залежність фотолюмінесценції високомолекулярних формувань барвників на 

базі комплексів чотиривалентного стануму всередині шпаристого скла від концентрації на-
сичуючого рохчину. Результати порівняно із фотолюмінесценцією відповідних розчинів, 
у яких спостерігається ефект концентраційного гасіння, зумовлений принципом Франка-
Кондома. Виявлено, що інтенсивність люмінесценції ансамблю наночастинок завжди вища, 
аніж у розчині. При цьому, теж спостерігається зменшення інтенсивності люмінесценції при 
наближенні концентрації насичуючого розчину до границі розчинності. Проте, залежність, що 
спостерігається, є складнішою, аніж у розчині, і може пояснюватися заповнюванням шпарин 
максимальних розмірів у випадку великих концентрацій насичуючого розчину. Тож барвник 
поводить себе всередині таких шпарин майже, наче у розчині, де фотолюмінесценція слабша.

Ключові слова: фотолюмінесценція, шпаристе скло, барвники на базі комплексів стануму, 
ансамблі наночастинок, концентрація насичуючого розчину
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ЗАВИСИМОСТЬ ФОТОЛЮМИНЕСЦЕНЦИИ АНСАМБЛЕЙ НАНОЧАСТИЦ
КОМПЛЕКСОВ 4-ВАЛЕНТНОГО ОЛОВА В ПОРИСТОЙ СИЛИКАТНОЙ МАТРИЦЕ 

ОТ КОНЦЕНТРАЦИИ НАСЫЩАЮЩЕГО РАСТВОРА

Резюме
Исследована зависимость фотолюминесценции высокомолекулярных нанообразований кра-

сителей на основе комплексов четырёхвалентного олова в пористом стекле от концентрации 
насыщающего раствора. Результаты сравниваются с фотолюминесценцией соответствующих 
растворов, в которых наблюдается эффект концентрационного гашения, связанный с принци-
пом Франка-Кондома. Обнаружено, что для ансамблей наночастиц интенсивность люминес-
ценции всегда выше, чем в растворе. При этом так же наблюдается уменьшение интенсивности 
фотолюминесценции при приближении концентрации насыщающего раствора к пределу ра-
створимости. Однако, наблюдаемая зависимость более сложная, чем в растворе, и может быть 
объяснена тем, что при больших концентрациях насыщающего раствора красителя оказываются 
заполненными поры максимальных размеров, в которых краситель ведёт себя почти, как в ра-
створе, где фотолюминесценция слабее.

Ключевые слова: фотолюминесценция, пористое стекло, красители на основе комплексов 
олова, ансамбли наночастиц, концентрация насыщающего раствора
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THE HYPERFINE STRUCTURE AND OSCILLATOR STRENGTHS PARAMETERS FOR 
SOME HEAVY ELEMENTS ATOMS AND IONS: REVIEW OF DATA BY RELATIVISTIC 

MANY-BODY PERTURBATION THEORY CALCULATION

The energies and hyperfine structure constants for some heavy Li-like multicharged ions are calculated 
within the relativistic many-body perturbation theory formalism with a correct and effective taking 
into account the exchange-correlation, relativistic, nuclear and radiative corrections. The magnetic 
inter-electron interaction is accounted for in the lowest order on α2 (α is the fine structure constant) 
parameter. The Lamb shift polarization part is taken into account in the modified Uehling-Serber 
approximation. The Lamb shift self-energy part is accounted for effectively within the generalized 
Ivanov-Ivanova non-perturbative procedure. The combined relativistic energy approach and relativistic 
many-body perturbation theory with the zeroth order optimized one-particle approximation are used 
for computing the Li-like ions (Z=11-42,69,70) and Cs energies and oscillator strengths, in particular, 
of radiative transitions from the ground state to the low-excited and Rydberg states 2s1/2 – np1/2,3/2, 
np1/2,3/2-nd3/2,5/2 (n=2-12) in the Li-like ions. A comparison of the calculated oscillator strengths with 
available theoretical and experimental data is performed.   

1.  Introduction
The research on the spectroscopic and struc-

tural properties of the heavy neutral and highly 
ionized atoms has a fundamental importance in 
many fields of atomic physics (spectroscopy, 
spectral lines theory), astrophysics, plasma phys-
ics, laser physics and so on  (see, for example, 
refs. [1-22]). One could also mention here the 
important astrophysical applications. The experi-
ments on the definition of hyperfine splitting also 
enable to refine the deduction of nuclear mag-
netic moments of different isotopes and to check 
an accuracy of the various computational  models 
employed for the theoretical description of the 
nuclear effects. 

The multi-configuration relativistic Hartree-
Fock (RHF) and Dirac-Fock (DF) approaches 
(see, for example, refs. [3-5, 8-18] are the most 
reliable versions of calculation for multi-electron 
systems with a large nuclear charge. Usually, in 
these calculations the one- and two-body rela-
tivistic effects are taken into account practically 

precisely. It should be given the special attention 
to three very general and important computer 
systems for relativistic and QED calculations 
of atomic and molecular properties developed 
in the Oxford and German-Russian groups etc 
(“GRASP”, “Dirac”; “BERTHA”, “QED”, “Di-
rac”) (see refs. [3-5, 8-18] and references there). 
The useful overview of the relativistic electronic 
structure theory is presented in refs. [12, 13,17-
20] from the QED point of view. 

In the present paper the combined relativistic 
energy approach and relativistic many-body per-
turbation theory with the zeroth order optimized 
one-particle approximation are used for comput-
ing the Li-like ions (Z=11-42,69,70) and Cs en-
ergies and oscillator strengths, in particular, of 
radiative transitions from the ground state to the 
low-excited and Rydberg states 2s1/2 – np1/2,3/2, 
np1/2,3/2-nd3/2,5/2 (n=2-12) in the Li-like ions. Re-
view of data and a comparison of the calculated 
oscillator strengths with different available theo-
retical and experimental data is presented.
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2. Relativistic method to computing hyper-
fine structure parameters of atoms and multi-
charged ions

Let us describe the key moments of the ap-
proach (more details can be found in refs. [11, 
14, 20-23]). The electron wave functions (the 
PT zeroth basis) are found from solution of the 
relativistic Dirac equation with potential, which 
includes ab initio mean-field potential, electric, 
polarization potentials of a nucleus. The charge 
distribution in the Li-like ion is modelled within 
the Gauss model. The nuclear model used for the 
Cs isotope is the independent particle model with 
the Woods-Saxon and spin-orbit potentials (see 
refs. [24]). Let us consider in details more simple 
case of the Li-like ion. We set the charge distribu-
tion in the Li-like ion nucleus r(r) by the Gauss-
ian function: 

            ( ) ( ) ( )223 exp4 rRr g-pg=ρ              (1)
where g=4/pR2 and R is the effective nucleus ra-
dius. The Coulomb potential for the spherically 
symmetric density r( r ) is:

( ) (( ) ∫ 




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0

'2''1
    (2)

Consider the DF type equations for a three-
electron system 1s2nlj. Formally they fall into 
one-electron Dirac equations for the orbitals 1s 
and nlj with the potential:

       ( ) ( ) ( ) ( ) ( )RrVrVnljrVsrVrV ex +++= 12     (3)
V(r|R) includes the electrical and the polarization 
potentials of the nucleus; the components of the 
Hartree potential (in the Coulomb units):

              
( ) ( ) rrirrd

Z
irV  ′-∫ ρ′= /1

                  (4)

Here ( )irρ  is the distribution of the elec-
tron density in the state | i >, Vex is the exchange 
inter-electron interaction. The main exchange 
effect will be taken into account if in the equa-
tion for the valent electron orbital we assume 
( ) ( ) ( )nljrVcorerVrV +=  and in the equation for the nlj 

orbital ( ) ( )corerbVrV ,2=  (here b is the optimization 
parameter; see below). The rest of the exchange 

and correlation effects will be taken into account 
in the first two orders of the PT by the total inter-
electron interaction [11, 12,15]. A procedure of 
taking into account the radiative QED corrections 
is in details given in the refs. [11,14,20-22]. Re-
garding the vacuum polarization effect let us note 
that this effect is usually taken into consideration 
in the first PT theory order by means of the Ue-
hling-Serber potential. This potential is usually 
written as follows:
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  (5)
where g=r/(aZ). In our calculation we use more 
exact approach [22]. The Uehling potential, de-
termined as a quadrature (6), may be approxi-
mated with high precision by a simple analytical 
function. The use of new approximation of the 
Uehling potential permits one to decrease the cal-
culation errors for this term down to 0.5 – 1%. 
A method for calculation of the self-energy part 
of the Lamb shift is based on an idea by Ivanov-
Ivanova (see refs. [11]). It is supposed that for any 
ion with nlj electron over the core of closed shells 
the sought value may be presented in the form:

         
( ) ( ) ( )1

3

4
,027148.0, -ξ

ξ
= cmnljf

n
nljZESE

    (6)

The parameter x=(ER)1/4, ER is the relativistic 
part of the bounding energy of the outer electron; 
the univer sal function ( )nljf ,ξ  does not depend 
on the composition of the closed shells and the ac-
tual potential of the nucle us. The energies of elec-
tric quadruple and magnetic dipole interactions 
are defined by a standard way with the hyperfine 
structure constants, usually expressed through the 
standard radial integrals [27]: 

   A={[(4,32587)10-4Z2cgI]/(4c2-1)}(RA)-2,                          
                                                                 
B={7.2878 10-7 Z3Q/[(4c2-1)I(I-1)} (RA)-3,                        
                                                                     (7)

Here gI  is the Lande factor, Q is a quadruple 
momentum of nucleus (in Barn); (RA)-2, (RA)-3 are 
the radial integrals usually defined as follows:

[11, 14, 20-23]). The electron wave functions
(the PT zeroth basis) are found from solution 
of the relativistic Dirac equation with 
potential, which includes ab initio mean-field 
potential, electric, polarization potentials of a 
nucleus. The charge distribution in the Li-
like ion is modelled within the Gauss model. 
The nuclear model used for the Cs isotope is 
the independent particle model with the 
Woods-Saxon and spin-orbit potentials (see 
refs. [24]). Let us consider in details more 
simple case of the Li-like ion. We set the 
charge distribution in the Li-like ion nucleus 
r(r) by the Gaussian function: 

( ) ( ) ( )223 exp4 rRr γ−pγ=r (1)
where γ=4/pR2 and R is the effective nucleus 
radius. The Coulomb potential for the 
spherically symmetric density r( r ) is:
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Consider the DF type equations for a three-
electron system 1s2nlj. Formally they fall into 
one-electron Dirac equations for the orbitals 
1s and nlj with the potential:

( ) ( ) ( ) ( ) ( )RrVrVnljrVsrVrV ex +++= 12 (3)
V(r|R) includes the electrical and the 
polarization potentials of the nucleus; the 
components of the Hartree potential (in the 
Coulomb units):

( ) ( ) rrirrd
Z

irV ddd ′−∫ r′= /1
(4)                                   

Here ( )irr is the distribution of the electron 
density in the state | i >, Vex is the exchange 
inter-electron interaction. The main exchange 
effect will be taken into account if in the 
equation for the valent electron orbital we 
assume ( ) ( ) ( )nljrVcorerVrV += and in the 
equation for the nlj orbital ( ) ( )corerbVrV ,2=

(here b is the optimization parameter; see 
below). The rest of the exchange and 
correlation effects will be taken into account 
in the first two orders of the PT by the total 
inter-electron interaction [11, 12,15]. A 

procedure of taking into account the radiative 
QED corrections is in details given in the 
refs. [11,14,20-22]. Regarding the vacuum 
polarization effect let us note that this effect 
is usually taken into consideration in the first 
PT theory order by means of the Uehling-
Serber potential. This potential is usually 
written as follows:
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where g=r/(αZ). In our calculation we use 
more exact approach [22]. The Uehling 
potential, determined as a quadrature (6), 
may be approximated with high precision by 
a simple analytical function. The use of new 
approximation of the Uehling potential 
permits one to decrease the calculation errors 
for this term down to 0.5 – 1%. A method for 
calculation of the self-energy part of the 
Lamb shift is based on an idea by Ivanov-
Ivanova (see refs. [11]). It is supposed that 
for any ion with nlj electron over the core of 
closed shells the sought value may be 
presented in the form:
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The parameter ξ=(ER)1/4, ER is the relativistic 
part of the bounding energy of the outer 
electron; the universal function ( )nljf ,ξ
does not depend on the composition of the 
closed shells and the actual potential of the 
nucleus. The energies of electric quadruple 
and magnetic dipole interactions are defined 
by a standard way with the hyperfine 
structure constants, usually expressed 
through the standard radial integrals [27]: 

A={[(4,32587)10-4Z2χgI]/(4χ2-1)}(RA)-2,

B={7.2878 10-7 Z3Q/[(4χ2-1)I(I-1)} (RA)-3,                        
(7)

Here gI is the Lande factor, Q is a quadruple 
momentum of nucleus (in Barn); (RA)-2,
(RA)-3 are the radial integrals usually defined 
as follows:

[11, 14, 20-23]). The electron wave functions
(the PT zeroth basis) are found from solution 
of the relativistic Dirac equation with 
potential, which includes ab initio mean-field 
potential, electric, polarization potentials of a 
nucleus. The charge distribution in the Li-
like ion is modelled within the Gauss model. 
The nuclear model used for the Cs isotope is 
the independent particle model with the 
Woods-Saxon and spin-orbit potentials (see 
refs. [24]). Let us consider in details more 
simple case of the Li-like ion. We set the 
charge distribution in the Li-like ion nucleus 
r(r) by the Gaussian function: 

( ) ( ) ( )223 exp4 rRr γ−pγ=r (1)
where γ=4/pR2 and R is the effective nucleus 
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where g=r/(αZ). In our calculation we use 
more exact approach [22]. The Uehling 
potential, determined as a quadrature (6), 
may be approximated with high precision by 
a simple analytical function. The use of new 
approximation of the Uehling potential 
permits one to decrease the calculation errors 
for this term down to 0.5 – 1%. A method for 
calculation of the self-energy part of the 
Lamb shift is based on an idea by Ivanov-
Ivanova (see refs. [11]). It is supposed that 
for any ion with nlj electron over the core of 
closed shells the sought value may be 
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The radial parts F and G of  the Dirac function 
two components for electron, which moves in the 
potential V(r,R)+U(r,R), are determined by solu-
tion of the Dirac equations. To define the hyper-
fine interaction potentials U(1/rn,R), we use the 
method by Ivanov et al [11]. The key elements 
of the optimized relativistic energy approach to 
computing oscillator strengths are  presented in 
[1,15,29].   Let us remind that an initial  general 
energy formalism combined with an empirical 
model potential method has been developed by 
Ivanov-Ivanova et al [11],  further more general 
ab initio gauge-invariant  relativistic approach 
has been presented in [12], where the calibra-
tion of the single model potential parameter b 
has been performed on the basis of the special 
ab initio procedure within relativistic energy ap-
proach [12] (see also [1529,30]). All calculations 
are performed on the basis of the numeral code 
Superatom-ISAN (version 93). The details of 
the used method can be found in the references 
[1,11,14,21-24].  

4. Results and Conclusions
Firstly we present the results of computing  the 

oscillator strengths of transitions in spectra of the 
Li-like ions (Z=11-42,69,70). There are considered 
the radiative transitions from ground state to the 
low-excited and Rydberg states, particularly, 2s1/2 

– np1/2,3/2, np1/2,3/2-nd3/2,5/2 (n=2-12). To test the ob-
tained results, we compare our calculation results 
of the oscillator strengths values for some Li-like 
ions with the known theoretical and tabulated re-
sults [29,31]. As an example, in table 1 we pres-
ent the computed oscillator strength values for the 
2s1/2 – 2p1/2,3/2 transitions in Li-like ions S13+, Ca17+,  
Fe23+ , Zn27+, Zr37+ , Mo39+ , Sn47+ , Tm66+ , Yb67+ . The 
DF calculation data by Zilitis [31b] and the “best” 
compillated (experimental) data [31a] for the low-
Z Li-like ions are listed in table 1 for comparison 
too.  Note that the experimental data on the oscilla-
tor strengths for many (especially, high-Z) Li-like 
ions are missing.

Overall, there is a physically reasonable agree-
ment of the listed data. The important 

features of the approach used are using the op-
timized one-particle representation and account 
for polarization effects. It should be noted that an 
estimate of the gauge-non-invariant contributions 
(the difference between the oscillator strengths 
values calculated with using the transition op-
erator in the form of “length” and “velocity”) is 
about 0.3%, i.e., the results obtained with dif-
ferent photon propagator gauges (Coulomb, Ba-
bushkon, Landau) are practically equal. In Table 
2 we present our results (RMPT) of computing 
the reduced matrix elements (atomic units) of 
different radiative transitions in the 133Cs spec-
trum [1,30b]. The experimental (Еxp) and other 
theoretical (SD- the results of computing within 
the relativistic DF single-double approximation 
[4a]; DF, RHFc – the Dirac-Fock and relativistic 
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relativistic approach has been presented in 
[12], where the calibration of the single 
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performed on the basis of the special ab
initio procedure within relativistic energy 
approach [12] (see also [1529,30]). All 
calculations are performed on the basis of the 
numeral code Superatom-ISAN (version 93).

The details of the used method can be found 
in the references [1,11,14,21-24]. 

4. Results and Conclusions

Firstly we present the results of 
computing  the oscillator strengths of 
transitions in spectra of the Li-like ions 
(Z=11-42,69,70). There are considered the 
radiative transitions from ground state to the 
low-excited and Rydberg states, particularly, 
2s1/2 – np1/2,3/2, np1/2,3/2-nd3/2,5/2 (n=2-12). To 
test the obtained results, we compare our 
calculation results of the oscillator strengths 
values for some Li-like ions with the known 
theoretical and tabulated results [29,31]. As 
an example, in table 1 we present the 
computed oscillator strength values for the 
2s1/2 – 2p1/2,3/2 transitions in Li-like ions S13+  ,
Ca17+ , Fe23+  , Zn27+, Zr37+ , Mo39+ , Sn47+ ,
Tm66+ , Yb67+ . The DF calculation data by 
Zilitis [31b] and the “best” compillated 
(experimental) data [31a] for the low-Z Li-
like ions are listed in table 1 for comparison 
too.  Note that the experimental data on the 
oscillator strengths for many (especially, 
high-Z) Li-like ions are missing.

Table 1. Oscillator strengths of the 2s1/2 – 2p1/2,3/2 transitions in Li-like ions.

Overall, there is a physically reasonable 
agreement of the listed data. The important 
features of the approach used are using the 
optimized one-particle representation and 
account for polarization effects. It should be 
noted that an estimate of the gauge-non-

invariant contributions (the difference 
between the oscillator strengths values 
calculated with using the transition operator 
in the form of “length” and “velocity”) is 
about 0.3%, i.e., the results obtained with 
different photon propagator gauges 
(Coulomb, Babushkon, Landau) are 
practically equal. In Table 2 we present our 
results (RMPT) of computing the reduced 

Method DF [31b] DF [31b] [31c] [31c] [30b] [30b]
Ion 2s1/2–2p1/2 2s1/2–2p3/2 2s1/2–2p1/2 2s1/2–2p3/2 2s1/2–2p1/2 2s1/2–2p3/2

S13+ 0.0299 0.0643 0.030 0.064 0.0301 0.0641
Ca17+ 0.0234 0.0542 0.024 0.054 0.0236 0.0541
Fe23+ 0.0177 0.0482 0.018 0.048 0.0179 0.0481
Zn27+ 0.0153 0.0477 – – 0.0156 0.0475
Zr37+ 0.0114 0.0543 – – 0.0118 0.0540
Mo39+ – – 0.011 0.056 0.0107 0.0556
Sn47+ 0.0092 0.0686 – – 0.0095 0.0684
Tm66+ – – – – 0.0071 01140
Yb67+ 0.0067 0.1170 – – 0.0069 0.1167
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The radial parts F and G of  the Dirac 
function two components for electron, which 
moves in the potential V(r,R)+U(r,R), are 
determined by solution of the Dirac 
equations. To define the hyperfine interaction 
potentials U(1/rn,R), we use the method by 
Ivanov et al [11]. The key elements of the 
optimized relativistic energy approach to 
computing oscillator strengths are presented 
in [1,15,29].  Let us remind that an initial  
general energy formalism combined with an 
empirical model potential method has been 
developed by Ivanov-Ivanova et al [11],  
further more general ab initio gauge-invariant  
relativistic approach has been presented in 
[12], where the calibration of the single 
model potential parameter b has been 
performed on the basis of the special ab
initio procedure within relativistic energy 
approach [12] (see also [1529,30]). All 
calculations are performed on the basis of the 
numeral code Superatom-ISAN (version 93).

The details of the used method can be found 
in the references [1,11,14,21-24]. 

4. Results and Conclusions

Firstly we present the results of 
computing  the oscillator strengths of 
transitions in spectra of the Li-like ions 
(Z=11-42,69,70). There are considered the 
radiative transitions from ground state to the 
low-excited and Rydberg states, particularly, 
2s1/2 – np1/2,3/2, np1/2,3/2-nd3/2,5/2 (n=2-12). To 
test the obtained results, we compare our 
calculation results of the oscillator strengths 
values for some Li-like ions with the known 
theoretical and tabulated results [29,31]. As 
an example, in table 1 we present the 
computed oscillator strength values for the 
2s1/2 – 2p1/2,3/2 transitions in Li-like ions S13+  ,
Ca17+ , Fe23+  , Zn27+, Zr37+ , Mo39+ , Sn47+ ,
Tm66+ , Yb67+ . The DF calculation data by 
Zilitis [31b] and the “best” compillated 
(experimental) data [31a] for the low-Z Li-
like ions are listed in table 1 for comparison 
too.  Note that the experimental data on the 
oscillator strengths for many (especially, 
high-Z) Li-like ions are missing.

Table 1. Oscillator strengths of the 2s1/2 – 2p1/2,3/2 transitions in Li-like ions.
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practically equal. In Table 2 we present our 
results (RMPT) of computing the reduced 

Method DF [31b] DF [31b] [31c] [31c] [30b] [30b]
Ion 2s1/2–2p1/2 2s1/2–2p3/2 2s1/2–2p1/2 2s1/2–2p3/2 2s1/2–2p1/2 2s1/2–2p3/2

S13+ 0.0299 0.0643 0.030 0.064 0.0301 0.0641
Ca17+ 0.0234 0.0542 0.024 0.054 0.0236 0.0541
Fe23+ 0.0177 0.0482 0.018 0.048 0.0179 0.0481
Zn27+ 0.0153 0.0477 – – 0.0156 0.0475
Zr37+ 0.0114 0.0543 – – 0.0118 0.0540
Mo39+ – – 0.011 0.056 0.0107 0.0556
Sn47+ 0.0092 0.0686 – – 0.0095 0.0684
Tm66+ – – – – 0.0071 01140
Yb67+ 0.0067 0.1170 – – 0.0069 0.1167

Table 1
Oscillator strengths of the 2s1/2 – 2p1/2,3/2 transitions in Li-like ions
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Hartree —Fock method data with accounting for 
the second order correlation corrections; QDA- 
the data by the perturbation theory with the quan-
tum defect approximation) [4,21,29,30] data are 
listed too. 

In table 3 we present the calculated data of 
the hyperfine structure constants for some Li-like 
ions. There are presented results for the  param-
eters: A=Z3gI A  and )(

)12(
1

3
-

-
= cmB

II
QZB . 

In table 4 the experimental (AExp) and theo-
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(MHz) for the valent states of 133Cs atom (I=7/2, 
gi=0.7377208) are presented (from Ref. [1,5,29]). 
The theoretical results are obtained on the basis 
of the standard RHF (ARHF) calculation, the RHF 
(ARHF+dA) calculation with taking into account 
the PT second and higher corrections (look Refs. 
[5,15,29] and references therein) and the RMPT  
(АRMPT) calculation (our data). The analysis shows 

matrix elements (atomic units) of different 
radiative transitions in the 133Cs spectrum
[1,30b]. The experimental (Еxp) and other 
theoretical (SD- the results of computing 
within the relativistic DF single-double 
approximation [4a]; DF, RHFc – the Dirac-
Fock and relativistic Hartree —Fock method 

data with accounting for the second order 
correlation corrections; QDA- the data by the 
perturbation theory with the quantum defect 
approximation) [4,21,29,30] data are listed 
too. 

Table 2. The reduced dipole matrix elements (a.u.) of some transitions in the Cs (see text)
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[21c]
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[1,30b]

Exp.
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7p3/2-6s
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8p1/2-6s
6p1/2-7s
6p3/2-7s
7p1/2-7s
7p3/2-7s

4.482
6.304
0.297
0.601
0.091
0.232
4.196
6.425

10.254
14.238

4.535
6.382
0.279
0.576
0.081
0.218
4.243
6.479

10.310
14.323

4.510
6.347
0.280
0.576
0.078
0.214
4.236
6.470

10.289
14.293

4.494
6.325
0.275
0.583

-
-

4.253
6.507

10.288
14.295

-
-

0.2825
0.582

-
-

4.237
6.472

10.285
14.286

4.282
5.936
0.272
0.557
0.077
0.212
4.062
6.219
9.906

13.675

4.486
6.320
0.283
0.582
0.087
0.225
4.231
6.478

10.308
14.322

4.4890(7)
6.3238(7)
0.284(2)
0.583(9)

-
-

4.233(22)
6.479(31)

10.308(15)
14.320(20)
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Table 3. The hyperfine structure constants of some Li-like ions: A=Z3gI A (cm-1) and 
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nlj Z 20 69 79 92
3s A 26 –03 51 –03 63 –03 90 –03
4s A 15 –03 19 –03 24 –03 36 –03

2p1/2 A 25 –03 56 –03 71 –03 105 –02
3p1/2 A 81 –04 16 –03 20 –03 31 –03
4p1/2 A 32 –04 72 –04 91 –04 11 –03
2p3/2 A 50 –04 67 –04 71 –04 72 –04

B 9 –04 13 –04 15 –04 17 –04
3p3/2 A 13 –04 19 –04 21 –04 22 –04

B 31 –05 51 –05 55–05 62 –05
4p3/2 A 62 –05 89 –05 92 –05 8 –04

B 10 –05 20 –05 22 –05 26 –05
3d3/2 A 88 –05 10 –04 11 –04 12 –04

B 51 –06 9 –05 10 –05 11 –05
4d3/2 A 35 –05 51 –05 55 –05 58 –05

B 12 –06 44 –06 50 –06 56 –06
3d5/2 A 36 –05 48 –05 50 –05 52 –05

B 21 –06 38 –06 39 –06 40 –06
4d5/2 A 15 –05 19 –05 20 –05 21 –05

B 59 –07 15 –06 16 –06 17 –06
4f5/2 A 06–05 12 –05 13 –05 14 –05

B 16 –07 53 –07 58 –07 63 –07

Table 2 
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Table 3
The hyperfine structure constants of some Li-like ions: A=Z3gI A  (cm-1) and )(

)12(
1

3
-

-
= cmB

II
QZB

matrix elements (atomic units) of different 
radiative transitions in the 133Cs spectrum
[1,30b]. The experimental (Еxp) and other 
theoretical (SD- the results of computing 
within the relativistic DF single-double 
approximation [4a]; DF, RHFc – the Dirac-
Fock and relativistic Hartree —Fock method 

data with accounting for the second order 
correlation corrections; QDA- the data by the 
perturbation theory with the quantum defect 
approximation) [4,21,29,30] data are listed 
too. 

Table 2. The reduced dipole matrix elements (a.u.) of some transitions in the Cs (see text)

Tran-
Sition

SD
[4a]

Scaled
[4a]

DF
[4b]

RHF
[4c]

RHF[4
d]

QDA
[21c]

RMPT
[1,30b]

Exp.

6p1/2-6s
6p3/2-6s
7p1/2-6s
7p3/2-6s
8p1/2-6s
8p1/2-6s
6p1/2-7s
6p3/2-7s
7p1/2-7s
7p3/2-7s

4.482
6.304
0.297
0.601
0.091
0.232
4.196
6.425

10.254
14.238

4.535
6.382
0.279
0.576
0.081
0.218
4.243
6.479

10.310
14.323

4.510
6.347
0.280
0.576
0.078
0.214
4.236
6.470

10.289
14.293

4.494
6.325
0.275
0.583

-
-

4.253
6.507

10.288
14.295

-
-

0.2825
0.582

-
-

4.237
6.472

10.285
14.286

4.282
5.936
0.272
0.557
0.077
0.212
4.062
6.219
9.906

13.675

4.486
6.320
0.283
0.582
0.087
0.225
4.231
6.478

10.308
14.322

4.4890(7)
6.3238(7)
0.284(2)
0.583(9)

-
-

4.233(22)
6.479(31)

10.308(15)
14.320(20)

In table 3 we present the calculated data of 
the hyperfine structure constants for some Li-

like ions. There are presented results for the  
parameters: A=Z3gI A and )(

)12(
1

3
−

−
= cmB

II
QZB .

Table 3. The hyperfine structure constants of some Li-like ions: A=Z3gI A (cm-1) and 
)(

)12(
1

3
−

−
= cmB

II
QZB

nlj Z 20 69 79 92
3s A 26 –03 51 –03 63 –03 90 –03
4s A 15 –03 19 –03 24 –03 36 –03

2p1/2 A 25 –03 56 –03 71 –03 105 –02
3p1/2 A 81 –04 16 –03 20 –03 31 –03
4p1/2 A 32 –04 72 –04 91 –04 11 –03
2p3/2 A 50 –04 67 –04 71 –04 72 –04

B 9 –04 13 –04 15 –04 17 –04
3p3/2 A 13 –04 19 –04 21 –04 22 –04

B 31 –05 51 –05 55–05 62 –05
4p3/2 A 62 –05 89 –05 92 –05 8 –04

B 10 –05 20 –05 22 –05 26 –05
3d3/2 A 88 –05 10 –04 11 –04 12 –04

B 51 –06 9 –05 10 –05 11 –05
4d3/2 A 35 –05 51 –05 55 –05 58 –05

B 12 –06 44 –06 50 –06 56 –06
3d5/2 A 36 –05 48 –05 50 –05 52 –05

B 21 –06 38 –06 39 –06 40 –06
4d5/2 A 15 –05 19 –05 20 –05 21 –05

B 59 –07 15 –06 16 –06 17 –06
4f5/2 A 06–05 12 –05 13 –05 14 –05

B 16 –07 53 –07 58 –07 63 –07



52

that taking into account the correlation and QED 
corrections is important to reach the physically 
reasonable agreement between theoretical and 
experimental data.

The fundamental reason of physically reason-
able agreement between theory and experiment 
is connected with the correct taking into account 
the inter-electron correlation effects, nuclear (due 
to the finite size of a nucleus), relativistic and ra-
diative corrections. The key difference between 
the results of the RHF, RMPT methods calcula-
tions is explained by using the different schemes 
of taking into account the inter-electron correla-
tions. The contribution of the PT high order ef-
fects and nuclear contribution may reach the units 
and even dozens of MHz and should be correctly 
taken into account. So, it’s necessary to take into 
account more correctly the spatial distribution of 
the magnetic moment inside a nucleus (the Bohr-
Weisskopf effect), the nuclear-polarization cor-
rections etc too. 
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THE HYPERFINE STRUCTURE AND OSCILLATOR STRENGTHS PARAMETERS FOR 
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MANY-BODY PERTURBATION THEORY CALCULATION

Abstract
The energies and hyperfine structure constants for some heavy Li-like multicharged ions are calcu-

lated within the relativistic many-body perturbation theory formalism with a correct and effective tak-
ing into account the exchange-correlation, relativistic, nuclear and radiative corrections. The magnetic 
inter-electron interaction is accounted for in the lowest order on a2 (a is the fine structure constant) 
parameter. The Lamb shift polarization part is taken into account in the modified Uehling-Serber 
approximation, the Lamb shift self-energy part - within the generalized Ivanov-Ivanova procedure. 
The combined relativistic energy approach and many-body perturbation theory with the zeroth order 
optimized one-particle approximation are used for computing the Li-like ions (Z=11-42,69,70) and Cs 
energies and oscillator strengths, in particular, of radiative transitions from the ground state to the low-
excited and Rydberg states 2s1/2 – np1/2,3/2, np1/2,3/2-nd3/2,5/2 (n=2-12) in the Li-like ions. A comparison of 
the calculated oscillator strengths with available theoretical and experimental data is performed.

Key words: Hyperfine structure – Oscillator strengths - Relativistic perturbation theory 
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О. Ю. Хецелиус, П. А. Заичко, В. Ф. Мансарлийский, О. А. Антошкина 

СВЕРХТОНКАЯ СТРУКТУРА И СИЛЫ ОСЦИЛЛЯТОРОВ РАДИАЦИОННЫХ  
ПЕРЕХОДОВ ДЛЯ РЯДА АТОМОВ И ИОНОВ ТЯЖЕЛЫХ ЕЛЕМЕНТИВ: ОБЗОР 

ДАННЫХ ВЫЧИСЛЕНИЙ НА ОСНОВЕ РЕЛЯТИВИСТСКОЙ МНОГОЧАСТИЧНОЙ 
ТЕОРИИ ВОЗМУЩЕНИЙ

Резюме
Энергии и константы сверхтонкой структуры для некоторых тяжелых Li-подобных много-

зарядных ионов вычислены в рамках релятивистской многочастичной теории возмущений с 
эффективным с учетом обменно-корреляционных, релятивистских, ядерных и радиационных 
поправок. Магнитное межэлектронное взаимодействие учитывается в низшем порядке на a2 (a 
постоянная тонкой структуры) параметру. Поляризационная часть сдвига Лэмба учитывается 
в модифицированном приближении Юлинга-Сербера, собственно-энергетическая часть сдвига 
Лэмба - эффективно в рамках обобщенной непертурбативной процедуры Иванова-Ивановой. 
Обобщенный релятивистский энергетический подход и многочастичная теории возмущений 
с оптимизированным нулевым приближением  использованы для определения энергий, сил 
осцилляторов переходов в спектрах Cs, Li-подобных ионов (Z = 11-42,69,70) и, в частности, 
радиационных переходов из основного состояния в низшие  возбужденные и ридберговские 
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2s1/2 – np1/2,3/2, np1/2,3/2-nd3/2,5/2 (n=2-12) состояния в Li-подобных ионах. Проведено сравнение экс-
периментальных данных и результатов расчетов на основе различных теоретических методов.

Ключевые слова:  Сверхтонкая структура, Силы осцилляторов, Релятивистская теория воз-
мущений 
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НАДТОНКА СТРУКТУРА І СИЛИ ОСЦИЛЯТОРІВ РАПДІАЦІЙНИХ ПЕРЕХОДІВ 
ДЛЯ ДЕЯКИХ АТОМІВ ТА ІОНІВ ВАЖКИХ ЕЛЕМЕНТІВЖ ОГЛЯД ДАНИХ 

ОБЧИСЛЕНЬ НА ОСНОВІ РЕЛЯТИВІСТСЬКОЇ БАГАТОЧАСТИНКОВОЇ ТЕОРІЇ 
ЗБУРЕНЬ 

Резюме
Енергії і константи надтонкої структури для деяких важких Li-подібних багатозарядних 

іонів обчислені в рамках релятивістської Багаточасткові теорії збурень з ефективним з ура-
хуванням обмінно-кореляційних, релятивістських, ядерних і радіаційних поправок. Магнітна 
міжелектроннао взаємодія враховується в нижчому порядку на a2 (a -стала тонкої структури) 
параметру. Поляризаційна частина зсуву Лемба враховується в модифікованому наближенні 
Юлінга-Сербера, власно-енергетична частина зсуву Лемба - ефективно в рамках узагальненої 
непертурбатівної процедури Іванова-Іванової. Узагальнений релятивістський енергетичний 
підхід і багаточастинкова теорії збурень з оптимізованим “0” наближенням використані для ви-
значення енергій і сил осциляторів переходів в спектрах Cs, Li-подібних іонів (Z = 11-42,69,70), 
зокрема, радіаційних переходів з основного стану в нижчі збуджені і ридберговскi 2s1/2 – np1/2,3/2, 
np1/2,3/2-nd3/2,5/2 (n=2-12) стани у Li-подібних іонах. Проведено порівняння експериментальних 
даних і даних обчислень на основі різних теоретичних методів.

Ключові слова: Надтонка структура, Сили осциляторів, Релятивістська теорія збурень  
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RELATIVISTIC THEORY OF SPECTRA OF HEAVY PIONIC ATOMIC SYSTEMS WITH 
ACCOUNT OF  STRONG PION-NUCLEAR INTERACTION EFFECTS: 

93Nb, 173Yb,  181Ta , 197Au

It is presented a consistent  relativistic theory of spectra of the pionic atoms on the basis of the Klein-
Gordon-Fock with a generalized radiation and strong pion-nuclear potentials. There are presented data 
of calculation of the energy and spectral parameters for pionic atoms of the 93Nb, 173Yb,  181Ta, 
197Au, with accounting for the radiation (vacuum polarization), nuclear (finite size of a nucleus ) 
and the strong pion-nuclear  interaction corrections. The measured values of the Berkley, CERN and 
Virginia laboratories and alternative data based on other versions of the Klein-Gordon-Fock theories 
with taking into account for a finite size of the nucleus in the model uniformly charged sphere and the 
standard Uhling-Serber radiation correction and optical atomic theory  are listed too. 

1.  Introduction
In papers [1-3] we have developed a new rela-

tivistic method of the Klein-Gordon-Fock equa-
tion with an generalized pion-nuclear potential 
to determine transition energies in spectroscopy 
of light, middle and heavy pionic atoms with ac-
counting for the strong interaction effects. In this 
paper, which goes on our studying on spectros-
copy of pionic atoms, we firstly applied method 
[1-3] to calculating calculation of the energy and 
spectral parameters for pioninc atoms of the 93Nb, 
173Yb,  181Ta , 197Au, with accounting for the the ra-
diation (vacuum polarization), nuclear (finite size 
of a nucleus ) and the strong pion-nuclear  inter-
action corrections..

Following [1-3], let us remind that  spectros-
copy of hadron atoms has been used as a tool for 
the study of particles and fundamental properties 
for a long time. Exotic atoms are also interesting 
objects as they enable to probe aspects of atomic 
and nuclear structure that are quantitatively dif-
ferent from what can be studied in electronic or 
“normal” atoms. At present time one of the most 
sensitive tests for the chiral symmetry breaking 
scenario in the modern hadron’s physics is pro-
vided by studying the exotic hadron-atomic sys-
tems. Nowadays the transition energies in pionic 

(kaonic, muonic etc.) atoms are measured with an 
unprecedented precision and from studying spec-
tra of the hadronic atoms it is possible to investi-
gate the strong interaction at low energies meas-
uring the energy and natural width of the ground 
level with a precision of few meV [1-10].  The 
strong interaction is the reason for a shift in the 
energies of the low-lying levels from the purely 
electromagnetic values and the finite lifetime of 
the state corresponds to an increase in the ob-
served level width. For a long time the similar 
experimental investigations have been carried out 
in the laboratories of Berkley, Virginia (USA), 
CERN (Switzerland). The most known theoreti-
cal models to treating the hadronic (pionic, ka-
onic, muonic, antiprotonic etc.) atomic systems 
are presented in refs. [1-5,7,8]. The most difficult 
aspects of the theoretical modeling are reduced 
to the correct description of pion-nuclear strong 
interaction [1-3] as the electromagnetic part of the 
problem is reasonably accounted for. 

2.  Relativistic approach to pionic atoms 
spectra

As the basis’s of a new method has been pub-
lished, here we present only the key topics of an 
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approach [1-3]. All available theoretical models 
to treating the hadronic (kaonic, pionic) atoms are 
naturally based on the using the Klein-Gordon-
Fock equation [2,5], which can be written as fol-
lows :
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22 xreVi
c

xcm t Ψ∇++∂=Ψ 

(1)

where c is a speed of the light, h is the Planck con-
stant, and Ψ0(x) is the scalar wave function of the 
space-temporal coordinates. Usually one consid-
ers the central potential [V0(r), 0] approximation 
with the stationary solution:

             )(	)/=Ψ xt jexp(-iE  (x) ,              (2)

where )(xj is the solution of the stationary equa-
tion:
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Here E is the total energy of the system (sum 
of the mass energy mc2 and binding energy e0). 
In principle, the central potential V0 naturally in-
cludes the central Coulomb potential, the vacu-
um-polarization potential, the strong interaction 
potential. 

The most direct approach to treating the strong  
interaction is provided by the well known optical 
potential model (c.g. [2]). Practically in all papers 
the central potential V0  is the sum of the following 
potentials. The nuclear potential for the spherical-
ly symmetric density ( )Rrρ  is [6,13]:
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The most popular Fermi-model approxima-
tion the charge distribution in the nucleus ( )rρ  
(c.f.[11]) is as follows:  

             )]}/)exp[(1/{)( 0 acrñrñ -+= ,      (5)

where the parameter a=0.523 fm, the parameter с 
is chosen by such a way that it is true the follow-
ing condition for average-squared radius: 

<r2>1/2=(0.836×A1/3+0.5700)fm.

The effective algorithm for its definition is 
used in refs. [12] and reduced to solution of the 
following system of the differential equations: 
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with the corresponding boundary conditions.  An-
other, probably, more consistent approach is in 
using the relativistic mean-field (RMF) model, 
which been designed as a renormalizable meson-
field theory for nuclear matter and finite nuclei 
[13].To take into account the radiation correc-
tions, namely, the effect of the vacuum polariza-
tion we have used the generalized  Ueling-Serber 
potential with modification to take into account 
the high-order radiative corrections [5,12]. 

The most difficult aspect is an adequate ac-
count for the strong interaction. On order to de-
scribe the strong p-N interaction we have used the 
optical potential model in which the generalized 
Ericson-Ericson potential is as follows:

                       (9)                                                       

                                                                    (10)

                                                                    (11)

Here ( )rnp,ρ  – distribution of a density of the 
protons and neutrons, respectively, ξ – parameter 
( 0=ξ  corresponds to case of “no correlation”, 

1=ξ , if anticorrelations between nucleons);  re-
spectively isoscalar and isovector parameters b0, 
c0 , B0, b1,c1 , C0  B1, C1 –are corresponding to the 
s-wave and p-wave (repulsive and attracting po-
tential member) scattering length in the combined 
spin-isospin space with taking into account the 
absorption of pions (with different channels at p-p 
pair ( )ppB0  and  p-n  pair  ( )pnB0 ),  and isospin and  
spin dependence of an amplitude  p-N scattering  
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Another, probably, more consistent approach 
is in using the relativistic mean-field (RMF) 
model, which been designed as a 
renormalizable meson-field theory for 
nuclear matter and finite nuclei [13].To take 
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namely, the effect of the vacuum polarization 
we have used the generalized  Ueling-Serber 
potential with modification to take into 
account the high-order radiative corrections 
[5,12].  
The most difficult aspect is an adequate 
account for the strong interaction. On order 
to describe the strong -N interaction we 
have used the optical potential model in 
which the generalized Ericson-Ericson 
potential is as follows: 

                       

     
  











 r
rrq

m
rVV optN 


 3/412

4

 
 
 
 
 
 

As the basis’s of a new method has 
been published, here we present only the key 
topics of an approach [1-3]. All available 
theoretical models to treating the hadronic 
(kaonic, pionic) atoms are naturally based on 
the using the Klein-Gordon-Fock equation 
[2,5], which can be written as follows :                                         

)(})]([1{)( 222
02

22 xreVi
c

xcm t                                                                        

                                                      (1) 
 
where c is a speed of the light, h is the Planck 
constant, and Ψ0(x) is the scalar wave 
function of the space-temporal coordinates. 
Usually one considers the central potential 
[V0(r), 0] approximation with the stationary 
solution: 
                                                        
              xt exp(-iE  (x) ,              (2) 
 
where x is the solution of the stationary 
equation: 
  

                                              

0)(})]([1{ 22222
02  xcmreVE

c
                              

(3) 
 
Here E is the total energy of the system (sum 
of the mass energy mc2 and binding energy 
0). In principle, the central potential V0 
naturally includes the central Coulomb 
potential, the vacuum-polarization potential, 
the strong interaction potential.  

The most direct approach to treating 
the strong  interaction is provided by the well 
known optical potential model (c.g. [2]). 
Practically in all papers the central potential 
V0  is the sum of the following potentials. The 
nuclear potential for the spherically 
symmetric density  Rr  is [6,13]: 

                                            

     




 









r

r
nucl RrrdrRrrdrrRrV '''

0

'2''1                      

(4) 
The most popular Fermi-model 

approximation the charge distribution in the 
nucleus  r  (c.f.[11]) is as follows:   

 
)]}/)exp[(1/{)( 0 acrρrρ  ,                                            

                                                                   (5) 
 
where the parameter a=0.523 fm, the 
parameter с is chosen by such a way that it is 
true the following condition for average-
squared radius:  
 

<r2>1/2=(0.836A1/3+0.5700)fm. 
 
The effective algorithm for its 

definition is used in refs. [12] and reduced to 
solution of the following system of the 
differential equations:  

                                    

         RryrRrrdrrRrnuclV
r

,1,1, 2

0

'2''2'  

,                         (6) 
   RrrRry ,,' 2 ,                                                    

                                                                    (7) 
                                  

2
0 )]}/)exp[(1]{/)exp[()/()(' acracraρrρ                            

(8) 
with the corresponding boundary conditions.  
Another, probably, more consistent approach 
is in using the relativistic mean-field (RMF) 
model, which been designed as a 
renormalizable meson-field theory for 
nuclear matter and finite nuclei [13].To take 
into account the radiation corrections, 
namely, the effect of the vacuum polarization 
we have used the generalized  Ueling-Serber 
potential with modification to take into 
account the high-order radiative corrections 
[5,12].  
The most difficult aspect is an adequate 
account for the strong interaction. On order 
to describe the strong -N interaction we 
have used the optical potential model in 
which the generalized Ericson-Ericson 
potential is as follows: 

                       

     
  











 r
rrq

m
rVV optN 


 3/412

4

 
 
 
 
 
 

As the basis’s of a new method has 
been published, here we present only the key 
topics of an approach [1-3]. All available 
theoretical models to treating the hadronic 
(kaonic, pionic) atoms are naturally based on 
the using the Klein-Gordon-Fock equation 
[2,5], which can be written as follows :                                         

)(})]([1{)( 222
02

22 xreVi
c

xcm t                                                                        

                                                      (1) 
 
where c is a speed of the light, h is the Planck 
constant, and Ψ0(x) is the scalar wave 
function of the space-temporal coordinates. 
Usually one considers the central potential 
[V0(r), 0] approximation with the stationary 
solution: 
                                                        
              xt exp(-iE  (x) ,              (2) 
 
where x is the solution of the stationary 
equation: 
  

                                              

0)(})]([1{ 22222
02  xcmreVE

c
                              

(3) 
 
Here E is the total energy of the system (sum 
of the mass energy mc2 and binding energy 
0). In principle, the central potential V0 
naturally includes the central Coulomb 
potential, the vacuum-polarization potential, 
the strong interaction potential.  

The most direct approach to treating 
the strong  interaction is provided by the well 
known optical potential model (c.g. [2]). 
Practically in all papers the central potential 
V0  is the sum of the following potentials. The 
nuclear potential for the spherically 
symmetric density  Rr  is [6,13]: 

                                            

     




 









r

r
nucl RrrdrRrrdrrRrV '''

0

'2''1                      

(4) 
The most popular Fermi-model 

approximation the charge distribution in the 
nucleus  r  (c.f.[11]) is as follows:   

 
)]}/)exp[(1/{)( 0 acrρrρ  ,                                            

                                                                   (5) 
 
where the parameter a=0.523 fm, the 
parameter с is chosen by such a way that it is 
true the following condition for average-
squared radius:  
 

<r2>1/2=(0.836A1/3+0.5700)fm. 
 
The effective algorithm for its 

definition is used in refs. [12] and reduced to 
solution of the following system of the 
differential equations:  

                                    

         RryrRrrdrrRrnuclV
r

,1,1, 2

0

'2''2'  

,                         (6) 
   RrrRry ,,' 2 ,                                                    

                                                                    (7) 
                                  

2
0 )]}/)exp[(1]{/)exp[()/()(' acracraρrρ                            

(8) 
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Another, probably, more consistent approach 
is in using the relativistic mean-field (RMF) 
model, which been designed as a 
renormalizable meson-field theory for 
nuclear matter and finite nuclei [13].To take 
into account the radiation corrections, 
namely, the effect of the vacuum polarization 
we have used the generalized  Ueling-Serber 
potential with modification to take into 
account the high-order radiative corrections 
[5,12].  
The most difficult aspect is an adequate 
account for the strong interaction. On order 
to describe the strong -N interaction we 
have used the optical potential model in 
which the generalized Ericson-Ericson 
potential is as follows: 
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renormalizable meson-field theory for 
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namely, the effect of the vacuum polarization 
we have used the generalized  Ueling-Serber 
potential with modification to take into 
account the high-order radiative corrections 
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The most difficult aspect is an adequate 
account for the strong interaction. On order 
to describe the strong -N interaction we 
have used the optical potential model in 
which the generalized Ericson-Ericson 
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Here  rnp,  – distribution of a density of the 
protons and neutrons, respectively,  – 
parameter ( 0  corresponds to case of “no 
correlation”, 1 , if anticorrelations 
between nucleons);  respectively isoscalar 
and isovector parameters b0, c0 , B0, b1,c1 , C0  
B1, C1 –are corresponding to the s-wave and 
p-wave (repulsive and attracting potential 
member) scattering length in the combined 
spin-isospin space with taking into account 
the absorption of pions (with different 
channels at p-p pair  ppB0  and  p-n  pair  

 pnB0 ),  and isospin and  spin dependence of 

an amplitude  -N scattering   
(         rrbrbrb np   100 , 

the Lorentz-Lorentz effect in the p-wave 
interaction. For the pionic atom with 
remained  electron shells the total wave-
function is a product of the product Slater 
determinant of the electrons subsystem 
(Dirac equation) and the pionic wave 

function. In whole the energy of the hadronic 
atom is represented as the sum:   

          ;KG FS VP NE E E E E                                                               
                                                              (12) 

Here KGE -is the energy of a pion in a 
nucleus  ,Z A  with the point-like charge 

(dominative contribution in (12)), FSE  is the 
contribution due to the nucleus finite size 
effect,  VPE is the radiation correction due to 

the vacuum-polarization effect, NE  is the 

energy shift due to the strong interaction NV . 
The strong pion-nucleus interaction 
contribution can be found from the solution 
of the Klein-Gordon-Fock equation with the 
corresponding pion-nucleon potential. 

3.  Results and conclusions 
 
In table 1 our data on the 4f-3d, 5g-4f 

transition energies for pionic atoms of the 
93Nb, 173Yb,  181Ta , 197Au are presented. The 
measured values of the Berkley, CERN and 
Virginia laboratories and alternative data 
based on other versions of the Klein-Gordon-
Fock theories with taking into account for a 
finite size of the nucleus in the model 
uniformly charged sphere and the standard 
Uhling-Serber radiation correction  [5, 15] 
and optical atomic theory [17,18] are listed 
too.  
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Here  rnp,  – distribution of a density of the 
protons and neutrons, respectively,  – 
parameter ( 0  corresponds to case of “no 
correlation”, 1 , if anticorrelations 
between nucleons);  respectively isoscalar 
and isovector parameters b0, c0 , B0, b1,c1 , C0  
B1, C1 –are corresponding to the s-wave and 
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the Lorentz-Lorentz effect in the p-wave 
interaction. For the pionic atom with 
remained  electron shells the total wave-
function is a product of the product Slater 
determinant of the electrons subsystem 
(Dirac equation) and the pionic wave 

function. In whole the energy of the hadronic 
atom is represented as the sum:   
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effect,  VPE is the radiation correction due to 

the vacuum-polarization effect, NE  is the 

energy shift due to the strong interaction NV . 
The strong pion-nucleus interaction 
contribution can be found from the solution 
of the Klein-Gordon-Fock equation with the 
corresponding pion-nucleon potential. 

3.  Results and conclusions 
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93Nb, 173Yb,  181Ta , 197Au are presented. The 
measured values of the Berkley, CERN and 
Virginia laboratories and alternative data 
based on other versions of the Klein-Gordon-
Fock theories with taking into account for a 
finite size of the nucleus in the model 
uniformly charged sphere and the standard 
Uhling-Serber radiation correction  [5, 15] 
and optical atomic theory [17,18] are listed 
too.  
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Here  rnp,  – distribution of a density of the 
protons and neutrons, respectively,  – 
parameter ( 0  corresponds to case of “no 
correlation”, 1 , if anticorrelations 
between nucleons);  respectively isoscalar 
and isovector parameters b0, c0 , B0, b1,c1 , C0  
B1, C1 –are corresponding to the s-wave and 
p-wave (repulsive and attracting potential 
member) scattering length in the combined 
spin-isospin space with taking into account 
the absorption of pions (with different 
channels at p-p pair  ppB0  and  p-n  pair  

 pnB0 ),  and isospin and  spin dependence of 

an amplitude  -N scattering   
(         rrbrbrb np   100 , 

the Lorentz-Lorentz effect in the p-wave 
interaction. For the pionic atom with 
remained  electron shells the total wave-
function is a product of the product Slater 
determinant of the electrons subsystem 
(Dirac equation) and the pionic wave 

function. In whole the energy of the hadronic 
atom is represented as the sum:   
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Here KGE -is the energy of a pion in a 
nucleus  ,Z A  with the point-like charge 

(dominative contribution in (12)), FSE  is the 
contribution due to the nucleus finite size 
effect,  VPE is the radiation correction due to 

the vacuum-polarization effect, NE  is the 

energy shift due to the strong interaction NV . 
The strong pion-nucleus interaction 
contribution can be found from the solution 
of the Klein-Gordon-Fock equation with the 
corresponding pion-nucleon potential. 

3.  Results and conclusions 
 
In table 1 our data on the 4f-3d, 5g-4f 

transition energies for pionic atoms of the 
93Nb, 173Yb,  181Ta , 197Au are presented. The 
measured values of the Berkley, CERN and 
Virginia laboratories and alternative data 
based on other versions of the Klein-Gordon-
Fock theories with taking into account for a 
finite size of the nucleus in the model 
uniformly charged sphere and the standard 
Uhling-Serber radiation correction  [5, 15] 
and optical atomic theory [17,18] are listed 
too.  
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( ( ) ( ) ( ) ( ){ }rrbrbrb np ρρρρ -+→ 100 ,

the Lorentz-Lorentz effect in the p-wave interac-
tion. For the pionic atom with remained  electron 
shells the total wave-function is a product of the 
product Slater determinant of the electrons sub-
system (Dirac equation) and the pionic wave 
function. In whole the energy of the hadronic 
atom is represented as the sum:  

          ;KG FS VP NE E E E E≈ + + +                (12)

Here KGE -is the energy of a pion in a nucle-
us ( ),Z A  with the point-like charge (dominative 
contribution in (12)), FSE  is the contribution due 
to the nucleus finite size effect,  VPE is the radia-
tion correction due to the vacuum-polarization 
effect, NE  is the energy shift due to the strong 
interaction NV .

The strong pion-nucleus interaction contribu-
tion can be found from the solution of the Klein-
Gordon-Fock equation with the corresponding 
pion-nucleon potential.

3.  Results and conclusions
In table 1 our data on the 4f-3d, 5g-4f transi-

tion energies for pionic atoms of the 93Nb, 173Yb,  

181Ta , 197Au are presented. The measured values 
of the Berkley, CERN and Virginia laboratories 
and alternative data based on other versions of the 
Klein-Gordon-Fock theories with taking into ac-
count for a finite size of the nucleus in the model 
uniformly charged sphere and the standard Uh-
ling-Serber radiation correction  [5, 15] and opti-
cal atomic theory [17,18] are listed too. 

The analysis of the presented data indicate on 
the importance of the correct accounting for the 
radiation (vacuum polarization) and the strong pi-
on-nuclear  interaction corrections. Obviously, it 
is clear that that the contributions provided by the 
finite size effect should be accounted in a precise 
theory. Besides, taking into account the increas-
ing accuracy of the X-ray pionic atom spectros-
copy experiments, it can be noted  that knowl-
edge of the exact electromagnetic theory data will 
make more clear the true values for parameters 
of the pion-nuclear potentials and correct the dis-
advantage of widely used parameterization of the 
potentials (9)-(11). 
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RELATIVISTIC THEORY OF SPECTRA OF THE PIONIC ATOMIC SYSTEMS WITH 
ACCOUNT OF  STRONG PION-NUCLEAR INTERACTION EFFECTS: 93Nb, 173Yb,  181Ta , 197Au

Abstract
It is presented a consistent  relativistic theory of spectra of the pionic atoms on the basis of the 

Klein-Gordon-Fock with a generalized radiation and strong pion-nuclear potentials. There are pre-
sented data of calculation of the energy and spectral parameters for pionic atoms of the 93Nb, 173Yb,  

181Ta , 197Au, with accounting for the radiation (vacuum polarization), nuclear (finite size of a nucleus 
) and the strong pion-nuclear  interaction corrections. The measured values of the Berkley, CERN and 
Virginia laboratories and alternative data based on other versions of the Klein-Gordon-Fock theories 
with taking into account for a finite size of the nucleus in the model uniformly charged sphere and the 
standard Uhling-Serber radiation correction and optical atomic theory  are listed too

Key words: strong interaction, pionic atom, relativistic theory
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А. Н. Быстрянцева, О. Ю. Хецелиус, Ю. В. Дубровская, Л. А. Витавецкая, А. Г. Берестенко

РЕЛЯТИВИСТСКАЯ ТЕОРИЯ СПЕКТРОВ ПИОННЫХ АТОМНЫХ СИСТЕМ С 
УЧЕТОМ ЭФФЕКТОВ СИЛЬНОГО ПИОН-ЯДЕРНОГО ВЗАИМОДЕЙСТВИЯ: 93Nb, 

173Yb,  181Ta , 197Au 

Резюме
Представлена последовательная релятивистская теория спектров пионных атомов на основе 

уравнения Клейна-Гордона-Фока с обобщенными радиационным и сильным  пион-ядерным 
потенциалом.  Выполнен расчет энергетических и спектральных параметров для пионных ато-
мов 93Nb, 173Yb,  181Ta , 197Au, с учетом радиационных (поляризация вакуума), ядерных (конеч-
ный размер ядра) эффектов и поправки на сильное пион-нуклонное взаимодействие.  Также 
для сравнения представлены данные измерений в лабораториях Berkley, ЦЕРН и Вирджиния 
и теоретические результаты, полученные на основе альтернативных теорий Клейна-Гордона-
Фока с учетом конечного размера ядра в модели равномерно заряженной сферы и стандартной 
Юлинг-Сербер поправки.   

Ключевые слова: сильное взаимодействие, пионный атом, релятивистская теория
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PЕЛЯТИВІСТСЬКА ТЕОРІЯ СПЕКТРІВ ПІОННИХ АТОМНИХ СИСТЕМ З УРАХУ-
ВАННЯМ ЕФЕКТІВ СИЛЬНОЇ ПІОН-ЯДЕРНОЇ ВЗАЄМОДІЇ: 93Nb, 173Yb,  181Ta , 197Au

Резюме
Представлена послідовна релятивістська теорія спектрів півоній атомів на основі рівняння 

Клейна-Гордона-Фока з узагальненими радіаційним і сильним півонія-ядерним потенціалом. 
Виконано розрахунок енергетичних і спектральних параметрів для піоних атомів 93Nb, 173Yb,  

181Ta , 197Au, з урахуванням радіаційних (поляризація вакууму), ядерних (кінцевий розмір ядра 
) ефектів та поправки на сильну піон-нуклонну взаємодію. Також для порівняння представлені 
дані вимірювань в лабораторіях Berkley, ЦЕРН і Вірджинія і теоретичні результати, отримані 
на основі альтернативних теорій Клейна-Гордона-Фока з урахуванням кінцевого розміру ядра в 
моделі рівномірно зарядженої сфери і стандартної Юлінг-Сербер поправки..

Ключові слова: сильна взаємодія, піонний атом, релятивістська теорія
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THE ELECTRICAL CHARACTERISTICS OF NANOSCALE SnO2 FILMS, STRUCTURED BY 
POLYMERS

The electrical characteristics of nanoscale tin dioxide layer were studied. They showed the significant 
differences in the conductivity values of films in vacuum and in air, which indicates a visible influence of 
adsorption interaction with oxygen in the air. The dark current temperature dependence activation character 
was established due to different donors type centers contribution to the conductivity which are “shallow” at 
low temperatures and are more "deep" at high temperatures. The values of the energy depth of these levels were 
calculated. The films’ conductivity changes at their heating at vacuum and at the subsequent cooling at vacuum 
till the initial temperature are reversible and repeatable many times, which testifies the stability of the electrical 
characteristics of the SnO2 films and is perspective for use of the layers as adsorptive-sensitive elements of gas 
sensors.

1. Introduction
A good combination of physical properties of 

tin dioxide (conductivity, its sensitivity to the ex-
ternal environment changes and electromagnetic 
radiation), stability of characteristics and low-
cost production makes it to be one of the most 
popular and promising material for sensor [1, 2].

Tin dioxide plays its important role as a mate-
rial for solid-state gas sensors whose operation is 
based on changing the conductivity of a sensitive 
layer at gas adsorption. Various kinds of nano-
structured SnO2 exhibit better properties com-
pared to their bulk types both for gas analysis and 
for a wide range of other applications. Chemical 
and electrical properties of tin dioxide in nano-
crystalline state depend strongly on particles’ size 
[1, 2]. The grain size decreasing influences both 
the defects role in surface layers on electronic 
processes in them and increases the contribution 
of grain boundaries to the transport processes of 
charge carriers.

Tin dioxide is a degenerative semiconductor 
with electronic conductivity due to a wide range 
of donor levels in the bandgap with activation en-
ergies of 0,21, 0,33, 0,52, 0,6, 0,72 eV [3, 4]. The 
SnO2 film samples have donor levels which are 

typically shallow. Their activation energies are in 
thin interval of 0,15 eV and they decrease with 
the increase in charge carriers quantity.

Semiconductor metal oxides’ conductivity ex-
ists due to their composition deviation from stoi-
chiometry. Defects (anion and cation) vacancies 
also play an important role in their conductivity. 
In the oxide semiconductor films deviations from 
stoichiometry, and hence the electrical properties, 
change reversible at their interaction with the gas 
environment. Their conductivity significantly de-
pends on the structure of the layers, grain size and 
barrier effects on the grain boundaries, adsorption 
processes on surfaces, effect of temperature and 
external electric field. All these factors must be 
taken into account at the analysis of experimental 
results.

Since the main physical parameters (grain 
size, considerable surface area, the grains’ struc-
ture features etc.) are determined by technologi-
cal peculiarities, then electrophysical properties 
also depend on technological factors. [5]

The present work is devoted to the investi-
gation of current-voltage characteristics (I-V) 
and the dark current temperature dependences 
(DCTD) of nanoscale SnO2, structured by poly-
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mers, aiming the study their electrical conductiv-
ity mechanisms and the influence of adsorption 
processes on their electrical properties.

2.  Sample preparation and experimental 
techniques

Nanostructured tin dioxide thin films were 
obtained using polymer materials by the sol-
gel method [6]. Bis(acetylacetonato)dichlorotin 
(BADCT) was used as a tin dioxide precursor [7]. 
The polyvinyl acetate (PVA) was used as a poly-
mer material for structured of nanofilms.

Experimental technique for SnO2 nanofilms’ 
electro-physical characteristics measurements was 
based on a standard method of current-voltage and 
current-temperature dependence registration.

The SnO2 films were supplied with contacts of 
Indium thermally deposited in a high vacuum on 
the surface of the films shaped as two parallel strips. 
The distance between the electrodes was 2 mm.

3. Results and discussion 
Fig. 1 shows current-voltage characteristics of 

SnO2 films with different content of the precursor, 
measured on air at room temperature. They were 
independent on the polarity of the applied voltage 
and linear, which indicates the Ohmic type of in-
dium contacts conductivity and negligible barrier 
effects influence.

  

Fig. 1. I-V characteristics of SnO2 with the content 
of precursor 1% (1), 5% (2) and 10% (3), measured 

in air (T = 290 K).

It may be seen the correlation between the 
precursor’s concentration increasing in the initial 
solution and the films’ resistance reduction. This 
may be connected with precursor’s concentration 
increasing which resulted in the film’s thickness 
growth, with the subsequent growth of charge 
carriers concentration and number of defects 
which contribute to the film conductivity increase 
too. Besides that, it is known that carrier mobility 
increases with film thickness increasing what also 
influences the conductivity.

Current–voltage characteristics of one of the 
samples measured in air (curve 1), and then in 
vacuum (curve 2) are shown in Fig.2. As it can 
be seen, the electrical conductivity of the films in 
vacuum increases significantly. The latter suppos-
es that the value of the electrical conductivity of 
the investigated films greatly affect the processes 
of adsorption (desorption) of oxygen on their sur-
face [8].

Fig. 2. I-V characteristics of sample with precursor 
content of 5% in air (1) and in vacuum (2). 

(T = 290 K).

The oxygen influence on the conductivity of 
the films is also confirmed by the results presented 
in Fig.3. Curve 1 (Fig.3) depicts the current–volt-
age characteristic of one of SnO2 films measured 
in air at 290 K. Then, air was evacuated from the 
measuring chamber (to a pressure of about 10-3 
mm Hg). The film was heated in vacuum to a tem-
perature of 410 K and then again cooled to a room 
temperature. After that measuring of I-V curves 
(at 290 K) in vacuum was repeated (Fig. 3, curve 
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2). The significant increase in conductivity of the 
film (more than two orders of magnitude) is asso-
ciated with desorption of oxygen and the forma-
tion of oxygen vacancies acting as donors [8] on 
the films’ surfaces.

Curve 3 (Fig.3) was measured in 15 min after 
the atmospheric air was let into the chamber. It 
may be noticed a decrease in the electrical con-
ductivity of the film due to atmospheric oxygen 
adsorption.

Fig. 3. I-V curves of the SnO2 film with the precur-
sor content of 10%(T = 290 K) (commentary in the 

text).

The decreasing current relaxation (Fig. 4) was 
observed in the process of air inlet into the cham-
ber.

Straightening of the initial section of the cur-
rent-time dependence in the coordinates  
shows that in the initial time interval (0 to 30 
seconds), the current decreases with time accord-

ing to exponential law 
. Calculated from the graph the value for the re-
laxation time constant, τ was approximately 18 
seconds. In later periods the rate of relaxation 
decreases monotonously. Thus, the processes of 
oxygen adsorption on the film surface at room 
temperature are characterized by definite inertia.

Fig. 4. Relaxation of current in the sample at let-
ting air in the measurement chamber (V = 60 V).

The decreasing relaxation of current is asso-
ciated with interaction of the film surface with 
oxygen at the inlet of atmospheric air. The ini-
tial section of the graph is associated both with 
a relatively rapid filling of the surface centers by 
oxygen ions, thus capturing electrons of conduc-
tivity and the disappearance of oxygen vacancies. 
In the future, the process of current relaxation 
slows down, because the near-surface layers of 
adsorbed oxygen limit the access to the surface 
for air oxygen.

The temperature dependences of dark current 
were fulfilled for the studied SnO2 films. The re-
sults of these calculations for films with content 
of the precursor 1%, 5% and 10% are presented 
in Fig.5.

Fig. 5. The temperature dependence of dark current 
measured at U = 60 V for SnO2 with the content of 
the precursor 1% (1), 5% (2) and 10% (3). Curve (3) 

measured at the sample cooling (U = 80 V).
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The DCTD curves have the activation charac-
ter at heating. The conductivity is contributed by 
different types of donor centers, “shallow” at low 
temperatures and “deeper” at high temperatures.

Depth values of the energy levels calculated 
from the slopes of the straight sections DCTD 
curves for different series of specimens are shown 
in the table.

Table 
The content of 
precursor (%) 1 5 10

The ionization 
energy of 
donors (eV)

0,19
0.27

0,13
0,21
0,34

0,23
0,31
0,53

Obtained energies’ values of 0.19 eV and 0.13 
eV are close to literature value of donor level at 
0.15 eV associated with double ionized oxygen 
vacancies formation [9]. The nature of donor cen-
ters, associated with other energy values in the 
table, remains unclear. 

A large set of obtained values of the activa-
tion energy can be related to the fact that in the 
test films due to their nano structure the energy of 
known levels may change, for example, for those, 
which corresponds to oxygen vacancies. The ad-
ditional levels associated with peculiarities of the 
films production and their storage may appear. 
There may be levels due to the presence in the 
films of tin monoxide SnO, etc.

Curve 3’ (Fig.6) depicts DCTD of the samples 
measured at cooling. As can be seen, the current 
decreases at cooling enough slowly.

The conductivity of the film after its cooling to 
room temperature remains much higher than pri-
or to the procedure of heating the film. This may 
be due to discharging of donor oxygen levels at 
high temperatures when the surface curve of en-
ergy bands decreases (the thickness of the surface 
potential barrier decreases correspondingly), thus 
resulting in the films conductivity increasing. It 
worth to note, that the above described features of 
DCTD behavior, measured at cooling, were ob-
served for all series of the samples.

The process influencing the conductivity mag-
nitude changes of the films by heating and subse-

quent cooling at vacuum till initial temperature 
is reversible and repeatable many times. For ex-
ample, if at the end of the measurement the curve 
3’ (Fig. 6) the measuring chamber is filled with 
air, then after a certain period of time the current 
is reduced to levels (at the same temperature) cor-
responding the curve 3 (Fig.6).

The latter supposes that the electrical charac-
teristics of the SnO2 films is quite stable, which 
allows using them as adsorptive-sensitive ele-
ments for gas sensors.

4. Conclusions
The studies of electrical properties of nanolay-

ers of tin dioxide revealed the following features:
The conductivity of the investigated films in 

vacuum and in air differs more than an order of 
magnitude, which indicates the considerable in-
fluence of adsorption interaction with oxygen in 
air.

Curves DCTD taken at heating the samples are 
of activation type due to different types of donor 
centers contribution to conductivity. Obtained 
values of the energies of 0.19 eV and 0.13 eV are 
close to the known from literature value of the 
ionization energy of the donor level at 0.15 eV 
associated with the formation of double ionized 
oxygen vacancies.

The change in conductivity of the films dur-
ing heating and subsequent cooling at vacuum till 
the initial temperature is reversible and repeatable 
many times, which shows the stability of the elec-
trical characteristics of the SnO2 films and allows 
using them as adsorptive-sensitive elements for 
gas sensors.
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THE ELECTRICAL CHARACTERISTICS OF NANOSCALE SNO2 FILMS, 
STRUCTURED BY POLYMERS

Abstract
The electrical characteristics of nanoscale tin dioxide layer were studied. They showed the sig-

nificant differences in the conductivity values of films in vacuum and in air, which indicates a visible 
influence of adsorption interaction with oxygen in the air. The dark current temperature dependence 
activation character was established due to different donors type centers contribution to the conductiv-
ity which are “shallow” at low temperatures and are more “deep” at high temperatures. The values of 
the energy depth of these levels were calculated. The films’ conductivity changes at their heating at 
vacuum and at the subsequent cooling at vacuum till the initial temperature are reversible and repeat-
able many times, which testifies the stability of the electrical characteristics of the SnO2 films and is 
perspective for use of the layers as adsorptive-sensitive elements of gas sensors.
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Л. М. Філевська, А. П. Чебаненко, В. С. Гріневич, Н. С. Сіманович

ЕЛЕКТРИЧНІ ХАРАКТЕРИСТИКИ НАНОРОЗМІРНИХ ПЛІВОК SNО2, 
СТРУКТУРОВАНИХ З ВИКОРИСТАННЯМ ПОЛІМЕРІВ

Резюме
Проведені в роботі дослідження електричних характеристик нанорозмірних шарів діоксиду 

олова дозволили виявити істотні відмінності в значеннях провідності плівок у вакуумі й на по-
вітрі, що свідчить про помітний вплив адсорбційної взаємодії з киснем повітря. Встановлено 
активаційний характер кривих ТЗТТ зразків, що обумовлено внеском у провідність різних типів 
донорних центрів - більше «дрібних» при низьких температурах і більше «глибоких» при ви-
соких температурах. Розраховано значення глибини залягання цих енергетичних рівнів. Зміна 
величини провідності плівок при прогріві у вакуумі й наступному охолодженні у вакуумі до 
вихідної температури є оборотним і багаторазово відтворюваним, що свідчить про стабільність 
електричних характеристик досліджуваних плівок SnО2 і перспективно для використання ша-
рів в якості адсорбційно-чутливих елементів газових сенсорів.

Ключові слова: діоксид олова, нанорозмірні шари, електричні характеристики
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Л. Н. Филевская, А. П. Чебаненко, В. С. Гриневич, Н. С. Симанович

ЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ НАНОРАЗМЕРНЫХ ПЛЕНОК SNO2, 
СТРУКТУРИРОВАННЫХ С ИСПОЛЬЗОВАНИЕМ ПОЛИМЕРОВ

Резюме
Проведенные в работе исследования электрических характеристик наноразмерных слоев 

диоксида олова позволили выявить существенные отличия в значениях проводимости пленок 
в вакууме и на воздухе, что свидетельствует о заметном влиянии адсорбционного взаимодей-
ствия с кислородом воздуха. Установлен активационный характер кривых ТЗТТ образцов, что 
обусловлено вкладом в проводимость различных типов донорных центров – более «мелких» 
при низких температурах и более «глубоких» при высоких температурах. Рассчитаны значения 
глубины залегания этих энергетических уровней. Изменение величины проводимости пленок 
при прогреве в вакууме и последующем охлаждении в вакууме до исходной температуры явля-
ется обратимым и многократно воспроизводимым, что свидетельствует о стабильности элек-
трических характеристик исследуемых пленок SnO2 и перспективно для использования слоев в 
качестве адсорбционно-чувствительных элементов газовых сенсоров.

Ключевые слова: диоксид олова, наноразмерные слои, электрические характеристики
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STUDYING PHOTOKINETICS OF THE IR LASER RADIATION EFFECT ON MIXTURE OF THE 
CO2-N2-H20 GASES FOR DIFFERENT ATMOSPHERIC MODELS

A kinetics of energy exchange in the mixture of the atmosphere CO2-N2-H20 gases under passing the 
powerful CO2 laser radiation pulses within the three-mode model of kinetical processes is studied. More 
accurate data for the absorption coefficient are presented. 

At present time the environmental physics has 
a great progress, provided by implementation of 
the modern quantum electronics and laser phys-
ics methods and technologies in order to study 
unusual features of the “laser radiation- substance 
(gases, solids etc.) interaction.   A special inter-
est attracts a problem of interaction of the pow-
erful laser radiation with an aerosol ensemble 
and search of new non-linear optical effects. The 
latter is directly related with problems of mod-
ern aerosol laser physics (c.f.[1-13]). One could 
remind  that there is a redistribution of molecules 
on the energy levels of internal degree of freedom 
in the resonant absorption of IR laser radiation by 
the atmospheric molecular gases. As a result of 
quite complicated processes one could define an 
essential changing of the gases absorption coef-
ficient due to the saturation of absorption [1]. 

One interesting effect else to be mentioned is 
an effect of the kinetic cooling of environment 
(mixture of gases), as it was at first predicted in 
ref. [2,5]. Usually the effect of kinetical cool-
ing (CO2) in a process of absorption of the laser 
pulse energy by molecular gas is considered for 
the middle latitude atmosphere and for special 
form of a laser pulse. Besides, the approximate 
values for constants of collisional deactivation 
and resonant transfer in reaction CO2-N2 are usu-
ally used. In series of papers (see, for example, 
[11-13], computational modelling of  the energy 
and heat exchange kinetics in the mixture of the 
CO2-N2-H20 atmospheric gases interacting with 

IR laser radiation has been carried out within  the 
general three-mode kinetical model. It is obvious 
that using more precise values for all model con-
stants and generally speaking the more advanced 
atmospheric model parameters may lead to quan-
titative changing in the temporary dependence of 
the resonant absorption coefficient by CO2. 

Let us remind that the creation and accumula-
tion of the excited molecules of nitrogen owing to 
the resonant transfer of excitation from the mol-
ecules CO2 results in the change of environment 
polarizability. Perturbing the complex conductiv-
ity of environment, all these effects are able to 
transform significantly the impulse energetics 
of IR lasers in an atmosphere and significantly 
change realization of different non-linear laser-
aerosol effects.  

The aim of this paper is to present more accu-
rate data for  kinetics of energy and heat exchange 
in the mixture CO2-N2-H20 gases in atmosphere 
under passing the powerful CO2 laser radiation 
pulses on the basis of using  the more advanced 
atmospheric model and more precise values for 
all kinetical model constants. 

As usually, we start from the modified three-
mode model of kinetic processes (see, for exam-
ple, [1,11-13] in order to take into consideration 
the energy exchange and relaxation processes in 
the СО2.– N2 – H2O mixture interacting with a la-
ser radiation. As in ref. [11-13]  we consider a ki-
netics of three levels: 10°0, 00°1 (СО2) and v = 1 
(N2). Availability of atmospheric constituents O2 
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and H2O is allowed for the definition of the rate 
of vibrating-transitional relaxation of N2. The sys-
tem of balance equations for relative populations 
is written in a standard form as follows:

0
1102110

1 )2)2( xgPxxgP
dt
dx
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0
22032201
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dt
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                                                                      (1)
Here the following notations are used: 

x1 = N100/ 2CON ,

x2 = N001/ 2CON ,                      (2)

x3 = 
22 CON / NNd ,

where N100, N001 are the level populations 10°0, 
00°1 (СО2); 2NN  is the level population v = 1 (N2); 

2CON  is the concentration of CO2 molecules; δ is 
the ratio of the common concentrations of СО2 
and N2 in the atmosphere (δ = 3.85×10-4); 0

1x , 0
2x  

and 0
3x  are the equilibrium relative values of pop-

ulations under gas temperature T:
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0
1 exp -= ,                      
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0
3
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                                                                          (3)

The values E1 and E2 in (1) are the energies 
(K) of levels 10°0, 00°1 (consider the energy of 
quantum N2 equal to E2); P10, P20 and P30 are the 
probabilities (s-1) of the collisional deactivation of 
levels 10°0, 00°1 (СО2) and v = 1 (N2), Q is the 
probability (s-1) of resonant transfer in the reac-
tion СО2 → N2,ω is the probability (s-1) of СО2 
light excitation, g = 3 is the statistical weight of 
level 02°0,  β = (1+g)-1 = 1/4. As usually, the so-
lution of the differential equations system (1) al-
lows defining a coefficient of absorption of the 
radiation by the CO2 molecules according to the 
formula:

            
22 )( 21 COCO Nxx -σ=a .                 (4)

The  σ in (4) is dependent upon the thermody-
namical medium parameters as follows [2]:

                    

2
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T
T

P
P ,                       (5)

Here  T and p are the air temperature and pres-
sure, σ0 is the cross-section of resonant absorp-
tion under T = T0, p = p0. One could remind that 
the absorption coefficient for carbon dioxide and 
water vapour is dependent upon the thermody-
namical parameters of aerosol atmosphere. In 
particular, for radiation of CO2-laser the coef-
ficient of absorption by atmosphere defined as  

OHCO 22
a+a=a g   is equal in conditions, which 

are typical for summer mid-latitudes, αg(H=0) = 
2.4·106 сm-1, from which 0.8·106 сm-1 accounts 
for CO2 and the rest – for water vapour (data are 
from ref. [2]) . On the large heights the sharp de-
crease of air moisture occurs and absorption coef-
ficient is mainly defined by the carbon dioxide. 

The changing population of the low level 
10°0 (СО2), population of the level 00°1, the 
vibrating-transitional relaxation (VT-relaxation) 
and the inter modal vibrating-vibrating relaxa-
tion (VV’-relaxation) processes define the phys-
ics of resonant absorption processes. Moreover, 
the above indicated processes result in a redistri-
bution of the energy between the vibrating and 
transitional freedom of the molecules. Accord-
ing to ref.[1], the threshold value, which corre-
sponds to the decrease of absorption coefficient 
in two times, for the strength of saturation of 
absorption in vibrating-rotary conversion give  
Isat = (2 ÷ 5) 105 W cm-2 for atmospheric CO2. In 
this case the pulse duration ti must satisfy the con-
dition tR <<  ti < tVT, where tR and tVT are the times of 
rotary and vibrating-transitional relaxation’s. by 
The fast exchange of level 10°0 with basic state, 
and by the relatively slow relaxation of high level 
00°1define a renewal process of thermodynamic 
equilibrium is characterized. The latter provides 
an energy outflow from the transitional degree of 
freedom onto vibrating ones and in the cooling 
of environment. It is easily understand that using 
more powerful laser radiation sources can lead to 
a strong non-linear interaction phenomena and, as 
result, significantly change a photo-kinetics of the 
corresponding processes.
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                                                                   (1) 
Here the following notations are used:  
 

x1 = N100/ 2CON , 
                      x2 = N001/ 2CON ,                   (2) 

x3 = 
22 CON / NN , 

where N100, N001 are the level populations 10°0, 
00°1 (СО2); 2NN  is the level population v = 1 
(N2); 2CON  is the concentration of CO2 
molecules; δ is the ratio of the common 
concentrations of СО2 and N2 in the atmosphere 
(δ = 3.8510-4); 0

1x , 0
2x  and 0

3x  are the 
equilibrium relative values of populations under 
gas temperature T: 
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                                                                        (3) 
The values E1 and E2 in (1) are the energies (K) 
of levels 10°0, 00°1 (consider the energy of 
quantum N2 equal to E2); P10, P20 and P30 are 
the probabilities (s-1) of the collisional 
deactivation of levels 10°0, 00°1 (СО2) and v = 
1 (N2), Q is the probability (s-1) of resonant 
transfer in the reaction СО2 → N2,ω is the 
probability (s-1) of СО2 light excitation, g = 3 is 
the statistical weight of level 02°0,  β = (1+g)-1 
= 1/4. As usually, the solution of the differential 
equations system (1) allows defining a 
coefficient of absorption of the radiation by the 
CO2 molecules according to the formula: 
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The  σ in (4) is dependent upon the 
thermodynamical medium parameters as follows 
[2]: 
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                                       (5) 
Here  T and p are the air temperature and 
pressure, σ0 is the cross-section of resonant 
absorption under T = T0, p = p0. One could 
remind that the absorption coefficient for carbon 

dioxide and water vapour is dependent upon the 
thermodynamical parameters of aerosol 
atmosphere. In particular, for radiation of CO2-
laser the coefficient of absorption by atmosphere 
defined as  OHCO 22

 g   is equal in 
conditions, which are typical for summer mid-
latitudes, αg(H=0) = 2.4·106 сm-1, from which 
0.8·106 сm-1 accounts for CO2 and the rest – for 
water vapour (data are from ref. [2]) . On the 
large heights the sharp decrease of air moisture 
occurs and absorption coefficient is mainly 
defined by the carbon dioxide.  
The changing population of the low level 10°0 
(СО2), population of the level 00°1, the 
vibrating-transitional relaxation (VT-relaxation) 
and the inter modal vibrating-vibrating 
relaxation (VV'-relaxation) processes define the 
physics of resonant absorption processes. 
Moreover, the above indicated processes result 
in a redistribution of the energy between the 
vibrating and transitional freedom of the 
molecules. According to ref.[1], the threshold 
value, which corresponds to the decrease of 
absorption coefficient in two times, for the 
strength of saturation of absorption in vibrating-
rotary conversion give Isat = (2 ÷ 5) 105 W cm-2 
for atmospheric CO2. In this case the pulse 
duration ti must satisfy the condition tR <<  ti < 
tVT, where tR and tVT are the times of rotary and 
vibrating-transitional relaxation’s. by The fast 
exchange of level 10°0 with basic state, and by 
the relatively slow relaxation of high level 
00°1define a renewal process of thermodynamic 
equilibrium is characterized. The latter provides 
an energy outflow from the transitional degree 
of freedom onto vibrating ones and in the 
cooling of environment. It is easily understand 
that using more powerful laser radiation sources 
can lead to a strong non-linear interaction 
phenomena and, as result, significantly change a 
photo-kinetics of the corresponding processes. 
In table 1 we present mode accurate our data 
(column C) for the relative coefficient of 
absorption 2CO , which is normalized on the 
linear coefficient of absorption, calculated using 
(1) on corresponding height H. All data for 

2CO are obtained for the height distribution of 
the pressure and temperature according to the 
advanced mid-latitude atmospheric model (all 
data are presented in series of refs. [14-20]). In 
table 1 there are presented also the analogous 
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In table 1 we present mode accurate our data 
(column C) for the relative coefficient of absorp-

tion 2COa , which is normalized on the linear co-
efficient of absorption, calculated using (1) on 

corresponding height H. All data for 2COa are 
obtained for the height distribution of the pres-
sure and temperature according to the advanced 
mid-latitude atmospheric model (all data are pre-
sented in series of refs. [14-20]). In table 1 there 
are presented also the analogous data from ref. [2] 
(column A) , from ref. [13]  (column B).

Table 1.
Temporary dependence of resonant absorp-

tion  relative coefficient 2COa ( sm-1) of laser 
radiation (λ=10,6μm )  by CO2  for rectangular 
(R ) laser pulses (intensity I=105 W/sm2) on the 
height (H, km) for the mid-latitude atmospher-
ic model [1]:  A- data of modelling [2];  B- data 
of modelling [13], C- data of modelling [14], D- 

this work

T
ms

A [2]
10×I; R

H=0

A[2]
10×I;R
H=10

B [13]
10×I; G

H=0

B [13]
10×I; G
H=10

0
1
2
3
4

1,0
0,60
0,52
0,63
0,67

1,0
0,12
0,08
0,27
0,35

1,0
0,57
0,46
0.59
0,64

1,0
0,13
0,05
0,19
0,28

T
ms

C [14]
10×I; G

H=0

C [14]
10×I; 

G
H=10

D, this
10×I; G

H=0

D, this
10×I; G
H=10

0
1
2
3
4

1,0
0,54
0,42
0.57
0,60

1,0
0,11
0,04
0,16
0,25

1,0
0,54
0,42
0.57
0,60

1,0
0,11
0,04
0,16
0,25

In Refs.[2 13,14] the analogous data for the rela-

tive coefficient of absorption  2COa and the height 
distribution of pressure and temperature are pre-
sented and obtained in a case of using the Odes-
sa-latitude atmospheric conditions according to 
atmospheric model [7,8]. Here we use the world 

standard atmospheric model conditions [14-20]. 
Important moment is also  connected with the 
more correct choice of probabilities P10, P20 and 
P30 of the collisional deactivation of levels 10°0, 
00°1 (СО2) and v = 1 (N2), probability Q of reso-
nant transfer in the reaction СО2 → N2, probabil-
ity ω of СО2 light excitation and other constants 
in comparison with refs. [2,13]. Let us in conclu-
sion to note that obviously a quality of choice of 
the corresponding molecular constants and the 
corresponding atmospheric model parameters is 
of a great importance in modelling the effect of 
kinetic cooling of the CO2 under propagation of 
the laser radiation in atmosphere. Naturally, prin-
cipally another situation will occur in a case of 
the super intense laser pulses using for the atmos-
phere monitoring. Obviously,  the modified mod-
el of photokinetical processes is to be developed 
in this case.
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NEW RELATIVISTIC APPROACH TO CALCULATING THE HYPERFINE LINE SHIFT 
AND BROADENING FOR HEAVY ATOMS IN THE BUFFER GaS

It is presented a new  consistent relativistic approach, based on the atomic gauge-invariant relativ-
istic perturbation theory and the optimal construction of the interatomic potential function within 
exchange perturbation theory . As illustration it is applied to calculating the interatomic potentials, 
hyperfine structure line collision shift and broadening for heavy atoms in an atmosphere of the buffer 
inert gas. The accurate  account for the relativistic and exchange-correlation and continuum pressure 
effects is  necessary for an adequate description of the energetic and spectral properties of the heavy 
atoms in an atmosphere of the heavy inert gases.

The broadening and shift of atomic spectral 
lines by collisions with neutral atoms has been 
studied extensively since the very beginning of 
atomic physics, physics of collisions etc [1–16]. 
High precision data on the collisional shift and 
broadening of the hyperfine structure lines of 
heavy elements (alkali, alkali-earth, lanthanides, 
actinides and others) in an atmosphere of the 
buffer (for example, inert) gases are of a great in-
terest for modern quantum chemistry, atomic and 
molecular spectroscopy, astrophysics and metrol-
ogy as well as for studying a role of weak interac-
tions in atomic optics and heavy-elements chem-
istry [1-14]. As a rule (see [15]), the cited spectral 
lines shift and broadening due to a collision of 
the emitting atoms with the buffer atoms are very 
sensitive to a kind of the intermolecular interac-
tion. It means that these studies provide insight 
into the nature of interatomic forces and, hence, 
they provide an excellent test of theory.  Besides, 
calculation of the hyperfine structure line shift 
and broadening allows to check a quality of the 
wave functions (orbitals) and study a contribution 
of the relativistic and correlation effects to the 
energetic and spectral characteristics of the two-
center (multi-center) atomic systems. 

The detailed non-relativistic theory of colli-
sional shift and broadening the hyperfine struc-
ture lines for simple elements (such as light alkali 
elements etc.) was developed by many authors 
(see, for example, Refs. [1-3,15]). However, un-
til now an accuracy of the corresponding avail-
able data has not been fully adequate to predict 
or identify transitions within accuracy as required 
for many applications.  It is obvious that correct 
taking into account the relativistic and correlation 
effects is absolutely necessary in order to obtain 
sufficiently adequate description of spectroscopy 
of the heavy atoms in an atmosphere of the buffer 
gases. This stimulated our current investigation 
whose goals were to propose a new precise rela-
tivistic approach perturbation theory approach to 
calculating the interatomic potentials and hyper-
fine structure line collision shifts and broadening 
for the alkali and lanthanide atoms in an atmos-
phere of the inert gases. The basic expressions 
for the collision shift and broadening hyperfine 
structure spectral lines are taken from the kinetic 
theory of spectral lines [6,7,11,12]. 

In order to calculate a collision shift of the 
hyperfine structure spectral lines one can use the 
following expression known in the kinetic theory 
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of spectral lines shape (see Refs. [11,12,15]): 
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Here U(R) is an effective potential of intera-
tomic interaction, which has the central symme-
try in a case of the systems A—B (in our case, 
for example,  A=Rb,Cs; B=He); T is a tem-
perature, w0 is a frequency of the hyperfine 
structure transition in an isolated active atom; 
dw(R)=Dw(R)/w0 is a relative local shift of the 
hyperfine structure line; ( ( )1 g R+ ) is a tempera-
ture form-factor. 

The local shift is caused due to the disposition 
of the active atoms (say, the alkali atom and he-
lium He) at the distance R. In order to calculate an 
effective potential of the interatomic interaction 
further we use the exchange perturbation theory 
formalism (the modified version ЕL-НАV) [1]). 

Since we are interested by the alkali (this atom 
can be treated as a  one-quasiparticle systems, i.e. 
an atomic system with a single valence electron 
above a core of the closed shells) and the rare-
earth atoms (here speech is about an one-, two- or 
even three-quasiparticle system), we use the clas-
sical model for their consideration. The interaction 
of alkali (A) atoms with a buffer (B) gas atom is 
treated in the adiabatic approximation and the 
approximation of the rigid cores. Here it is worth 
to remind very successful model potential simu-
lations of the studied systems (see, for example, 
Refs. [32-41]). 

In the hyperfine interaction Hamiltonian one 
should formally consider as a magnetic dipole 
interaction of moments of the electron and the 
nucleus of an active atom as an electric quadru-
pole interaction (however, let us remind that, as 
a rule, the moments of nuclei of the most (buffer) 
inert gas isotopes equal to zero) [6].

The necessity of the strict treating relativ-
istic effects causes using the following ex-
pression for a hyperfine interaction operator 
HHF (see, eg., [1,5]): 

НHF= ∑
=

×N

i i

ii

r
r

Ia
1

3

a ,                                        (2)
cm

hea
p2

2
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m-=
,

where  І – the operator of the nuclear spin active 
atom,  ai – Dirac matrices, mp – proton mass, 
m  - moment of the nucleus of the active atom, 
expressed in the nuclear Bohr magnetons. Of 
course, the summation in (2) is over all states 
of the electrons of the system, not belonging 
to the cores. The introduced model of con-
sideration of the active atoms is important to 
describe an  effective interatomic interaction 
potential (an active atom – an passive atom), 
which is centrally symmetric (JА=1/2) in our 
case (the interaction of an alkali atom with an 
inert gas atom). 

Let us underline that such an approximation 
is also acceptable in the case system “thallium 
atom – an inert gas atom” and some rare-earth 
atoms, in spite of the presence of p-electrons 
in the thallium (in the case of rare-earth at-
oms, the situation is more complicated).

As it is well known (see also Refs. [1, 2]), the 
non-relativistic Hartree-Fock method is mostly 
used for calculating the corresponding wave func-
tions. More sophisticated approach is based on 
using the relativistic Dirac-Fock wave functions 
(first variant) [12]. Another variant is using the 
relativistic wave functions as the solutions of the 
Dirac equations with the corresponding density 
functional, i.e within the Dirac-Kohn-Sham the-
ory [8,15]. It is obvious that more sophisticated 
relativistic many-body methods should be used 
for correct treating relativistic, exchange-corre-
lation and even nuclear effects in heavy atoms. 
(including the many-body correlation effects, in-
tershell correlations, possibly the continuum pres-
sure etc]).  In our calculation we have used the 
relativistic functions, which are generated by the 
Dirac Hamiltonian [8].  The potential  of the inter-
electron interaction with accounting the retarding 
effect and magnetic interaction in the lowest or-
der on parameter a2 (the fine structure constant) is 
as follows:   

         
( ) ( ) ( )

,i j
i j ij ij

ij

1á á
V r r exp iù r

r
-

= ⋅                (3)

where wij is the transition frequency; ai ,aj are the 
Dirac matrices. The Dirac equation potential in-
cludes the electric potential of a nucleus and elec-
tron shells and the exchange-correlation poten-
tials in the Kohn-Sham approximation. Besides, 
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we introduce into the zeroth order Hamiltonian 
the corresponding correlation functional [5] 

    
1/3[ ( ), ] 0.0333 ln[1 18.3768 ( ) ]CV r r b rρ ρ= - ⋅ ⋅ + ⋅ , (4)

where b is the optimization parameter (for details 
see Refs. [5,8,15]). The optimization  is reduced 
to minimization of the gauge dependent multi-
electron contribution ImdEninv of the lowest rela-
tivistic perturbation theory corrections to the ra-
diation widths of atomic levels. The minimization 
of the functional ImdEninv leads to the Dirac-Kohn 
Sham-like equations for the electron density that 
are numerically solved. The further elaboration 
of the method can be reached by means of using 
the Dirac-Sturm  approach [5]. To calculate an ef-
fective potential of the interatomic interaction we 
use a method of the exchange perturbation theory 
(in the modified version ЕL-НАV [1]). Within 
exactness to second order terms on potential 
of Coulomb interaction of the valent electrons 
and atomic cores a local shift can be written 
as:   

      
( ) ,

1 21
0
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n
n

n R
C

S
SR ∑-Ω+Ω+
-

=dω         (5)

where values W1, W2 are the non-exchange and 
exchange non-perturbation sums of the first or-
der correspondingly, which express through the 
matrix elements of the hyperfine interaction op-
erator.  The other details are in Refs.[1,8,15].

Further  we present some test results of our 
studying hyperfine line collisional shift for  alkali 
atoms (rubidium and caesium) in the atmosphere 
of the helium gas. In Table 1 and 2 we present our 
theoretical results for the hyperfine line observed 
shift fp (1/Torr) in a case of the Rb-He and Cs-He 
pairs. The experimental and alternative theoreti-
cal results by Batygin et al [11] for fp are listed 
too. At present time there are no precise experi-
mental data for a wide interval of temperatures in 
the literature. The theoretical data from Refs. [11] 
are obtained on the basis of calculation within 
the exchange perturbation theory with using the 
He wave functions in the Clementi-Rothaane ap-
proximation [42] (column: Theorya),  and in the 
Z-approximation (column: Theoryb), and in the 
Löwdin approximation (column: Theoryc).

Table 1.  
The observed fr (10-9 1/Torr) shifts for the 

systems of Rb-Не and corresponding theoret-
ical data (see text).

T, K Exp. [13] [11] a [11] b [11]c This

223 - 113 79 67 81 116
323 105 101 73 56 75 103
423 - 89 62 48 64 91
523 - 80 55 43 56 83
623 - 73 50 38 50 75
723 - - - - - 73
823 - - - - - 71

Note:a –calculation with using the He wave 
functions in the Clementi-Rothaane approxima-
tion; b – calculation with using the He wave 
functions in the Z-approximation; 

c –calculation with using the He wave func-
tions in the Löwdin approximation;

Table 2.  
The observed fr (10-9 1/Torr) shifts for the 

systems of the Cs-He and corresponding the-
oretical data (see text).

T, K Exp [11] a [11] b [11]c This

223 - 164 142 169 175
323 135 126 109 129 136
423 - 111 96 114 122
523 - 100 85 103 110
623 - 94 78 96 103
723 - - - - 96
823 - - - - 91

Note:a –calculation with using the He wave 
functions in the Clementi-Rothaane approxima-
tion; b – the Z-approximation; c –the Löwdin ap-
proximation;

The important feature of the developed opti-
mized perturbation theory approach is using the 
optimized relativistic orbitals basis, an accurate 
accounting for the exchange-correlation and con-
tinuum pressure effects with using the effective 
functionals [18,34]. 
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The difference between the obtained theoreti-
cal data and other alternative calculation results 
can be explained by using different perturbation 
theory schemes and different approximations for 
calculating the electron wave functions of heavy 
atoms. It is obvious that the correct account for 
the relativistic and exchange-correlation and con-
tinuum pressure effects will be necessary for an 
adequate description of the energetic and spectral 
properties of the heavy atoms in an atmosphere of 
the heavy inert gases (for example, such as Xe).
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It is presented a new  consistent relativistic approach to hyperfine structure line collision shift and 

broadening for heavy atoms in an atmosphere of the buffer inert gas, based on the atomic gauge-in-
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НОВЫЙ РЕЛЯТИВИСТСКИЙ ПОДХОД К ОПРЕДЕЛЕНИЮ СДВИГА И  
УШИРЕНИЯ ЛИНИЙ СВЕРХТОНКОЙ СТРУКТУРЫ В ТЯЖЕЛЫХ АТОМАХ  В 

БУФЕРНЫХ ГАЗАХ

Резюме
Представлен новый релятивистский подход к определению сдвига и уширения линии сверх-

тонкой структуры тяжелых  атомов в атмосфере буферных газов. Метод основан на атомной 
калибровочно-инвариантной теории возмущений и оптимальной конструкции межатомного 
потенциала в обменной теории возмущений. В качестве иллюстрация приведены результаты 
расчета  сдвига сверхтонких линий ряда тяжелых атомов, в частности, щелочных атомов в ат-
мосфере буферных инертных газов. Аккуратный  учет релятивистских, обменно-корреляцион-
ных и эффектов давления континуума необходим для адекватного описания энергетических и 
спектральных свойств тяжелых атомов в атмосфере тяжелых инертных газов.  
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Резюме
Представлено новий релятивістський підхід  до визначення зсуву та уширення лінії над-

тонкої структури важких атомів  в атмосфері буферних газів. Метод базується на атомній калі-
брувально-інваріантній теорії збурень та  оптимальній конструкції міжатомного потенціалу в 
обмінній теорії збурень. Як ілюстрація наведені результати розрахунку зсуву надтонких ліній 
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облік релятивістських, обмінно-кореляційних і ефектів тиску континууму необхідний для адек-
ватного опису енергетичних і спектральних властивостей важких атомів в атмосфері важких 
інертних газів.
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NONLINEAR CHAOTIC DYNAMICS OF ATOMIC AND MOLECULAR SYSTEMS IN AN 
ELECTROMAGNETIC FIELD 

It has been numerically studied a chaotic dynamics of diatomic molecules (on example of the 
GeO molecule in an infrared field) and some laser systems. An advanced generalized techniques such 
as the wavelet analysis, multi-fractal formalism, mutual information approach, correlation integral 
analysis, false nearest neighbour algorithm, the Lyapunov exponent’s (LE) analysis, and surrogate data 
method, prediction models etc is used. It has been shown that systems exhibit a nonlinear behaviour 
with elements of a low-or high-dimensional chaos. There are firstly presented the numerical data on 
topological and dynamical invariants of chaotic systems, in particular, the correlation, embedding,  
Kaplan-York dimensions, LE, Kolmogorov’s entropy etc for GeO molecule in an electromagnetic 
infrared field in the chaotic regime..

In last years the phenomena of dynamical 
chaos and dynamical stabilization attract a great 
interest as a manifestation of this effect in pho-
to-optical systems may in a significant degree 
change a functional regime (e.g.[1-15]). Cited 
effect is usually observed in the physical sys-
tems and related to a type of non-linear effects. 
As a rule, dynamical chaos is manifested in the 
quantum systems, which are not linear in a clas-
sic limit. Above especially effective manifesta-
tions of this effect in the quantum systems one 
could mention systems which interact with ex-
ternal, time dependent, for example laser, field. It 
has been discovered that dynamics of atomic and 
molecular, cluster and nano-optical systems in a 
laser field has features of the random, stochas-
tic kind and its realization does not require the 
specific conditions. The importance of studying a 
phenomenon of stochasticity or quantum chaos in 
dynamical systems in laser field is provided by a 
whole number of technical applications, including 
a necessity of understanding chaotic features in a 
work of different electronic devices and systems. 
The important topic of the laser-atomic dynamics 
and hierarchy systems physics is connected with  
governing and control of quantum chaotic diffu-

sion and stabilisation effects in atomic systems in 
the intense laser field (especially important case 
is atoms in electromagnetic traps and heat bath) 
[2,15,16]. The principal aim of coherent control 
is to steer a quantum system towards a desired 
final state through interaction with light while 
simultaneously inhibiting paths leading to unde-
sirable outcomes. Controlling mechanisms have 
been proposed and demonstrated for atomic and 
solid-state systems. Gibson performs calculations 
for three-level systems and 1D model of a two-
electron molecule (see refs in [3]). Transitions to 
excited state occur via a 12-photon interaction 
for an 800 nm intense pulse of length 244 au, or 
just over 2 cycles. The stabilization dynamics of 
model He beyond the dipole approximation and 
with two active electrons was is investigated [6] 
in the presence of a high-intensity and high-fre-
quency laser pulse. There may exist a laser fre-
quency and intensity regime in which the total 
ionization yield decreases with increasing laser 
amplitude. In the near future, free electron lasers 
will further deliver laser pulses of such high fre-
quencies and intensities to meet the conditions 
needed for the stabilization of atomic systems 
more easily. Along with those technological de-
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lan formulae [20] for the molecular potential is:
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where the coefficients bi  are linked with corre-
sponding molecular constants [20]. 

The problem of dynamics of diatomic mole-
cules in an infrared field is reduced to solving the 
Schrödinger equation:

Ψ-+=∂Ψ∂ )]cos()()()([/ 0 ttExdxUHti LM ωe  

where EM - the maximum field strength, 
e(t)=E0cos(nt) corresponds the pulse envelope 
(chosen equal to one at the maximum value of 
electric field). A molecule in the field gets the in-
duced polarization and its high-frequency compo-
nent can be defined as:      

,

,    

,
(3)

where T – period of the external field, d –dipole 
moment. The power spectrum can be further de-
termined as . To  avoid the numeri-
cal noise during the Fourier transformation, the 
attenuation technique used,i.e. at t> tp, p (t) is re-
placed by

)  
                               with T=1.6tp.   

(4)
It is understood that in the regular case of mo-

lecular dynamics,  a spectrum will consist of a 
small number of the well resolved lines. In the 
case of chaotic dynamics of molecule in a field 
situation changes essentially. The correspond-
ing energy of interaction with the field is much 
higher than anharmonicity constant . It is 
obvious that a spectrum in this case become more 
complicated [17,18]. 

We have carried out the numerical comput-
ing dynamics of the diatomic molecule GeO in 
the electromagnetic field (the molecule and field 
parameters are as follows : Ω =985.8 cm-1, Ωy

velopments, a wide range of theoretical methods 
including analytical model calculations, Monte 
Carlo simulations and numerical calculations 
have been applied to the ionization of hydrogen-
like atoms. Further progress was achieved con-
cerning the ionization and stabilization of atoms 
with two active electrons. In ref.[11,12]  an effec-
tive approach to adequate treating and sensing a 
spectral hierarchy and dynamical stabilisation in 
atomic systems in the intense laser field is consid-
ered and based on non-relativistic and relativis-
tic time-dependent complex rotation method (for 
atomic systems) and non-Hermitian Floquet for-
malism (for molecular systems). The stabilization 
of helium (study of the 2D two-electron atom) in 
intense high-frequency laser pulses is modelled 
within the relativistic scheme. It has been carried 
out modeling generation of the atto-second VUV 
and X-ray pulses under ionization of atomic (mo-
lecular) system by femto-second optical pulse. 

In this paper  we present the results of analysis 
of the chaotic dynamics for diatomic molecules 
in an electromagnetic (infrared) field. In this pa-
per we  numerically studied a chaotic dynamics of 
diatomic molecules (on example of the GeO mol-
ecule in an infrared field) and some laser systems. 

An advanced generalized techniques such as 
the wavelet analysis, multi-fractal formalism, 
mutual information approach, correlation inte-
gral analysis, false nearest neighbour algorithm, 
the Lyapunov exponent’s (LE) analysis, and sur-
rogate data method, prediction models etc (look 
details in Refs.[3-19])  is used. It has been shown 
that systems exhibit a nonlinear behaviour with 
elements of a low-or high-dimensional chaos. 
There are firstly presented the numerical data on 
topological and dynamical invariants of chaotic 
systems, in particular, the correlation, embedding,  
Kaplan-York dimensions, LE, Kolmogorov’s en-
tropy etc for GeO molecule in an electromagnetic 
infrared field in the chaotic regime. 

The analysis is based on the numerical solution 
of the time-dependent Schrödinger equation and 
realistic Simons-Parr-Finlan model for the po-
tential of diatomic molecule U (x) (the quantum 
unit).  Secondly, it is based on using an universal 
approach to  analysis of nonlinear chaotic dynam-
ics (chaos-geometric unit). The Simons-Parr-Fin-
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=4.2cm-1, B = 0.48 cm-1, d0 = 3.28 D, M=13.1 
a.e.м.;  the field intensity is 2.5-25 GW/cm2, 
respectively: W = 3.39-10.72cm-1). The corre-
sponding Chirikov parameter in this case is as:  

According to classical-dynamical treating 
[41], these parameters correspond to chaotic re-
gime. The principle of quantum mechanics enter, 
of course, into the mixed interpretation in terms 
of classical trajectories [42]. From one side, the 
final answers are at least understandable intui-
tively, from other one they are result of numerical 
analysis of complex molecular dynamics, which 
involve  a superposition of high-order energy 
transitions, intensive interaction of non-linear 
resonances and chaotic motion of a molecule 
[41,42,44,46].  In fig.1 we list the computed theo-
retical time dependence of polarization for GeO 
molecule in an electromagnetic field in a chaotic 
regime. In order to perform numerical analysis of 
the systems dynamics we used an advanced gen-
eralized techniques such as the wavelet analysis, 
multi-fractal formalism, mutual information ap-
proach, correlation integral analysis, false nearest 
neighbour algorithm, the Lyapunov exponent’s 
(LE) analysis, and surrogate data method, pre-
diction models etc [4-16]. The further step is an 
analysis of the corresponding time series (with  
the time step Dt=4×10-14s ). In Table 1 we list the 
computed values of the correlation dimension d2, 
embedding dimension  dN , which are computed 
on the basis of the of false nearest neighbouring 
points algorithm with noting (%) of false points 
for different values of the lag time t.  Accordingly 
in Table 2 we list the computed values of the Ka-
plan-York attractor dimension (dL), LE (li, i=1-3) 
and the Kolmogorov entropy (Kentr).  

Figure 1. The computed characteristic time de-
pendence of polarization of the GeO molecule in a 
field in a chaotic regime (see parameters in text).

Table 1. 
The correlation dimension d2, embedding 

dimension  dN, which are computed on the ba-
sis of the of false nearest neighbouring points 
algorithm with noting (%) of false points for 

different values of the lag time t

t d2 (dN)
42 3.04 5 (4.2)
4 2.73 3 (1.1)
6 2.73 3 (1.1)

Table 2. 
The Kaplan-York attractor dimension (dL), 

LE (li, i=1-3) and the Kolmogorov entropy (Kentr)

l1 l2 l3 dL Kentr

0.146 0.0179 -0.321 2.51 0.16

Analysis of the received data on the LE, cor-
relation, Kaplan York dimensions,  Kolmogorov 
entropy etc shows that the dynamics of the Geo 
molecules in an electric field has the elements of a 
deterministic chaos (low-D strange attractor) and 
this conclusion is entirely agreed with the results 
of the classical-dynamical treating [18]. It is im-
portant to note that the Kaplan-York dimension is 
less than the embedding one confirming the cor-
rectness of the choice of the latter.
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NONLINEAR CHAOTIC DYNAMICS OF ATOMIC AND MOLECULAR SYSTEMS IN AN 
ELECTROMAGNETIC FIELD 

Abstract
It has been numerically studied a chaotic dynamics of diatomic molecules (on example of the GeO 

molecule in an infrared field) and some laser systems. An advanced generalized techniques such as the 
wavelet analysis, multi-fractal formalism, mutual information approach, correlation integral analy-
sis, false nearest neighbour algorithm, the Lyapunov exponent’s (LE) analysis, and surrogate data 
method, prediction models etc is used. It has been shown that systems exhibit a nonlinear behaviour 
with elements of a low-or high-dimensional chaos. There are firstly presented the numerical data on 
topological and dynamical invariants of chaotic systems, in particular, the correlation, embedding,  
Kaplan-York dimensions, LE, Kolmogorov’s entropy etc for GeO molecule in an electromagnetic 
infrared field in the chaotic regime. 

Key words: molecular system, electromagnetic field, chaotic dynamics
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А. В. Игнатенко, А. А. Кузнецова, А. С. Квасикова, А. В. Глушков,  М. Ю. Гурская

НЕЛИНЕЙНАЯ ХАОТИЧЕСКАЯ ДИНАМИКА АТОМНЫХ И МОЛЕКУЛЯРНЫХ 
СИСТЕМ В ЭЛЕКТРОМАГНИТНОМ ПОЛЕ 

Резюме
Представлены результаты численного анализа и моделирования хаотической динамики 

двухатомных молекул (на примере молекулы GeO) во внешнем электромагнитном ( инфракрас-
ном)  поле. В анализе использованы эффективные версии таких методов анализа как мультиф-
рактальный и вейвлет-анализ, метод корреляционного интеграла, алгоритмы средней взаимной 
информации, ложных ближайших соседей, суррогатных данных анализ показателей Ляпунова, 
энтропии Колмогорова, 

спектральные методы и т.д. Показано, что двухатомная система в электромагнитном поле  
демонстрируют нелинейное поведение с элементами динамического хаоса. Представлены чис-
ленные данные о топологических и динамических инвариантов системы в хаотическом режи-
ме, в частности, корреляционной размерности, размерностей вложения, Каплана-Йорка,  пока-
зателей Ляпунова, энтропии Колмогорова энтропия и т.д. для молекулы GeO  в электромагнит-
ном инфракрасном поле в хаотическом режиме. 

Ключевые слова: молекулярная система, электромагнитное поле, хаотическая динамика, 
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НЕЛІНІЙНИХ ХАОТИЧНА ДИНАМІКА АТОМНИХ ТА МОЛЕКУЛЯРНИХ СИСТЕМ 
В ЕЛЕКТРОМАГНІТНОМУ ПОЛІ 

Резюме
Представлені результати чисельного аналізу і моделювання хаотичної динаміки двоатом-

них молекул (на прикладі молекули GeO) в зовнішньому електромагнітному (інфрачервоно-
му) поле. В аналізі використані ефективні версії таких методів аналізу як мультіфрактальний і 
вейвлет-аналіз, метод кореляційного інтеграла, алгоритми середньої взаємної інформації, по-
милкових найближчих сусідів, сурогатних даних аналіз показників Ляпунова, ентропії Колмо-
горова, спектральні методи і т.і. Показано, що двоатомна система в електромагнітному полі де-
монструє нелінійне поведінку з елементами динамічного хаосу. Представлені чисельні дані по 
топологічним і динамічним інваріантам системи в хаотичному режимі, зокрема, кореляційної 
розмірності, розмірності вкладення, Каплана-Йорка, показників Ляпунова, ентропії Колмого-
рова тощо для молекули GeO в електромагнітному інфрачервоному поле в хаотичному режимі. 

Ключові слова: молекулярна система, електромагнітне поле, хаотична динаміка
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NEW NONLINEAR ANALYSIS, CHAOS THEORY AND INFORMATION TECHNOLOGY 
APPROACH TO STUDYING DYNAMICS OF CHAIN OF QUANTUM AUTOGENERATORS

A chaos-geometric approach [7-11] that consistently includes a number of new or improved known methods 
of analysis (the correlation integral, the fractal analysis, algorithms of the  average mutual information, and false 
nearest neighbors,  the Lyapunov exponents analysis, the Kolmogorov entropy, the method of surrogate data, 
a set of the spectral methods, a neural network algorithms, etc. .) is used to solve the problem of quantitative 
modeling and analysis of chaotic dynamics of a chain of two quantum autogenerators. There are theoretically 
studied a chaos scenario generation and obtained quantitative data on the dynamic and topological invariants of 
the system in the chaotic regime.

1 Introduction
In many papers  (see, for example, [1-18]) it 

has been noted that a chaos is alternative of ran-
domness and occurs as in very simple determin-
istic systems as quite complex ones. Although 
chaos theory places fundamental limitations for 
long-rage prediction (see e.g. [1-9] ), it can be 
used for short-range prediction since ex facte 
random data can contain simple deterministic re-
lationships with only a few degrees of freedom. 
Chaos theory establishes that apparently complex 
irregular behaviour could be the outcome of a 
simple deterministic system with a few dominant 
nonlinear interdependent variables. The past dec-
ade has witnessed a large number of studies em-
ploying the ideas gained from the science of chaos 
to characterize, model, and predict the dynamics 
of various systems phenomena (see e.g. [1-13]). 
The outcomes of such studies are very encourag-
ing, as they not only revealed that the dynamics 
of the apparently irregular phenomena could be 
understood from a chaotic deterministic point of 
view but also reported very good predictions us-
ing such an approach for different systems. 

In a modern quantum electronics and laser 
physics etc there are many systems and devices 
(such as multi-element semiconductors and gas 
lasers etc), dynamics of which can exhibit  cha-
otic behaviour. These systems can be considered 

in the first approximation as a grid of autogenera-
tors (quantum generators), coupled by different 
way [2,14,15]. 

In this paper a chaos-geometric approach [7-
11] that consistently includes a number of new or 
improved known methods of analysis (the corre-
lation integral, the fractal analysis, algorithms of 
the  average mutual information, and false near-
est neighbors,  the Lyapunov exponents analysis, 
the Kolmogorov entropy, the method of surrogate 
data, a set of the spectral methods, a neural net-
work algorithms, etc.; see details in Refs. [1-34]) 
is used to solve the problem of quantitative mod-
eling and analysis of chaotic dynamics of a chain 
of two quantum autogenerators. There are theo-
retically studied a chaos scenario generation and 
obtained quantitative data on the dynamic and 
topological invariants of the system in the chaotic 
regime 

2. Methods of studying dynamics of the la-
ser systems

As used non-linear analysis, chaos theory 
and information technology methods to study-
ing non-linear dynamics of the laser systems 
have been earlier in details presented [1-20] here 
we are limited only by the key ideas. As usu-
ally, we formally consider scalar measurements 
s(n) = s(t0 + nDt) = s(n), where t0 is the start 
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time, Dt is the time step, and is n the number of 
the measurements. Packard et al. [18] introduced 
the method of using time-delay coordinates to re-
construct the phase space of an observed dynami-
cal system. The direct use of the lagged variables 
s(n + t), where t is some integer to be determined, 
results in a coordinate system in which the struc-
ture of orbits in phase space can be captured. First 
approach to compute t is based on the linear auto-
correlation function. The second method is an ap-
proach with a nonlinear concept of independence, 
e.g. the average mutual information. Briefly, the 
concept of mutual information can be described as 
follows [5,7,13]. One could remind that the auto-
correlation function and average mutual informa-
tion can be  considered as analogues of the linear 
redundancy and general redundancy, respectively, 
which was applied in the test for nonlinearity. If a 
time series under consideration have an n-dimen-
sional Gaussian distribution, these statistics are 
theoretically equivalent as it is shown in Ref. [22]. 

The goal of the embedding dimension determi-
nation is to reconstruct a Euclidean space Rd large 
enough so that the set of points dA can be unfolded 
without ambiguity. There are several standard ap-
proaches to reconstruct the attractor dimension 
(see, e.g., [1,7,23]), but let us consider in this study 
two methods only. The correlation integral analy-
sis is one of the widely used techniques to inves-
tigate the signatures of chaos in a time series. The 
analysis uses the correlation integral, C(r), to dis-
tinguish between chaotic and stochastic systems. 
To compute the correlation integral, the algorithm 
of Grassberger and Procaccia [23] is the most com-
monly used approach. According to this algorithm, 
the correlation integral is 
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where H is the Heaviside step function with 
H(u) = 1 for u > 0 and H(u) = 0 for u £ 0, r is the 
radius of sphere centered on yi or yj, and N is the 
number of data measurements. If the time series 
is characterized by an attractor, then the integral 
C(r) is related to the radius r given by 
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where d is correlation exponent that can be de-
termined as the slop of line in the coordinates 
log C(r) versus log r by a least-squares fit of a 
straight line over a certain range of r, called the 
scaling region. 

There are certain important limitations in the 
use of the correlation integral analysis in the 
search for chaos. To verify the results obtained 
by the correlation integral analysis, we use sur-
rogate data method. The method of surrogate data 
[1,7,19] is an approach that makes use of the sub-
stitute data generated in accordance to the proba-
bilistic structure underlying the original data. 
Advanced version is presented in [7-9].

The next step is computing the Lyapunov’s ex-
ponents (LE). The LE are the dynamical invari-
ants of the nonlinear system. A negative exponent 
indicates a local average rate of contraction while 
a positive value indicates a local average rate of 
expansion. In the chaos theory, the spectrum of LE 
is considered a measure of the effect of perturbing 
the initial conditions of a dynamical system. Note 
that both positive and negative LE can coexist in 
a dissipative system, which is then chaotic. Since 
the LE are defined as asymptotic average rates, 
they are independent of the initial conditions, and 
therefore they do comprise an invariant measure 
of attractor. In fact, if one manages to derive the 
whole spectrum of the LE, other invariants of 
the system, i.e. Kolmogorov entropy and attrac-
tor’s dimension can be found. The Kolmogorov 
entropy, K, measures the average rate at which 
information about the state is lost with time. An 
estimate of this measure is the sum of the posi-
tive LE. The inverse of the Kolmogorov entropy 
is equal to an average predictability. 

Estimate of dimension of the attractor is pro-
vided by the Kaplan and Yorke conjecture. There 
are a few approaches to computing the LE. One of 
them computes the whole spectrum and is based 
on the Jacobi matrix of system [27]. In the case 
where only observations are given and the system 
function is unknown, the matrix has to be estimat-
ed from the data. In this case, all the suggested 
methods approximate the matrix by fitting a local 
map to a sufficient number of nearby points. 

In our work we use the method with the lin-
ear fitted map proposed by Sano and Sawada [27] 
added by the neural networks algorithm [7-10].   
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3. Chaotic elements in dynamics of the grid 
of two autogenerators and conclusions

Here we present results of non-linear analysis 
of the chaotic oscillations in a grid of two autogen-
erators. Dynamics of this systems has intensively 
studied from the viewpoint of the corresponding 
differential equations solutions (e.g. [2,14,15]). 
In Refs.[2,14,15] the time series for the character-
istic vibration amplitude are presented in a case 
of two semiconductors lasers connected through 
general resonator. We have studied the time se-
ries in a regime of the hyper chaos (input data 
contain 4096 points).  Firstly we have computed  
the variations of the autocorrelation coefficient 
for the amplitude level. Autocorrelation function 
exhibits some kind of exponential decay up to a 
lag time of about 100 time units.  Such an ex-
ponential decay can be an indication of the pres-
ence of chaotic dynamics in the process of the 
level variations. On the other hand, the autocor-
relation coefficient failed to achieve zero, i.e. the 
autocorrelation function analysis not provides us 
with any value of t. Such an analysis can be cer-
tainly extended to values exceeding 1000, but it 
is known that an attractor cannot be adequately 
reconstructed for very large values of t. The cor-
relation dimension is computed on the basis of the 
correlation integral scheme.

To verify the results obtained by the correla-
tion integral analysis, we use surrogate data meth-
od. The method of surrogate data is an approach 
that makes use of the substitute data generated in 
accordance to the probabilistic structure underly-
ing the original data. This means that the surro-
gate data possess some of the properties, such as 
the mean, the standard deviation, the cumulative 
distribution function, the power spectrum, etc., 
but are otherwise postulated as random, gener-
ated according to a specific null hypothesis. We 
have evaluated the percentage of false nearest 
neighbours that was determined for the amplitude 
level series, for phase-spaces reconstructed with 
embedding dimensions from 1 to 20.  In Table 
1 we list the computed values of the correlation 
dimension d2, embedding dimension  dN, which 
are computed on the basis of the false nearest 
neighbouring points algorithm with noting (%) of 
false points for different values of the lag time t. 
Accordingly in Table 2 we list the computed val-

ues of the Kaplan-York attractor dimension (dL), 
LE (lI, i=1-3) and the Kolmogorov entropy (Kentr).  

Table 1 
The correlation dimension d2 , embedding di-
mension  dN , which are computed on the basis 
of the false nearest neighbouring points algo-
rithm with noting (%) of false points for differ-

ent values of the lag time t

t d2 (dN)
64 7.9 10 (12)
10 7.1 8 (1.2)
12 7.1 8 (1.2)

Table 2 
The Kaplan-York attractor dimension (dL), LE (lI, 
i=1-3) and the Kolmogorov entropy (Kentr) for the 
system of  two semiconductors lasers connected 
through general resonator (the hyperchaos regime)

l1 l2 l3 dL Kentr

0.515 0.198 -0.146 6.9 0.745
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Г. П. Препелиця, С. В. Брусенцева, А. В. Дуборез, О. Ю. Хецелиус, П. Г. Башкарьов

НОВЫЙ ПОДХОД НА ОСНОВЕ НЕЛИНЕЙНОГО АНАЛИЗА, ТЕОРИИ ХАОСА И 
ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ К ИЗУЧЕНИЮ ДИНАМИКИ КВАНТОВЫХ 

ГЕНЕРАТОРОВ И ЛАЗЕРНЫХ СИСТЕМ

Резюме
Хаос-геометрический подход, который единообразно  включает ряд новых или усовершен-

ствованных известных методов анализа (корреляционный интеграл, фрактальный анализ, ал-
горитмы средней взаимной информации, ложных ближайших соседей, показатели Ляпунова, 
энтропия Колмогорова, метод суррогатных данных,  спектральные методы, нейросетевые ал-
горитмы и т.д.) использован для решения задачи количественного моделирования и анализа 
хаотической динамики цепочки двух квантовых автогенераторов. Теоретически изучен сцена-
рий генерации хаоса и  получены количественные данные по динамическим и топологическим 
инвариантам  системы в хаотическом режиме.

Ключевые слова: цепочка квантовых автогенераторов, динамика, хаос, нелинейный анализ
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НОВИЙ ПІДХІД НА ОСНОВІ НЕЛІНІЙНОГО АНАЛІЗУ, ТЕОРІЇ ХАОСУ ТА 
ІНФОРМАЦІЙНИХ ТЕХНОЛОГІЙ ДО ВИВЧЕННЯ ДИНАМІКИ ЛАНЦЮЖКА  

КВАНТОВИХ АВТОГЕНЕРАТОРІВ 

Резюме
Хаос-геометричний підхід, що одноманітно включає низку нових або удосконалених відо-

мих методів аналізу (кореляційний інтеграл, фрактальний аналіз, алгоритми середньої взаємної 
інформації, хибних найближчих сусідів, показники Ляпунова, ентропія Колмогорова, сурогат-
них даних, нелінійний прогноз, спектральні методи, нейромережеві алгоритми тощо) викорис-
таний для вирішення задач кількісно моделювання та аналізу хаотичної динаміки ланцюжка 
квантових автогенераторів. Теоретично вивчений сценарій генерації хаосу, отримані кількісні 
дані по динамічним та топологічним інваріантам системи у хаотичному режимі. 

Ключові слова: ланцюжок квантових автогенераторів, динаміка, хаос, нелінійний аналіз
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RELATIVISTIC THEORY OF EXCITATION AND IONIZATION OF HEAVY ALKALI RYDBERG 
ATOMS IN A BLACK-BODY RADIATION FIELD: NEW DATA 

The combined relativistic energy approach and relativistic many-body perturbation theory with the zeroth 
Dirac-Fock potential approximation are used for computing the thermal Blackbody radiation ionization 
characteristics of the alkali Rydberg atoms, in particular, the rubidium and caesium in Rydberg states with 
principal quantum number n=20-100.  Preliminary application of theory to computing  ionization rate for the 
Rydberg sodium atom in the have demonstrated physically reasonable agreement between the theoretical and 
experimental data. The  accuracy of the theoretical data is provided by a correctness of the corresponding 
relativistic wave functions and accounting for the exchange-correlation effects.

In Refs. [1,2] it has been proposed a combined 
relativistic energy approach and relativistic many-
body perturbation theory with the zeroth model 
potential approximation for determination the 
thermal Blackbody radiation ionization charac-
teristics of the Rydberg atoms. As example, there 
have been computed the ionization parameters of 
the sodium in Rydberg states with n=17,18,40-70. 

A great progress in experimental laser physics 
and appearance of the so called tunable lasers al-
low to get the highly excited Rydberg states of at-
oms. In fact this is a beginning of a new epoch in 
the atomic physics with external electromagnetic 
field. It has stimulated a great number of papers 
on the ad and dc Stark effect [1-12]. 

From the other side, the experiments with Ryd-
berg atoms had very soon resulted in the discovery 
of an important ionization mechanism, provided by 
unique features of the Rydberg atoms. Relatively 
new topic of the modern theory is connected with 
consistent treating the Rydberg atoms in a field of 
the Blackbody radiation (BBR). It should be noted 
that the BBR is one of the essential factors affect-
ing the Rydberg states in atoms [1]. 

The account for the ac Stark shift, fast redistri-
bution of the levels’ population and photoioniza-
tion provided by the environmental BBR  became 
of a great importance for successfully handling 
atoms in their Rydberg states. 

The most popular theoretical approaches to 
computing ionization parameters of the Rydberg 
atom in the BBR are based on the different ver-
sions of the model potential (MP) method, quasi-
classical models. It should be mentioned a simple 
approximation for the rate of thermal ionization 
of Rydberg atoms, based on the results of our sys-
tematic calculations in the Simons-Fues MP [1]. 
In fact, using   the MP approach is very close to the 
quantum defect method and other semi-empirical 
methods, which were also widely used in the past 
few years for calculating atom–field interaction 
amplitudes in the lowest orders of the perturba-
tion theory. The significant advantage of the Si-
mons-Fues MP method in comparison with other 
models is the possibility of presenting analyti-
cally (in terms of the hypergeometric functions) 
the quantitative characteristics for arbitrarily high 
orders, related to both bound–bound and bound–
free transitions. Naturally, the standard methods 
of the theoretical atomic physics, including the 
Hartree-Fock and Dirac-Fock  approximations 
should be used in order to determine the thermal 
ionization characteristics of neutral and Rydberg 
atoms [2]. One could note that the correct treat-
ing of the heavy Rydberg atoms parameters in an 
external electromagnetic field, including the BBR 
field, requires using strictly relativistic models. In 
a case of multielectron atomic systems it is neces-
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We apply a generalized energy approach [11-
15] and relativistic perturbation theory with the 
MP zeroth approximation [16-20] to computing 
the Rydberg atoms ionization parameters. In rela-
tivistic theory radiation decay probability (ioni-
zation cross-section etc) is connected with the 
imaginary part of electron energy shift. The total 
energy shift of the state is usually presented in the 
form: DE = ReDE + i G/2, where G is interpreted 
as the level width, and a decay probability P = 
G. The imaginary part of electron energy shift is 
defined in the PT lowest order as: 
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where (a>n>f)  for electron and (a<n<f)  for va-
cancy. The matrix element is determined as fol-
lows:
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Their detailed description of the matrix ele-
ments and procedure for their computing is pre-
sented in  Refs. [12,13,15]. The relativistic wave 
functions are calculated by solution of the Dirac 
equation with the potential, which includes the 
Dirac-Fock consistent field potential and addi-
tionally  polarization potential [20]. All calcula-
tions are performed on the basis of the numeral 
code Superatom-ISAN (version 93).

In  Ref.[1] there were presented the results 
of computing the ionization rate calculation for 
the Rydberg sodium atom in the states (17,18D, 
18P) at temperatures of 300 K and 500 K and ob-
tained physically reasonable agreement between 
the theoretical and experimental (by Kleppner 
etal and Burkhardt etal [4,5]) data. Besides, there 
are listed new results for for the Rydberg sodium 
atom ionization rate (s-1) with n=20-70 induced 
by BBR radiation (T = 300 K) . Here (Table 1) 

sary to account for thee exchange-correlation cor-
rections. 

Here we apply an energy approach [11-16] 
and relativistic perturbation theory (PT) with the 
Dirac-Fock zeroth approximation [16-20] to com-
puting the thermal BBR ionization characteristics 
of the heavy alkali Rydberg atoms, in particular, 
the rubidium, caesium. It is self-understood that 
the other alkali elements are also of a great actual-
ity and importance. 

Qualitative picture of the BBR Rydberg at-
oms ionization is in principle easily understand-
able.  Even for temperatures of order T=104 K, the 
frequency of a greater part of the BBR photons 
ω does not exceed 0.1 a.u. One could use a sin-
gle- electron approximation  for calculating the 
ionization cross section σnl (ω). The latter appears 
in a product with the Planck’s distribution for the 
thermal photon number density: 
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where k=3.1668×10−6 a.u., K−1 is the Boltzmann 
constant, c = 137.036 a.u. is the speed of light. 

Ionization rate of a bound state nl results in the 
integral over the Blackbody radiation frequen-
cies:
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The ionization cross-section from a bound 
state with a principal quantum number n and or-
bital quantum number l by photons with frequen-
cy ω is as follows: 
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where  the radial matrix element of the ioniza-
tion transition from the bound state with the ra-
dial wave function Rnl(r) to continuum state with 
the wave function REl (r) normalized to the delta 
function of energy. The corresponding radial ma-
trix element looks as:
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we present new data on the ionization rate (s-1) for 
different alkali atoms Rydberg states (with n=20-
70) induced by BBR radiation (T = 300 K) . 

Table 1. 
Ionization rate   (s-1) for the heavy alkali atoms 
in the Rydberg states (with n = 20-100), in-
duced by BBR radiation (T = 300 K; our data).

Atom 20 30 40
K S 80.5 103 84.5
K P 201 210 159
K D 736 584 391
Rb S 118 170 130
Rb P 159 172 125
Rb D 718 621 432
Cs S 108 181 150
Cs P 471 597 451
Cs D 465 495 368
Atom 50 70 100
K S 66.4 37 17
K P 113 61 27
K D 264 128 57
Rb S 105 60 28
Rb P 89 45 18
Rb D 298 151 68
Cs S 114 66 29
Cs P 329 1671 78
Cs D 261 140 67

Obviously, the accuracy of the theoretical data 
is provided by a correctness of the corresponding 
relativistic wave functions and accounting for the 
exchange-correlation effects.
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Abstract
The combined relativistic energy approach and relativistic many-body perturbation theory with 

the zeroth Dirac-Fock potential approximation are used for computing the thermal Blackbody radia-
tion ionization characteristics of the alkali Rydberg atoms, in particular, the rubidium and caesium 
in Rydberg states with principal quantum number n=20-100.  Preliminary application of theory to 
computing  ionization rate for the Rydberg sodium atom in the have demonstrated physically reason-
able agreement between the theoretical and experimental data. The  accuracy of the theoretical data 
is provided by a correctness of the corresponding relativistic wave functions and accounting for the 
exchange-correlation effects.
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РЕЛЯТИВИСТСКАЯ ТЕОРИЯ ВОЗБУЖДЕНИЯ И ИОНИЗАЦИИ ТЯЖЕЛЫХ ЩЕ-
ЛОЧНЫХ РИДБЕРГОВСКИХ АТОМОВ В ПОЛЕ ИЗЛУЧЕНИЯ ЧЕРНОГО ТЕЛА: НО-
ВЫЕ ДАННЫЕ  

Резюме
Комбинированный релятивистский энергитический подход и релятивистская теория 

возмущений многих тел с оптимизированныи дирак-фоковским нулевым приближением 
используются для вычисления ионизационных характеристик щелочных ридберговских атомов 
в поле теплового излучения черного тела, в частности, атомов рубидия и цезия в ридберговских 
состояниях с главным квантовым числом n=20-100. Предварительное применение теории к 
вычислению скорости ионизации атома натрия ридберговских состояниях продемонстрировало 
физически разумное согласие между теоретическими и экспериментальными данными. 
Точность теоретических данных обеспечивается корректностью вычисления соответствующих 
релятивистских волновых функций и полнотой учета обменно-корреляционных эффектов.

Ключевые слова: ридберговские щелочные атомы, релятивистская теория, тепловое 
излучение.
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РЕЛЯТИВІСТСЬКА ТЕОРІЯ ЗБУРЕННЯ ТА ІОНІЗАЦІЇ ВАЖКИХ ЛУЖНИХ 
РІДБЕРГІВСЬКИХ АТОМІВ У ПОЛІ ВИПРОМІНЮВАННЯ ЧОРНОГО ТІЛА: 

НОВІ ДАНІ 

 
Резюме

Комбінований релятивістський енергетичний підхід і релятивістська теорія збурень 
багатьох тіл з з оптимізованим дірак-фоківським нульовим наближенням використовуються 
для обчислення іонізаційних характеристик лужних рідбергівських атомів в полі теплового 
випромінювання абсолютно чорного тіла, зокрема, атомів рубідію і цезію в рідбергівських 
станах з головним квантовим числом n = 20-100. Попереднє застосування теорії до обчислення 
швидкості іонізації атома натрію ридберговских станах продемонструвало фізично розумну 
згоду між теоретичними і експериментальними даними. Точність теоретичних даних 
забезпечується коректністю обчислення відповідних релятивістських хвильових функцій і 
повнотою урахування обмінно-кореляційних ефектів.

Ключові слова: рідбергівські лужні атоми, релятивістська теорія, теплове випромінювання.
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STUDYING PHOTOKINETICS OF THE IR LASER RADIATION EFFECT ON MIXTURE 
OF THE CO2-N2-H20 GASES FOR DIFFERENT ATMOSPHERIC MODELS

A kinetics of energy exchange in the mixture of the atmosphere CO2-N2-H20 gases under passing 
the powerful CO2 laser radiation pulses within the three-mode model of kinetical processes is studied. 
More accurate data for the absorption coefficient are presented. 

At present time the environmental physics has 
a great progress, provided by implementation of 
the modern quantum electronics and laser phys-
ics methods and technologies in order to study 
unusual features of the “laser radiation- substance 
(gases, solids etc.) interaction.   A special inter-
est attracts a problem of interaction of the pow-
erful laser radiation with an aerosol ensemble 
and search of new non-linear optical effects. The 
latter is directly related with problems of mod-
ern aerosol laser physics (c.f.[1-13]). One could 
remind  that there is a redistribution of molecules 
on the energy levels of internal degree of freedom 
in the resonant absorption of IR laser radiation by 
the atmospheric molecular gases. As a result of 
quite complicated processes one could define an 
essential changing of the gases absorption coef-
ficient due to the saturation of absorption [1]. 

One interesting effect else to be mentioned is 
an effect of the kinetic cooling of environment 
(mixture of gases), as it was at first predicted in 
ref. [2,5]. Usually the effect of kinetical cool-
ing (CO2) in a process of absorption of the laser 
pulse energy by molecular gas is considered for 
the middle latitude atmosphere and for special 
form of a laser pulse. Besides, the approximate 
values for constants of collisional deactivation 
and resonant transfer in reaction CO2-N2 are usu-
ally used. In series of papers (see, for example, 

[11-13], computational modelling of  the energy 
and heat exchange kinetics in the mixture of the 
CO2-N2-H20 atmospheric gases interacting with 
IR laser radiation has been carried out within  the 
general three-mode kinetical model. It is obvious 
that using more precise values for all model con-
stants and generally speaking the more advanced 
atmospheric model parameters may lead to quan-
titative changing in the temporary dependence of 
the resonant absorption coefficient by CO2. 

Let us remind that the creation and accumula-
tion of the excited molecules of nitrogen owing to 
the resonant transfer of excitation from the mol-
ecules CO2 results in the change of environment 
polarizability. Perturbing the complex conductiv-
ity of environment, all these effects are able to 
transform significantly the impulse energetics 
of IR lasers in an atmosphere and significantly 
change realization of different non-linear laser-
aerosol effects.  

The aim of this paper is to present more accu-
rate data for  kinetics of energy and heat exchange 
in the mixture CO2-N2-H20 gases in atmosphere 
under passing the powerful CO2 laser radiation 
pulses on the basis of using  the more advanced 
atmospheric model and more precise values for 
all kinetical model constants. 

As usually, we start from the modified three-
mode model of kinetic processes (see, for exam-
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ple, [1,11-13] in order to take into consideration 
the energy exchange and relaxation processes in 
the СО2.– N2 – H2O mixture interacting with a la-
ser radiation. As in ref. [11-13]  we consider a ki-
netics of three levels: 10°0, 00°1 (СО2) and v = 1 
(N2). Availability of atmospheric constituents O2 
and H2O is allowed for the definition of the rate 
of vibrating-transitional relaxation of N2. The sys-
tem of balance equations for relative populations 
is written in a standard form as follows:

0
1102110

1 )2)2( xgPxxgP
dt
dx

b+bω++ωb-= ,

0
22032201

2 )( xPQxxPQx
dt

dx
++++ω-ω= , 

0
3303302

3 )( xPxPQQx
dt

dx
++d-d= .

                                                                     (1)
Here the following notations are used: 

x1 = N100/ 2CON ,

                      x2 = N001/ 2CON ,                   (2)

x3 = 
22 CON / NNd ,

where N100, N001 are the level populations 10°0, 
00°1 (СО2); 2NN  is the level population v = 1 
(N2); 2CON  is the concentration of CO2 molecules; 
δ is the ratio of the common concentrations of 
СО2 and N2 in the atmosphere (δ = 3.85×10-4); 0

1x

, 0
2x  and 0

3x  are the equilibrium relative values of 
populations under gas temperature T:

( )TEx 1
0
1 exp -= ,                                                        

( )TExx 2
0
3

0
2 exp== ;

                                                                          (3)

The values E1 and E2 in (1) are the energies 
(K) of levels 10°0, 00°1 (consider the energy of 
quantum N2 equal to E2); P10, P20 and P30 are the 
probabilities (s-1) of the collisional deactivation of 
levels 10°0, 00°1 (СО2) and v = 1 (N2), Q is the 
probability (s-1) of resonant transfer in the reac-
tion СО2 → N2,ω is the probability (s-1) of СО2 
light excitation, g = 3 is the statistical weight of 
level 02°0,  β = (1+g)-1 = 1/4. As usually, the so-
lution of the differential equations system (1) al-
lows defining a coefficient of absorption of the 

radiation by the CO2 molecules according to the 
formula:

               
22 )( 21 COCO Nxx -σ=a .               (4)

The σ in (4) is dependent upon the thermody-
namical medium parameters as follows [2]:

                         2
1

00
0 








σ=σ

T
T

P
P ,                  (5)

Here  T and p are the air temperature and pres-
sure, σ0 is the cross-section of resonant absorp-
tion under T = T0, p = p0. One could remind that 
the absorption coefficient for carbon dioxide and 
water vapour is dependent upon the thermody-
namical parameters of aerosol atmosphere. In 
particular, for radiation of CO2-laser the coef-
ficient of absorption by atmosphere defined as  

OHCO 22
a+a=a g   is equal in conditions, which 

are typical for summer mid-latitudes, αg(H=0) = 
2.4·106 сm-1, from which 0.8·106 сm-1 accounts 
for CO2 and the rest – for water vapour (data are 
from ref. [2]) . On the large heights the sharp de-
crease of air moisture occurs and absorption coef-
ficient is mainly defined by the carbon dioxide. 

The changing population of the low level 10°0 
(СО2), population of the level 00°1, the vibrat-
ing-transitional relaxation (VT-relaxation) and 
the inter modal vibrating-vibrating relaxation 
(VV’-relaxation) processes define the physics 
of resonant absorption processes. Moreover, the 
above indicated processes result in a redistribu-
tion of the energy between the vibrating and tran-
sitional freedom of the molecules. According to 
ref.[1], the threshold value, which corresponds 
to the decrease of absorption coefficient in two 
times, for the strength of saturation of absorption 
in vibrating-rotary conversion give Isat = (2 ÷ 5) 
105 W cm-2 for atmospheric CO2. In this case the 
pulse duration ti must satisfy the condition tR <<  
ti < tVT, where tR and tVT are the times of rotary 
and vibrating-transitional relaxation’s. by The 
fast exchange of level 10°0 with basic state, and 
by the relatively slow relaxation of high level 
00°1define a renewal process of thermodynamic 
equilibrium is characterized. The latter provides 
an energy outflow from the transitional degree of 
freedom onto vibrating ones and in the cooling 
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of environment. It is easily understand that using 
more powerful laser radiation sources can lead to 
a strong non-linear interaction phenomena and, as 
result, significantly change a photo-kinetics of the 
corresponding processes.
In table 1 we present mode accurate our data 
(column C) for the relative coefficient of 

absorption 2COa , which is normalized on the 
linear coefficient of absorption, calculated using 
(1) on corresponding height H. All data for 

2COa are obtained for the height distribution of 
the pressure and temperature according to the 
advanced mid-latitude atmospheric model (all 
data are presented in series of refs. [14-20]). In 
table 1 there are presented also the analogous data 
from ref. [2] (column A) , from ref. [13]  (column 
B).

Table 1.
Temporary dependence of resonant absorption  

relative coefficient 2COa (sm-1) of laser radiation 
(λ=10,6μm )  by CO2  for rectangular (R ) laser 
pulses (intensity I=105 W/sm2) on the height 
(H, km) for the mid-latitude atmospheric 
model [1]:  A- data of modelling [2];  B- data 
of modelling [13], C- data of modelling [14], D- 

this work

T
ms

A [2]
10×I; R

H=0

A[2]
10×I;R
H=10

B [13]
10×I; G

H=0

B [13]
10×I; G
H=10

0
1
2
3
4

1,0
0,60
0,52
0,63
0,67

1,0
0,12
0,08
0,27
0,35

1,0
0,57
0,46
0.59
0,64

1,0
0,13
0,05
0,19
0,28

T
ms

C [14]
10×I; 

G
H=0

C [14]
10×I; G
H=10

D, this
10×I; G

H=0

D, this
10×I; G
H=10

0
1
2
3
4

1,0
0,54
0,42
0.57
0,60

1,0
0,11
0,04
0,16
0,25

1,0
0,54
0,42
0.57
0,60

1,0
0,11
0,04
0,16
0,25

In Refs.[2 13,14] the analogous data for the 

relative coefficient of absorption  2COa and the 

height distribution of pressure and temperature 
are presented and obtained in a case of using the 
Odessa-latitude atmospheric conditions according 
to atmospheric model [7,8]. Here we use the 
world standard atmospheric model conditions 
[14-20]. Important moment is also  connected 
with the more correct choice of probabilities P10, 
P20 and P30 of the collisional deactivation of levels 
10°0, 00°1 (СО2) and v = 1 (N2), probability Q 
of resonant transfer in the reaction СО2 → N2, 
probability ω of СО2 light excitation and other 
constants in comparison with refs. [2,13]. Let us 
in conclusion to note that obviously a quality of 
choice of the corresponding molecular constants 
and the corresponding atmospheric model 
parameters is of a great importance in modelling 
the effect of kinetic cooling of the CO2 under 
propagation of the laser radiation in atmosphere. 
Naturally, principally another situation will occur 
in a case of the super intense laser pulses using 
for the atmosphere monitoring. Obviously,  the 
modified model of photokinetical processes is to 
be developed in this case.
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STUDYING PHOTOKINETICS OF THE IR LASER RADIATION EFFECT ON MIXTURE 
OF THE CO2-N2-H20 GASES FOR DIFFERENT ATMOSPHERIC MODELS

Abstract. A kinetics of energy exchange in the mixture of the atmosphere CO2-N2-H20 gases under 
passing the powerful CO2 laser radiation pulses within the three-mode model of kinetical processes is 
studied. More accurate data for the absorption coefficient are presented. 
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СО СМЕСЬЮ CO2-N2-H20 ГАЗОВ ДЛЯ РАЗНЫХ АТМОСФЕРНЫХ МОДЕЛЕЙ 

Резюме. Рассмотрена фотокинетика энергообмена в смеси CO2-N2-H20 атмосферных газов 
при прохождении через атмосферу мощного излучения CO2 лазера в рамках уточненной 3-мо-
довой модели кинетических процессов. Получены более точные значения коэффициента по-
глощения. 
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ІЗ СУМІШЕЙ CO2-N2-H20 ГАЗІВ ДЛЯ РІЗНИХ АТМОСФЕРНИХ МОДЕЛЕЙ

Резюме. Розглянуто фотокінетику енергообміну у сумішу CO2-N2-H20 атмосферних газів при 
проходженні скрізь  атмосферу міцного випромінювання CO2 лазера у межах уточненої 3-мо-
дової моделі кінетичних процесів. Отримані більш точні оцінки  для коефіцієнта поглинання. 
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NONLINEAR DYNAMICS OF RELATIVISTIC BACKWARD-WAVE TUBE 
IN AUTOMODULATION AND CHAOTIC REGIME WITH ACCOUNTING

THE EFFECTS WAVES REFLECTION, SPACE CHARGE FIELD 
AND DISSIPATION

It has been performed quantitative modelling, analysis, forecasting dynamics relativistic backward-
wave tube (RBWT) with accounting relativistic effects, dissipation, a presence of space charge etc. 
There are computed the temporal dependences of the normalized field amplitudes (power) in a wide 
range of variation of the controlling parameters which are characteristic for distributed relativistic 
electron-waved self-vibrational systems: electric length of an interaction space N, bifurcation 
parameter L and relativistic factor γ0. The computed temporal dependence of the field amplitude 
(power) are very well correlated with the results by Ryskin-Titov, who give the detailed studying the 
RBWT dynamics with accounting the reflection effect, but without accounting dissipation effect and 
space charge field influence etc. The analysis techniques including multi-fractal approach, methods of 
correlation integral, false nearest neighbour, Lyapunov exponent’s, surrogate data, is applied analysis of 
numerical parameters of chaotic dynamics of RBWT. There are computed the dynamic and topological 
invariants of the RBWT dynamics in auto-modulation(AUM)/chaotic regimes, correlation dimensions 
values), embedding, Kaplan-York dimensions, Lyapunov’s exponents (LE: +,+) Kolmogorov entropy. 

1.  Introduction
The backward-wave tube is an electronic de-

vice for generating electromagnetic vibrations 
of the superhigh frequencies range. In refs.[1-
14] there have been presented the temporal de-
pendences of the output signal amplitude, phase 
portraits, statistical quantifiers for a weak chaos 
arising via period-doubling cascade of self-mod-
ulation and for developed chaos at large values of 
the dimensionless length parameter. The authors 
of [1-14] solved the different versions of system 
of equations of nonstationary nonlinear theory for 
the O type backward-wave tubes with and with-
out account of the spatial charge, without energy 
losses etc. It has been shown that the finite-di-
mension strange attractor is responsible for cha-
otic regimes in the backward-wave tube.  

In our work it has been performed quantitative 
modelling, analysis, forecasting dynamics relativ-
istic backward-wave tube (RBWT) with account-

ing relativistic effects (g0>1), dissipation, a pres-
ence of a space charge field etc. There are com-
puted the temporal dependences of the normalized 
field amplitudes (power) in a wide range of varia-
tion of the controlling parameters which are char-
acteristic for distributed relativistic electron-waved 
self-vibrational systems: electric length of an inter-
action space N, bifurcation parameter L one and 
relativistic factor g0. The computed temporal de-
pendence of the field amplitude (power) are very 
well correlated with the results by Ryskin-Titov 
[7], who give the detailed studying the RBWT dy-
namics with accounting the reflection effect, but 
without accounting dissipation effect and space 
charge field influence etc.

2.  Method and Results
As the key ideas of our technique for nonlinear 

analysis of chaotic systems have been in details 
presented in refs. [13-28], here we are limited only 
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by brief representation. The first important step is 
a choice of the model of the RBWT dynamics. 
We use the standard non-stationary theory [3-7], 
however, despite the cited papers we take into ac-
count a number of effects, namely, influence of 
space charge,  dissipation, the waves reflections 
at the ends of the system and others [12,13]. Usu-
ally relativistic dynamics is described system of 
equations for unidimensional relativistic electron 
phase ( )0è æ,ô,è  (which moves in the interaction 
space with phase q0 (q0Î[0; 2p]) and has a coor-
dinate z at time moment t) and field unidimen-

sional complex amplitude  ( ) ( )2
0æ,ô / 2âF E UC=   

as  [240, 249]:                 
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with the corresponding boundary and initial con-
ditions. In is important to note that the system 
studied has a few controlling parameters which 
are characteristic for distributed relativistic elec-
tron-waved self-vibrational systems: electric 
length of an interaction space N, bifurcation pa-

rameter 0/2 gpCNL =  (here  C- is the known Piers 

parameter) and relativistic factor 2/.12
00 )1( --= bg

.  As input parameters there were taken following 
initial values: relativistic factor g0=1.5 (further 
we will increase g0  in 2 and 4 times), electrical 

length of the interaction space )2/(0 plkN = =10, 
electrons speed v0=0.75c, vгр=0.25c, dissipation 
parameter D = 5Db, starting reflection param-
eters: s = 0.5, r=0.7, 0<φ <2p . A choice of j due 
to the fact that the dependence upon it is periodic. 
The influence of reflections leads to the fact that 
bifurcational parameter L begins to be dependent 
on the phase j of  the reflection parameter (see 
discussion regarding it in [7,8]).

Since processes resulting in the chaotic behav-
iour are fundamentally multivariate, it is neces-

sary to reconstruct phase space using as well as 
possible information contained in the dynami-
cal parameter s(n), where n the number of the 
measurements. Such a reconstruction results in a 
certain set of d-dimensional vectors y(n) replac-
ing the scalar measurements. Packard et al. [19] 
introduced the method of using time-delay coor-
dinates to reconstruct the phase space of an ob-
served dynamical system. The direct use of the 
lagged variables s(n + t), where t is some integer 
to be determined, results in a coordinate system 
in which the structure of orbits in phase space can 
be captured. Then using a collection of time lags 
to create a vector in d dimensions, y(n) = [s(n), 
s(n + t), s(n + 2t),…,s(n + (d-1)t)], the required 
coordinates are provided. In a nonlinear system, 
the s(n + jt) are some unknown nonlinear com-
bination of the actual physical variables that 
comprise the source of the measurements. The 
dimension d is called the embedding dimension, 
dE. According to Mañé and Takens [24,25],  any 
time lag will be acceptable is not terribly useful 
for extracting physics from data. The autocorre-
lation function and average mutual information 
can be applied here. The first approach is to com-
pute the linear autocorrelation function CL(d) and 
to look for that time lag where CL(d) first passes 
through zero (see [18]). This gives a good hint of 
choice for t at that s(n + jt) and s(n + (j + 1)t) are 
linearly independent. a time series under consid-
eration have an n-dimensional Gaussian distribu-
tion, these statistics are theoretically equivalent 
(see [15]). The goal of the embedding dimension 
determination is to reconstruct a Euclidean space 
Rd large enough so that the set of points dA can be 
unfolded without ambiguity. In accordance with 
the embedding theorem, the embedding dimen-
sion, dE, must be greater, or at least equal, than 
a dimension of attractor, dA, i.e. dE > dA. In other 
words, we can choose a fortiori large dimension 
dE, e.g. 10 or 15, since the previous analysis pro-
vides us prospects that the dynamics of our sys-
tem is probably chaotic. However, two problems 
arise with working in dimensions larger than real-
ly required by the data and time-delay embedding 
[5,6,18]. First, many of computations for extract-
ing interesting properties from the data require 
searches and other operations in Rd whose com-
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putational cost rises exponentially with d. Sec-
ond, but more significant from the physical point 
of view, in the presence of noise or other high-D 
contamination of the observations, the extra di-
mensions are not populated by dynamics, already 
captured by a smaller dimension, but entirely by 
the contaminating signal. There are several stand-
ard approaches to reconstruct the attractor dimen-
sion (see, e.g., [3-6,15]). The correlation integral 
analysis is one of the widely used techniques to 
investigate the signatures of chaos in a time se-
ries. The analysis uses the correlation integral, 
C(r), to distinguish between chaotic and stochas-
tic systems. To compute the correlation integral, 
the algorithm of Grassberger and Procaccia [10] 
is the most commonly used approach. If the time 
series is characterized by an attractor, then the in-
tegral C(r) is related to the radius r as

                           
r
rCd

N
r log

)(loglim
0
∞→

→

= ,                   (2)

where d is correlation exponent.The saturation 
value of correlation exponent is defined as the 
correlation dimension (d2) of attractor. The Lya-
punov exponents are the dynamical invariants of 
the nonlinear system. In a general case, the orbits 
of chaotic attractors are unpredictable, but there 
is the limited predictability of chaotic physical 
system, which is defined by the global and local 
Lyapunov exponents. Since the Lyapunov expo-
nents are defined as asymptotic average rates, 
they are independent of the initial conditions, and 
therefore they do comprise an invariant measure 
of attractor. In fact, if one manages to derive the 
whole spectrum of Lyapunov exponents, other in-
variants of the system, i.e. Kolmogorov entropy 
and attractor’s dimension can be found. The Kol-
mogorov entropy, K, measures the average rate 
at which information about the state is lost with 
time. An estimate of this measure is the sum of 
the positive Lyapunov exponents. There are sev-
eral approaches to computing the Lyapunov ex-
ponents (see, e.g., [5,6,15-18]).  

In figure 1 we list the data on the time de-
pendence of normalized field amplitude 
( ) ( )2

0æ,ô / 2âF E UC=   (our data subject dissipa-
tion, the influence of space charge, the effect of 
reflections waves) at the values of the bifurcation 

parameter L:(a) – 3.5, (b) – 3.9 (other parameters: 
g0=1.5, =N 10, s=0.5, r=0.7, φ =1.3p).

(a)

(b)
Figure 1. Data on the time dependence of normal-
ized field amplitude F(z,t  )(our data with account-
ing  dissipation, the influence of space charge and 
an effect of wave reflections) at the values of the 
bifurcation parameter L: (a) – 3.5, (b) – 3.9 (other 
parameters: g0=1.5, =N 10, s=0.5, r=0.7, φ =1.3p).

Figures 1a,b are corresponding to the regimes 
of quasi-periodical automodulation (a) and essen-
tially chaotic regime (b). Importantly, our results 
obtained are very well correlated with the results 
by Ryskin-Titov in Ref. [7], where it has been in 
details studied the RBWT dynamics with account-
ing the reflection effect, but without accounting 
dissipation effect and space charge field influence 
etc. In table 1 we list our data on  the correlation 
dimension d2, embedding dimension, determined 
on the basis of false nearest neighbours algorithm 
(dN) with percentage of false neighbours (%).  cal-
culated for different values of lag  t (data on fig1b, 
regime of a chaos).
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Table 1. 
Correlation dimension d2, embedding dimen-
sion, determined on the basis of false nearest 
neighbours algorithm (dN) with percentage of 
false neighbours (%) calculated for different 

values of lag  t

t t d2 (dN)

60 68 8.1 10 (12)

6 9 6.4 8 (2.1)

8 12 6.4 8 (2.1)

In Table 2 we list our computing data on the  Lya-
punov exponents (LE), the dimension of the Kaplan-
York attractor, the Kolmogorov entropy Kentr. 

Table 2. 
The  Lyapunov exponents (LE), the 

dimension of the Kaplan-York attractor, the 
Kolmogorov entropy Kentr. (our data)

l1 l2 l3 l4 K

0.507 0.198 -0.0001 -0.0003 0.71

For studied series there are the positive and 
negative LE values. he resulting dimension Ka-
plan York in both cases are very similar to the cor-
relation dimension (calculated by the algorithm 
by Grassberger-Procachia). More important is 
the analysis of the RBWT nonlinear dynamics in 
the plane “relativistic factor – bifurcation param-
eter.” Actually in this context a three-parametric 
relativistic nonlinear dynamics is fundamentally 
different from processes in non-relativistic BWT 
dynamics. 

Conclusions
In this  work we have performed quantitative 

modelling, analysis, forecasting dynamics relativ-
istic backward-wave tube (RBWT) with account-
ing relativistic effects (g0>1), dissipation, a pres-
ence of space charge, reflection of waves at the 
end of deceleration system etc. There are com-
puted the temporal dependences of the normal-
ized field amplitudes (power) in a wide range of 

variation of the controlling parameters which are 
characteristic for distributed relativistic electron-
waved self-vibrational systems: electric length of 
an interaction space N, bifurcation parameter L 
(the automodulation and chaotic regimes) rela-
tivistic factor g0=1.5-6.0). There are computed 
the dynamic and topological invariants of the 
RBWT dynamics in auto-modulation/chaotic 
regimes, correlation dimensions values, embed-
ding, Kaplan-York dimensions, LE(LE:+,+) Kol-
mogorov entropy. In the further work we will try 
to present the bifurcation diagrams  with defini-
tion of the dynamics self-modulation/chaotic ar-
eas in planes: «L-g0», «D-L», predict emergence 
of highly-d chaotic attractor, which evolves at a 
much complicated scenario.
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NON-LINEAR DYNAMICS OF RELATIVISTIC BACKWARD-WAVE TUBE IN SELF-
MODULATION AND CHAOTIC REGIME WITH ACCOUNTING THE WAVES 

REFLECTION, SPACE CHARGE FIELD AND DISSIPATION EFFECTS

Abstract
It has been performed quantitative modelling, analysis of dynamics relativistic backward-wave 

tube (RBWT) with accounting relativistic effects, dissipation, a presence of space charge etc. There 
are computed the temporal dependences of the normalized field amplitudes in a wide range of variation 
of the controlling parameters which are characteristic for distributed relativistic electron-waved self-
vibrational systems: electric length of an interaction space N, bifurcation parameter L and relativistic 
factor γ0. The computed temporal dependence of the field amplitude is in a good agreement with 
theoretical data by Ryskin-Titov regarding the RBWT dynamics with accounting the reflection effect, 
but without accounting dissipation effect and space charge field influence etc. The analysis techniques 
including multi-fractal approach, methods of correlation integral, false nearest neighbour, Lyapunov 
exponent’s, surrogate data, is applied analysis of numerical parameters of chaotic dynamics of 
RBWT. There are computed the dynamic and topological invariants of the RBWT dynamics in auto-
modulation, chaotic regimes, correlation dimensions values), embedding, Kaplan-York dimensions, 
LE(+,+) Kolmogorov entropy. 
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НЕЛИНЕЙНАЯ ДИНАМИКА РЕЛЯТИВИСТСКОЙ ЛАМПЫ ОБРАТНОЙ ВОЛНЫ В 
АВТОМОДУЛЯЦИОННОМ И ХАОТИЧЕСКОМ РЕЖИМАХ  С УЧЕТОМ ЭФФЕКТОВ 

ОТРАЖЕНИЯ ВОЛН, ВЛИЯНИЯ ПОЛЯ ПРОСТРАНСТВЕННОГО ЗАРЯДА И 
ДИССИПАЦИИ

Резюме
Приведены результаты  моделирования, анализа динамики процессов в релятивистской 

лампе обратной волны (РЛОВ) с учета релятивистских эффектов, диссипации, наличия 
пространственного заряда и т.д. Вычислены  временные зависимости нормированной 
амплитуды поля в широком диапазоне изменения управляющих параметров: электрическая 
длина пространства взаимодействия N, бифуркационный параметр L и релятивистский фактор 
γ0. Вычисленная зависимость амплитуды поля находится в хорошем согласии с теоретическими 
данными Рыскинa-Титова о динамике РЛОВ с учетом эффекта отражения волн, но без учета 
эффектов диссипации и  влияния поля пространственного заряда, т.д. Техника нелинейного 
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анализа, которая включает методы корреляционных интегралов, ложных ближайших соседей, 
экспонент Ляпунова, суррогатных данных, использована для анализа численных параметров 
хаотического режима в РЛОВ. Рассчитаны  динамические и топологические инварианты 
динамики РЛОВ в автомодуляционном и хаотическом  режимах, корреляционная размерность, 
размерности вложения, Каплан-Йорка, показатели Ляпунова (+, +), энтропия Колмогорова. 
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НЕЛІНІЙНА ДИНАМІКА РЕЛЯТИВІСТСЬКОЇ ЛАМПИ ЗВЕРНЕНОЇ ХВИЛІ  В 
АВТОМОДУЛЯЦІЙНОМУ ТА ХАОТИЧНОМУ РЕЖИМАХ З УРАХУВАННЯМ ЕФЕКТІВ 
ВІДДЗЕРКАЛЕННЯ ХВИЛЬ, ВПЛИВУ ПОЛЯ ПРОСТОРОВОГО ЗАРЯДУ І ДИСИПАЦІЇ

Резюме
Наведені результати моделювання, аналізу динаміки процесів в релятивістської лампі 

зворотної хвилі (РЛЗХ) з урахуванням релятивістських ефектів, дисипації, наявності 
просторового заряду і т.і. Обчислені часові залежності нормованої амплітуди поля в широкому 
діапазоні зміни керуючих параметрів: електрична довжина простору взаємодії N, біфуркаційний 
параметр L, і релятивістський фактор γ0. Обчислена залежність амплітуди поля знаходиться в 
хорошій згоді з теоретичними даними  Рискіна-Титова щодо динаміки РЛЗХ з урахуванням 
ефекту віддзеркалення хвиль, але без урахування ефектів дисипації і впливу поля просторового 
заряду, тощо. Техніка нелінійного аналізу, яка включає методи кореляційних інтегралів, хибних 
найближчих сусідів, експонент Ляпунова, сурогатних даних, використана для аналізу чисельних 
параметрів хаотичних режимів у РЛЗХ. Розраховані динамічні та топологічні інваріанти 
динаміки РЛЗХ в автомодуляціоному і хаотичному режимах, кореляційна розмірність, 
розмірності вкладення, Каплан-Йорка, показники Ляпунова (+, +), ентропія Колмогорова.
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FEATURES of VOLT - FARAD  DEPENDENCE of NONIDEAL HETEROJUNCTIONS 
BARRIER CAPACITY

Abstract. 
Abnormal dependence of volt-farad characteristics of «nonideal» heterojunctiоn barrier capacity 

is investigated. It is shown that in heterojunctions with the big concentration and non-uniform distri-
bution of defects tunnel currents essentially influence on the barrier capacity size.

The model for an explanation of abnormal barrier capacity dependence on the voltage, using 
tunneling-recombination   mechanism of carriers carry through the area of a spatial charge is offered. 
The put forward assumptions put in a model basis, are confirmed experimentally.

Key words: nonideal heterojunctin, volt-farad characteristic  
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В. А. Борщак, М. І. Куталова, Н. П. Затовська, Л. М. Вілінська, А. О. Карпенко

ОСОБЛИВОСТІ  ВОЛЬТ-ФАРАДНОЇ  ЗАЛЕЖНОСТІ  БАР’ЄРНОЇ  ЄМНОСТІ
НЕІДЕАЛЬНИХ  ГЕТЕРОПЕРЕХОДІВ

Резюме
Досліджено аномальну залежність вольт-фарадної характеристики бар’єрної ємності «неіде-

альних» гетеропереходів. Показано що в гетеропереходах з великою концентрацією і неоднорід-
ним розподілом дефектів тунельні струми істотно впливають на величину бар’єрної ємності. 

Запропоновано модель для пояснення аномальної залежності бар’єрної ємності від напруги, 
що використовує тунельно-рекомбінаційний механізм переносу носіїв через область просторо-
вого заряду. Висунуті припущення, покладені в основу моделі, підтверджені експериментально.

Ключеві слова: неідеальний гетероперехід, вольт-фарадна характеристика, стрибкова 
провідність
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ОСОБЕННОСТИ ВОЛЬТ-ФАРАДНОЙ ЗАВИСИМОСТИ БАРЬЕРНОЙ ЕМКОСТИ
НЕИДЕАЛЬНЫХ ГЕТЕРОПЕРЕХОДОВ

Резюме
Исследована аномальная зависимость вольт-фарадной характеристики барьерной емкости 

«неидеальных» гетеропереходов. Показано что в гетеропереходах с большой концентрацией и 
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неоднородным распределением дефектов туннельные токи существенно влияют на величину 
барьерной емкости. 

Предложена модель для объяснения аномальной зависимости барьерной емкости от напря-
жения, использующая туннельно-рекомбинационный механизм переноса носителей через об-
ласть пространственного заряда. Выдвинутые предположения, положенные в основу модели, 
подтверждены экспериментально.

Ключевые слова: неидеальный гетеропереход, вольт-фарадная характеристика, прыжковая 
проводимость

At selection of semiconductor substances for 
heterojunction (HJ) creation the semiconductor 
“ideal” pairs are considered those which crystal 
lattices constants differ on the tenth part of per-
cent. However at the majority of the semiconduc-
tor compounds suitable to manufacturing HJ with 
necessary properties, crystal lattices constants 
differ in some percents. Such lattices discrepancy 
creates on the interface high density of states (~ 
1014 sm2) [15], being the centres through which 
recombination  and tunneling can be carried out. 
These phenomena usually degrade the HJ work, 
nevertheless some “nonideal” heteropairs are per-
spective. Classical type of “nonideal” HJ is pair 
CdS - Cu2S, used as a photo cell with efficiency 
of  7... 9 %.

In the present work cadmium sulfide – cupper 
sulfide HJ, received in a aninted vacuum cycle on 
a glass substrate with the transparent SnO2 con-
ducting layer were investigated. The technology 
of HJ obtaining is based on consecutive thermal 
evaporation of cadmium sulfide  and copper chlo-
ride  in vacuum.

Formation of heterojunction CdS-Cu2S occurs 
as a result of solid-state   substitution reaction 
by ions Cu + ions Cd2+ on a surface of cadmium 
sulfide at heating of the CdS-CuCl structure in 
vacuum  [2].

Crystal lattices constants of CdS and Cu2S dif-
fer on 4 % [3] that is the reason of occurrence 
of the big concentration of mismatch dislocation 
which can serve as centres of recombination, and 
also centres of capture for holes and electrons. 
These centres play the important role in processes 
of current transport and charges separation and 
are located in the spatial charge region (SCR), 
completely laying in volume of cadmium sulfide, 
because of heterojunction asymmetry.

Data on these centre parameters and on  do-
nor concentration distribution in SCR can be re-

ceived, by investigating the barrier capacity de-
pendences on voltage. Measurement of volt-farad 
characteristics of “nonideal” HJ usually gives in 
coordinates C-2...U a straight line with one or sev-
eral breaks (fig. 1, curve α). These sections testify 
the presence of areas with various charge concen-
tration amounts in SCR [1].

For CdS-Cu2S heterojunctions, received on the 
described technology, volt-farad   characteristic 
had more complex character shown in abnormal 
behaviour of curve        C-2...U dependence at small 
negative and positive voltages (fig. 1, curve b). 

Fig. 1. Dependence of C-2 amount on a voltage for 
heterojunction with the step distribution of charge 
concentration    in base:  а - theoretical dependence; 

b - experimental curve

Presence of two linear sections 1 and 3 on the 
experimental curve is connected to existence of 
two layers with various charge carrier concentra-
tions. These layer extents L1 and L2 were calcu-
lated under the formula:
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Where ε0 - absolute dielectric permeability; 
ε - relative dielectric permeability of of cadmi-
um sulfide; e - electron charge; U - the voltage 
biased to heterojunction; φ - the barrier height 
determined on a cut-off voltage: φ1 = 0,27 eV,  
φ2 = 1,05 eV. Concentration of a charge in layers 
is determined by expression

( ) 12

1,2 2
0

2 d C
N

eS dUee

-
- 

=  
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where S – HJ area.
For layer L1 = 0,51 microns, N1 = 4,1·1015 cm-

3. For layer L2 = 0,12 microns, N2=2,2·1016cm-3. 
Smaller values of concentration N1 of boundary 
layer L1 are connected to copper diffusion into 
cadmium sulfide volume at heterojunction forma-
tion. Copper atoms are acceptors in cadmium sul-
fide and, lower the charge density by compensat-
ing donor centres.

On fig. 2 the band diagram constructed on cal-
culated values N1, N2 and L1, L2 is given. How-
ever, such model allows to explain only volt-farad 
dependence submitted by the curve a on fig. 1.

Fig. 2. The band diagram of heterojunction, 
constructed on the data of the experimental volt-

farad dependence

As it is obvious from fig. 1 (curve b), the exper-
imental curve has an abnormal section on which 
the capacity grows with reduction of a direct volt-
age. The behaviour of the volt-farad  dependence 
curve on a section 2 does not find an explanation 
within the framework of model [ 1 ]. 

The observable trend of curve can be the con-
sequence of a field devastation of the electronic 
capture levels located in volume of cadmium sul-
fide near to HJ border. Intensity of an electric field 
necessary for this process is realized in SCR at 
negative and small positive biases. The competi-
tion of the deep electronic traps filling processes 
and their full devastation results in increase or re-
duction of SCR width. Change of the barrier ca-
pacity amount in this case should be accompanied 
by a current relaxation at change of bias polarity. 
However the experiment which has been carried 
out in a wide range of frequencies, has not found 
out current relaxation that does not allow using 
the described mechanism.

For interpretation of abnormal course experi-
mental volt-farad characteristics the assumption 
that conductivity G1 of layer L1 is much more than 
conductivity G2 of layer L2 is made. The assump-
tion is made contrary to inequalities: L1 > L2, n1 < 
n2, however is justified as conductivity in barrier 
areas of nonideal HJ can be connected to the tun-
nel mechanism.

For more information on the current trans-
port mechanism temperature dependences of 
heterojunction conductivity were investigated. 
Temperature dependence of samples conductiv-
ity at positive bias on junction in an interval of 
temperatures from nitrogen up to room is badly 
straightened in lnG...T-1 coordinates. The average 
amount of activation energy, determined on the 
specified dependence, is equal 0,012 eV. Howev-
er the measured temperature dependence is well 
straightened in G...T-1/4 coordinates. According to 
Mott-Devis theory [6] such dependence observ-
ing in homogeneously - disorderly semiconductor 
substance what the area of heterojunction CdS-
Cu2S spatial charge is, and also the abnormal 
low energy of thermal activation of conductivity, 
specify on jumping mechanism of current trans-
port on local states. This is specified with observ-
ing frequency dependence of active component 
of conductivity G...ω0,8 in a range of frequencies  
5 < ω· < 200 kHz.

Conductivity of barrier areas of researched 
samples in the greater degree is determined by a 
tunnel transparency, than the carrier concentra-
tion. At cupper diffusion into CdS boundary layer 
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arise a plenty of failures of a crystal lattice that 
provides multistage process of tunneling through 
rather extended area L1 [7]. 

Fig. 3. Dependence of dark conductivity on positive 
bias on heterojunction (frequency of a measuring 

signal is equal 10 kHz)

HJ capacity, measured experimentally, is con-
nected to a layer of the lowest electroconductivity. At 
negative bias on junction when SCR has the big ex-
tent, and at performance of inequality G1 >> G2, the 
capacity of only layer L2 is measured, and layer L1  is 
perceived by the measuring device as series connec-
tion resistance.

At the apply on HJ positive bias thickness of L2 
layer decreases and it should result in increase of 
measured capacity. Simultaneously there is a redis-
tribution of measuring signal voltage: it grows on L1 
and decreases on L2.

Under these conditions, the capacity of both lay-
ers is measured and the abnormal behavior of volt-
farad dependence is observed. Reduction of capacity 
proceeds until SCR does not become equal to layer 
L1 thickness. At the further increase of positive bias 
capacity SCR, laying only in layer L1 is measured, as 
now this area has the lowest conduction. In these con-
ditions, the normal section of volt-farad characteristic 
is again observed.

The confirmation of the offered model is the mea-
sured dependence G=f(U) submitted in fig. 3. Really, 
at the voltages appropriate to an abnormal section of 
a curve C-2

  = f (U) and to redistribution of decline in 
potential between areas L2 and L1. sharp increase of 
heterojunction electroconductivity is observed.

It is typical for the given band diagram, that he po-
sition of L1 border has “biographic” character while 
the width of L2 layer depends on the bias voltage or 
other influences. At excitation of heterojunction by 
light the space charge region has smaller extent as a 
result of the capture level filling by photoexcited holes 
[4]. In such conditions at zero bias on heterojunction 
the space charge region is placed only in the compen-
sated layer, characterized, as it was shown above, by 
tunnel-recombination mechanism of conductivity.

Thus, on the example of classical nonideal struc-
ture on the basis of semiconductor compounds cad-
mium sulfide – cupper sulfide it is shown, that in 
heterojunctions with the big concentration and non-
uniform distribution of defects in boundary region 
tunnel currents essentially change dependence of bar-
rier capacity on a voltage.

This article has been   received in April 2016.

temperatures from nitrogen up to room 
is badly straightened in lnG...T-1 

coordinates. The average amount of 
activation energy, determined on the 
specified dependence, is equal 0,012 eV. 
However the measured temperature 
dependence is well straightened in G...T-

1/4 coordinates. According to Mott-Devis 
theory [6] such dependence observing in 
homogeneously - disorderly 
semiconductor substance what the area 
of heterojunction CdS-Cu2S spatial 
charge is, and also the abnormal low 
energy of thermal activation of 
conductivity, specify on jumping 
mechanism of current transport on local 
states. This is specified with observing 
frequency dependence of active 
component of conductivity G...ω0,8 in a 
range of frequencies 5 < ω· < 200 kHz. 

Conductivity of barrier areas of 
researched samples in the greater degree 
is determined by a tunnel transparency, 
than the carrier concentration. At cupper 
diffusion into CdS boundary layer arise 
a plenty of failures of a crystal lattice 
that provides multistage process of 
tunneling through rather extended area 
L1 [7].  

 

HJ capacity, measured 
experimentally, is connected to a layer 
of the lowest electroconductivity. At 
negative bias on junction when SCR has 
the big extent, and at performance of 
inequality G1 >> G2, the capacity of only 
layer L2 is measured, and layer L1  is 
perceived by the measuring device as 
series connection resistance. 

At the apply on HJ positive bias 
thickness of L2 layer decreases and it 
should result in increase of measured 
capacity. Simultaneously there is a 
redistribution of measuring signal 
voltage: it grows on L1 and decreases on 
L2. 

 
  

Under these conditions, the 
capacity of both layers is measured and 
the abnormal behavior of volt-farad 
dependence is observed. Reduction of 
capacity proceeds until SCR does not 
become equal to layer L1 thickness. At 
the further increase of positive bias 
capacity SCR, laying only in layer L1 is 
measured, as now this area has the 
lowest conduction. In these conditions, 
the normal section of volt-farad 
characteristic is again observed. 

 The confirmation of the offered 
model is the measured dependence 
G=f(U) submitted in fig. 3. Really, at the 
voltages appropriate to an abnormal 
section of a curve C-2

  = f (U) and to 
redistribution of decline in potential 
between areas L2 and L1. sharp increase 
of heterojunction electroconductivity is 
observed. 

It is typical for the given band 
Fig. 3. Dependence of dark 

conductivity on positive bias 
on heterojunction (frequency 
of a measuring signal is equal 

10 kHz) 
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FEATURES of VOLT - FARAD  DEPENDENCE of NONIDEAL HETEROJUNCTIONS 
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Abstract
Abnormal dependence of volt-farad characteristics of «nonideal» heterojunctiоn barrier capacity 

is investigated. It is shown that in heterojunctions with the big concentration and non-uniform distri-
bution of defects tunnel currents essentially influence on the barrier capacity size.

The model for an explanation of abnormal barrier capacity dependence on the voltage, using 
tunneling-recombination   mechanism of carriers carry through the area of a spatial charge is offered. 
The put forward assumptions put in a model basis, are confirmed experimentally.
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В. А. Борщак, М. І. Куталова, Н. П. Затовська, Л. М. Вілінська, А. О. Карпенко

ОСОБЛИВОСТІ  ВОЛЬТ-ФАРАДНОЇ  ЗАЛЕЖНОСТІ  БАР’ЄРНОЇ  ЄМНОСТІ
НЕІДЕАЛЬНИХ  ГЕТЕРОПЕРЕХОДІВ

Резюме
Досліджено аномальну залежність вольт-фарадної характеристики бар’єрної ємності «не-

ідеальних» гетеропереходів. Показано що в гетеропереходах з великою концентрацією і нео-
днорідним розподілом дефектів тунельні струми істотно впливають на величину бар’єрної єм-
ності. 

Запропоновано модель для пояснення аномальної залежності бар’єрної ємності від напруги, 
що використовує тунельно-рекомбінаційний механізм переносу носіїв через область просторо-
вого заряду. Висунуті припущення, покладені в основу моделі, підтверджені експерименталь-
но.

Ключеві слова: неідеальний гетероперехід, вольт-фарадна характеристика, стрибкова 
провідність
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В. А. Борщак, М. И. Куталова, Н. П. Затовская, Л. Н. Вилинская, А. А. Карпенко

ОСОБЕННОСТИ ВОЛЬТ-ФАРАДНОЙ ЗАВИСИМОСТИ БАРЬЕРНОЙ ЕМКОСТИ
НЕИДЕАЛЬНЫХ ГЕТЕРОПЕРЕХОДОВ

Резюме
Исследована аномальная зависимость вольт-фарадной характеристики барьерной емкости 

«неидеальных» гетеропереходов. Показано что в гетеропереходах с большой концентрацией и 
неоднородным распределением дефектов туннельные токи существенно влияют на величину 
барьерной емкости. 

Предложена модель для объяснения аномальной зависимости барьерной емкости от напря-
жения, использующая туннельно-рекомбинационный механизм переноса носителей через об-
ласть пространственного заряда. Выдвинутые предположения, положенные в основу модели, 
подтверждены экспериментально.

Ключевые слова: неидеальный гетеропереход, вольт-фарадная характеристика, прыжковая 
проводимость
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ENERGY AND SPECTROSCOPIC PARAMETERS OF DIATOMICS WITHIN  
GENERALIZED EQUATION OF MOTION METHOD 

The spectral data on energies of transitions in spectrum of the nitrogen diatomics e are presented 
on the basis of calculation by modified motion equations method (MEM) with effective account for 
important correlation effects within a density functional approach. It differs from the standard version 
of the MEM by method by effective accounting for interelectron correlation effects, namely, effects of 
the “two holes- two particles”. As a result an inaccuracy of calculation of the molecular excited states 
energies decreases significantly in comparison with the standard  1p-1h MEM approximation, namely, 
from 1.5-2 eV to decimal parts of eV, if you take into account the 2p-2h  effects.  

In last several decades quantum chemistry 
methods has been refined with a sophisticated and 
comprehensive approaches of the correct inter-
electron correlations and electron-nuclear dynam-
ics treatments [1]. Information about excitation 
energies, probabilities and oscillator strengths of 
electron transitions in molecules is very impor-
tant for a whole number of applications  including 
different fields of a  photo-chemistry and photo-
physics. Different calculation methods, namely, 
ab initio method of multi-configuration interac-
tion (MCI), perturbation theory with Hartree-Fo-
ck zeroth approximation (Möller-Plesset theory), 
density functional theory  (DF) etc [1] are used in 
calculations of atoms and molecules. As alterna-
tive in this situation one may consider method of 
equations of motion (MEM), which has been ini-
tially carried out by McKoy and co-workers with 
account for correlation effects within random 
phase approximation (RPA) (c.f.[2,3]). In series 
of papers [4-7] new approach in the MEM, based 
on account of correlation effects within DF ap-
proximation and essentially improving the stan-
dard version of the MEM, has been developed. 
Such an approach allows direct calculating am-
plitudes of different quantum processes, includ-
ing absorption and emission of photons etc., and 

avoiding problems, connected with calculation of 
the wave functions and entire energies of mole-
cules. Though it does not provide exact results, as 
for example, known limited variants of variation 
solving problem, however, it is sufficiently effec-
tive in calculations of the excitation energies and 
oscillator strengths of the electron transitions. In 
this paper new advanced method, which general-
izes the MEM one is presented and applied to de-
termination  calculation of the transition energies 
and oscillator strengths for the nitrogen molecule. 
It differs from the standard version of the MEM 
by method to effective accounting for interelec-
tron correlation effects, namely, effects of the 
“two holes- two particles” (2h-2p) polarization 
interaction). As it is shown, for example, in ref. 
[4,5], on order to reach an acceptable accuracy of 
calculation one may use sufficiently limited (on 
volume) basis’s of orbitals. However, an account 
of such important correlation effects (effects, con-
nected with 2р-2h interactions, a pressure of con-
tinuum, energy dependence of the self-consistent 
field potential, etc.) is obligatorily needed. It is 
well known that an account of majority of these 
effects based on standard methodic (for example, 
within perturbation theory) results in significant 
complication of calculation procedure (c.f. [1-4]). 
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According to ref. [2,], operator Ql

+
, which 

generates an excited state l  of the atom from 

the ground state 0 , i.e. l  = Ql

+
0 , is an exact 

solution of  equation of motion: 

     
0 0d ω dl l l l lQ H Q Q Q, , ,

+ +





= 





,       (1)

Here wl is the transition frequency, amplitudes 

Ql

+
are elements of matrix of the transition 0  ® 

l . Equation (1) can be reduced to matrix equa-
tion for amplitudes {Ymg} и {Zmg} with account 
for the 1p-1h excitations as: 

( )
( )

( )
( )

A B
B A

Y
Z

D
D

Y
Z- -

=
* *

l
l

ω
l
ll

0
0

,  (2)

the matrix elements А, В, D are as follows: 
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m n m n
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+

+
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, , ,

, , ,

           (3)

Here С+ is the particle-hole creation operator 
(С – destroying), indexes т, п denote the particles 
states; indexes d, g – the holes states; Н is a Ham-
iltonian of quantum system in the representation 
of second quantization. The wave function of the 
ground state can be  chosen in the following form:

          ( )0 10≅ +N U HF ,                        (4)

where ( )U C C C HFm n m n=
+ +

∑1 2/ ,g d g d
 is the Har-

tree-Fock function. With account for equation (4) 
the matrix elements А, В, D have the following 
form:  

( )( ) ( )[ ]
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(5)

The matrices А0 , В0 etc are in details described 
in ref. [15]. Variables e in eq. (5) define the Har-

tree-Fock orbital energies; 
( )

ρmn

2
 and ( )

ρgd

2  are the 
corrections to matrix of density of the second or-
der and dependent upon correlation coefficients. 
If the corrected coefficients are omitted, then ma-
trix elements will be reduced to the correspond-
ing matrix elements of the RPA [2]. In this ap-
proximation, the equations of motion for defini-
tion of the 1р-1h-amplitudes {Y}, {Z} and corre-
sponding excitation energies w can be solved by 
standard methods of linear algebra. Acceptable 
accuracy of calculation is reached even using the 
limited basis’s of orbitals due to the correct ac-
counting for most important PI effects, connected 
with excitations of the 2p-2h type. From physi-
cal point of view, its inclusion is corresponding 
to an account for self-consistent reconstruction of 
the holes orbitals  in a process of the virtual exci-
tations in the  ground configuration. An account 
of the 2р-2h-components in Ql

+
 is equivalent to 

renor-malization of matrices in Eq.(3). It leads to 
dependence on the frequency w and reduces to 
appearance of the weight multiplier in the matrix 
elements [14- 18]:

              ( ) ( )[ ]a r r= -
-

1 2
1

Σ .                      (6)

In approximation of the quasiparticle DF a 
variable S expresses through the corresponding 
correlation functional [13]. In the simplified form 
of applying out methodic a variable а(r) can be 
exchanged by (0) without essential loss of accu-
racy and according to well known procedure in 
theory of atomic photo-effect, which is based on 
the RPA with exchange (c.f.[11]). Indeed, the pa-
rameter а is corresponding to the known in spec-
troscopy one, which is a spectroscopic factor spF
. Its standard definition for atomic or molecular 
system (it is usually defined from the ionization 
cross-sections) [6]:

      
[ ]







 -

∈∂
∂

-= ∑ kkksp PIVF .)..(1
      (7) 

The terms e∂∂∑ /  and ∑ 2
is directly linked 

[6]. In the terms of the Green function method 
expression (7) is in fact corresponding to the pole 
strength of the  Green’s function [6].  Calculation 
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is carried out with using the correlation functional 
of the Lee-Yang-Parr (LYP) (look details in ref. 
[8-12]).Note further that amplitudes {Ymg} and 
{Zmg} define the moment of  transition М0l.

( ) ( ) ( ){ }M Y M Z Mm m m m
m

0
1 22l g g g g

g

l l= +∑/ * *      (8)

and oscillator strength:                  
                  ( )f G M0 0

22 3l l lω= /                   (9)

Here G is the degeneration factor, М0l is the 
particle-hole matrix element. Besides the proce-
dure of account for the 2p-2h effects, other de-
tails of our calculation procedure are fully simi-
lar to scheme of the standard MEM approach 
(c.f.[10,14]).  In tables 1 and 2 we present the 
results of our calculation (d) for the excited states 
energies and oscillator strengths of some states in 
N2. 

Table 1. 
Excited state energies (eV) for N2 (see text).

gB Π3
ga Π1 ∑ +

uA3 ∑ -
gB 3/

uW D3

a 9,6 11,5 8,4 11,3 10,1
b 7,5 8,8 7,8 10,2 9,4
c 8,06 9,66 7,14 9,5 8,59
d 8,12 9,71 7,14 9,6 8,73
E 8,1 9,3 7,8 9,7 8,9

 
∑ -

ua1

uD
1ω ∑ +

ub 1/
uc Π3

ub Π1

a 11,3 12,0 16,8 13,3 17,4
b 10,6 11,0 15,0 10,8 14,0
c 9,61 10,2 14,28 11,3 13,92
d 9,74 10,31 14,38 11,39 13,92
E 9,9 10,3 14,4 11,1 12,8

The chosen geometry of the molecule is cor-
responding to generally accepted one for N2 
[1]. There are also presented the analogous data 
by McKoy et al in the 1p-1h (a) and 2p2-h (b), 
Glushkov (c) and experimental data (E) for com-
parison too. As one can wait for, an account of the 
2p-2h effects is very important An inaccuracy of 
calculation of the transitions energies to low lying 
excited states in the 1p-1h MEM approximation 
decreases significantly, namely, from 1.5-2 eV to 

decimal parts of eV, if you take into account the 
2p-2h  effects.  

Table 2. 
Oscillator strengths for some electron tran-

sitions in the 2N
State a c d Exp

∑ +
uc 1/

0,11 0,10 0,13 0,14
±

0,04

0,16

ub Π1
0,32 0,26 0,28 <0,3

∑ +
ub 1/

0,49 0,39 0,41 0,83 0,40
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ENERGY AND SPECTROSCOPIC PARAMETERS OF DIATOMICS WITHIN  
GENERALIZED EQUATION OF MOTION METHOD 

Abstract
The spectral data on energies of transitions in spectrum of the nitrogen diatomics e are presented 

on the basis of calculation by modified motion equations method (MEM) with effective account for 
important correlation effects within a density functional approach. It differs from the standard version 
of the MEM by method by effective accounting for interelectron correlation effects, namely, effects of 
the “two holes- two particles”. As a result an inaccuracy of calculation of the molecular excited states 
energies decreases significantly in comparison with the standard  1p-1h MEM approximation, namely, 
from 1.5-2 eV to decimal parts of eV, if you take into account the 2p-2h  effects.  
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Е. Л. Пономаренко, А. А. Кузнецова, Ю. В. Дубровская, Е. В. Бакунина (Мищенко)

ЭНЕРГЕТИЧЕСКИЕ И СПЕКТРОСКOПИЧЕСКИЕ ПАРАМЕТРЫ ДВУХАТОМНЫХ 
МОЛЕКУЛ НА ОСНОВЕ РАСЧЕТА ОБОБЩЕННЫМ МЕТОДОМ УРАВНЕНИЙ ДВИ-

ЖЕНИЯ 

Резюме. На основе расчета обобщенным методом уравнений движения (МУД) с эффектив-
ным учетом  важнейших корреляционных эффектов в приближении  корреляционного функ-
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ционала плотности получены энергетические и спектроскопические данные по энергиям воз-
бужденных состояний и силам осцилляторов ряда переходов в молекуле азота. Новая версия  
отличается от стандартной версии MУД методикой  эффективного учета межэлектронного эф-
фектов корреляции, а именно, эффектов типа «двух частицы – две дырки».  В результате неточ-
ность расчета энергий молекулярных возбужденных состояний значительно уменьшается по 
сравнению со стандартным 1p-1h MУД приближением, а именно, от 1.5-2 эВ до десятых долей 
эВ при учета 2p-2h эффектов.

Ключевые слова: молекула, под электронной корреляции, метод уравнений движения, 
функционал плотности
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О. Л. Пономаренко, А. А. Кузнецова, Ю. В. Дубровська, О. В. Бакуніна (Міщенко)

ЕНЕРГЕТИЧНІ І СПЕКТРОСКOПІЧHІ ПАРАМЕТРИ ДВОATOМНИХ МОЛЕКУЛ 
НА ОСНОВІ РОЗРАХУНКУ УЗАГАЛЬНЕНИМ МЕТОДОМ РІВНЯНЬ РУХУ 

Резюме. На основі розрахунку узагальненим методом рівнянь руху (МУР) з ефективним 
урахуванням найважливіших кореляційних ефектів в наближенні кореляційного функціонала 
густини  отримані енергетичні і спектроскопічні дані по енергіях збуджених станів і силам 
осциляторів ряду переходів в молекулі азоту. Нова версія відрізняється від стандартної версії 
MУД методикою ефективного обліку межелектронних  ефектів кореляції, а саме, ефектів типу 
«дві частинки - дві дірки». В результаті неточність розрахунку енергій молекулярних збудже-
них станів значно зменшується в порівнянні зі стандартним 1p-1h MУД наближенням, а саме, 
від 1.5-2 еВ до десятих часток еВ при урахування 2p-2h ефектів. 

Ключові слова: молекула, міжелектронні кореляції, метод рівнянь руху, функціонал густини
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ADVANCED LASER PHOTOIONIZATION SEPARATION SCHEME AND TECHNOLOGY 
FOR HEAVY RADIOACTIVE ISOTOPES AND  NUCLEAR ISOMERS 

We present new optimal scheme of the separating highly radioactive isotopes and products of 
atomics energetics such as 210-214Fr,  133,135,137Cs and others, which is based on the selective 
laser excitation of the isotopes atoms into excited Rydberg states and further autoionization or DC 
electric field pulse ionization. As result, requirements to energetic of the ionized pulse are decreased 
at several orders. And an effectiveness of a scheme increases. There are theoretically calculated values 
of the characteristics of heavy Rydberg atoms in an external electromagnetic field (DC Stark effect) In 
particular, data on the energy level, the energy widths of Stark resonances for Rydberg Cs, Fr (n <45).

In series of our papers we considered the dif-
ferent schemes of a laser photoionization isotopes 
and nuclear isomers schemes. In this work, which 
goes on this studying, we present an advanced  
scheme of the separating highly radioactive iso-
topes and products of atomics energetics such as 
210-214Fr and  133,135,137Cs, which is based on the se-
lective laser excitation of the isotopes atoms into 
excited Rydberg states and further autoionization 
or DC electric field pulse ionization. Following 
to [1,4], let  us remind that related a search of 
the effective methods for isotopes and nuclear 
isomers separation and obtaining especially pure 
substances at atomic level is related to number of 
the very actual problem of modern nuclear tech-
nology, quantum and photoelectronics.The basis  
for its successful realization is, at first, carrying 
out the optimal multi stepped photo-ionization 
schemes for different elements and, at second, 
availability of enough effective UV and visible 
range lasers with high average power (Letokhov, 
1977, 1979, 1983; etc) [9]. The standard laser 
photo-ionization scheme may be realized with us-
ing processes of the two-step excitation and ioni-
zation of atoms by laser pulse. The scheme of se-
lective ionization of atoms, based on the selective 

resonance excitation of atoms by laser radiation 
into states near ionization boundary and further 
photo-ionization of the excited states by addi-
tional laser radiation, has been at first proposed 
and realized by Letokhov et al (Letokhov, 1969, 
1977) [1]. It represents a great interest for laser 
separation of isotopes and nuclear isomers. The 
known disadvantage of two-step laser photoioni-
zation scheme a great difference between cross-
sections of resonant excitation sexc and photo-ion-
ization s ion. It requires using very intensive laser 
radiation for  excited atom ionization. The same 
is arisen in a task of sorting the excited atoms and 
atoms with excited nuclei in problem of creation 
of g -laser on quickly decayed nuclear isomers. 
Originally, Goldansky and Letokhov (1974) [17] 
have considered a possibility of creating a g -la-
ser, based on a recoilless transition between lower 
nuclear levels and shown that a g -laser of this 
type in the 20-60 keV region is feasible. But, it is 
obvious that here there is a problem of significant 
disadvantage of the two-step selective ionization 
of atoms by laser radiation method. The situation 
is more simplified for autoionization and Stark 
resonance’s in the atomic spectra, but detailed 
data about characteristics of these levels are often 
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absent [1-16]. Several new optimal schemes for 
the laser photo-ionization sensors of separating 
heavy isotopes and nuclear isomers are proposed 
[1,4].  It is based on the selective laser excitation 
of the isotope atoms into excited Rydberg states 
and further autoionization and DC electric field 
ionization mechanisms. 

Let us remind that in a classic scheme the la-
ser excitation of the isotopes and nuclear isomers 
separation is usually realized at several steps: at-
oms are resonantly excited by laser radiation and 
then it is realized photo ionization of excited at-
oms. In this case photo ionization process is char-
acterized by relatively low cross section sion=10-

17-10-18сm2 and one could use the powerful laser 
radiation on the ionization step. This is not ac-
ceptable from the energetics point of view [1-8].  
The alternative mechanism is a transition of at-
oms into Rydberg states and further ionization by 
electric field or electromagnetic pulse. As result, 
requirements to energetic of the ionized pulse are 
decreased at several orders. The main feature and 
innovation of the presented scheme  is connected 
with using the DC electric field (laser pulse) au-
toionization on the last ionization step of the laser 
photoionization  technology. There is a principal 
difference of the simple ionization by DC electric 
filed. The laser pulse ionization through the auto 
ionized states decay channel has the advantages 
(more high accuracy, the better energetics, uni-
versality) especially for  heavy elements and iso-
topes, where the DC electric field ionization from 
the low excited states has not to be high effective.  
This idea is a key one in the realization of sorting 
the definite excited atoms with necessary excited 
nuclei of the A+ kind, obtained by optimal method 
of selective photo-ionization of the A kind atoms 
at the first steps. The suitable objects for model-
ing laser photoionization separation technology 
are the isotopes of alkali element Cs, long-lived 
transuranium elements etc. 

We considered the  isotopes of 210-214Fr and  
133,135,137Cs,. For example, the resonant excitation 
of the Cs atoms can be realized with using dye 
lasers with lamp pumping (two transitions wave-
lengths are:  62S1/2®7 2P3/2 4555A and 62S1/2®7 

2P1/2 4593A).  The next step is in the further ex-
citation to the Rydberg S,P,D states with main 
quantum number n=35-50. The final step is the 
autoionization of the Rydberg excited atoms by a 
laser pulse or DC electric field pulse ionization and 
output of the created ions. The scheme will be opti-
mal if an atom is excited by laser radiation to state, 
which has the decay probability due to the auto-
ionization (pulse ionization) higher than the radia-
tion decay probability. So, one could guess that 
the accurate data on the autoionization states ener-
gies and widths and the same parameters for the 
DC Stark resonances   are needed. The consistent 
and accurate theoretical approach to calculation of 
these characteristics is based on the operator per-
turbation theory formalism [18] and corresponding 
advances relativistic version  with model potential 
approximation [22, 23]. In Fig.1a we present the 
energy dependence (note that the level energy in 
the absence of field is taken as zero) of Stark com-
ponents (j,|mj|) of the caesium state 39D Cs field 
strength: Experiment - squares, circles, triangles, 
diamonds [33]; Theory 1 - semi-empirical pertur-
bation theory on the field by Zhao et al [25]; 2 – 
our data; In Fig.1b we list the Stark shift (in MHz) 
for the state 46D Cs in  dependence on the square 
of the field: the experiment - squares, circles, trian-
gles [25]; Theory – continuous.
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Fig.1 a – The energy dependence (note that the lev-
el energy in the absence of field is taken as zero) of 
Stark components (j,|mj|) of the caesium state 39D 
Cs field strength: Experiment - squares, circles, tri-
angles, diamonds [25]; Theory 1 – semi-empirical 
perturbation theory on the field by Zhao et al [25]; 
2 – our data; b – Stark shift (in MHz) for the state 
46D Cs in  dependence on the square of the field: 
the experiment - squares, circles, triangles [25]; 

Theory – continuous

In Fig.2 we present a dependence of the Stark 
component (j,|mj|) energies (MHz) of the state  
44D for the francium atom of the square of the 
electric field (the first data).

Fig.2. Dependence of the Stark component (j,|mj|) 
energies (MHz) of the state  44D for the francium 
atom of the square of the electric field (our data)

In figure 3 we present the numerical modeling 
results of the excited and ground states popula-
tions in the photoionization scheme of the 133,137Cs 
isotopes separation process with auto- and elec-
tric field ionization by solving the corresponding 
differential equations system [4]. 

Fig.3. Results of modelling 133,137Cs isotopes separa-
tion process by the laser photo-ionization method ( 

d+dashed  – laser pulse optimal form; see text)

The following definitions are used: d+dashed 
line is corresponding to optimal form of laser 
pulse, curves 1 and 2 are corresponding to pop-
ulations of the ground and excited states of Cs. 
The d -pulse provides maximum possible level of 
excitation (the excitation degree is about ~0,25; 
in experiment (Letokhov, 1983) with rectangular 
pulse this degree was ~ 0,1). It is worth to turn 
attention on some analogy between  modeling re-
sults for diferent alkali isotopes. Indeed, the rela-
tive populations for indicated atoms in the highly 
excited states are very closed to each other, how-
ever the absolute values of the radiation param-
eters for different isotopes naturally differ. Let us 
remember data regarding the Cs excitation and 
the ionization cross sections: the excitation cross 
section at the first step of the scheme is ~10-11cm2; 
the ionization cross-section from excited 72P2  
state: s2=10-16cm2, from ground state s2=10-18cm2 
[2]. One can see that the relation of these cross 
sections is 105 and 107 correspondingly. This fact 
provides the obvious non-efficiency of standard 
photoionization scheme.  Using d-pulse indeed 
provides a quick ionization, but the ionization 
yield will be less than 100% because of the stick-
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ing on intermediate levels.  So, from energetic 
point of view, this type of ionization can be very 
perspective alternative to earlier proposed classi-
cal two-step and more complicated photoioniza-
tion schemes (Letokhov, 1983) [1]. The similar 
situation and analogous conclusions are obtained 
for the Sr and I isotope separation with the cor-
responding difference in the energetic and ra-
diative characteristics data. So, one can say here 
about sufficiently optimal scheme of the separat-
ing highly radioactive isotopes and products of 
atomics energetics such as Cs and others. The key 
features of the corresponding scheme (technol-
ogy) are based on the selective laser excitation of 
the isotopes atoms to the excited Rydberg states 
and further autoionization (or DC electric pulse 
ionization). One could remember here that a step 
of laser isotope separation has to be very impor-
tant one in solving the modern actual problems 
of the transmutation of radioactive elements and 
decreasing the energy loses in the modern atomic 
energetics cycles [20,21]. 
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Abstract
We present new optimal scheme of the separating highly radioactive isotopes and products of atom-

ics energetics such as 210-214Fr,  133,135,137Cs and others, which is based on the selective laser excitation 
of the isotopes atoms into excited Rydberg states and further autoionization or DC electric field pulse 
ionization. As result, requirements to energetic of the ionized pulse are decreased at several orders. 
And an effectiveness of a scheme increases. There are theoretically calculated values of the character-
istics of heavy Rydberg atoms in an external electromagnetic field (DC Stark effect) In particular, data 
on the energy level, the energy widths of Stark resonances for Rydberg Cs, Fr (n <50).
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УЛУЧШЕННАЯ ЛАЗЕРНО-ФОТОИОНИЗАЦИОННЫЕ СХЕМА РАЗДЕЛЕНИЯ 
ИЗОТОПОВ ДЛЯ ТЯЖЕЛЫХ РАДИОАКТИВНЫХ ИЗОТОПОВ И ЯДЕРНЫХ 

ИЗОМЕРОВ

Резюме
Представлена новая оптимальная схема лазерного разделения высоко радиоактивных изото-

пов, продуктов атомной энергетики таких как 210-214Fr,  133,135,137Cs и других, базирующаяся на ла-
зерном возбуждении атомов изотопов в ридберговские состояния и дальнейшей автоионизации 
или ионизации импульсом электрического поля. Теоретически вычислены значения характери-
стик тяжелых ридберговских атомов во внешнем электромагнитном поле (DC эффект Штарка), 
в частности,  данные по энергиям уровней, энергиям, ширинам штарковских резонансов для 
ридберговских Cs, Fr (n <50).

Ключевые слова: лазерный фотоионизационный метод, высоко радиоактивные изотопы,  
новая схема
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ПОКРАЩЕНА ЛАЗЕРНО-ФОТОІОНІЗАЦІЙНА СХЕМА ПОДІЛЕННЯ ІЗОТОПІВ ДЛЯ 
ВАЖКИХ  РАДІОАКТИВНИХ ІЗОТОПІВ  ТА ЯДЕРНИХ ІЗОМЕРІВ

Резюме
Представлена нова оптимальна схема лазерного поділення високо радіоактивних ізотопів, 

продуктів атомної енергетики, зокрема, таких як  210-214Fr,  133,135,137Cs та інші, яка базуються на 
лазерному збудженні атомів ізотопів у ридбергові стани та подальшій автоіонізації або іонізації 
імпульсом електричного поля. Теоретично обчислені значення характеристик важких ридбер-
говских атомів у зовнішньому електромагнітному полі (DC ефект Штарка), зокрема, дані по 
енергіях рівнів, енергіям, ширинам штарківських резонансів для рідбергових Cs, Fr (n <40).

Ключові слова: лазерний фотоіонізаційний метод, високо радіоактивні ізотопи, нова схема 
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EFFECT OF WATER VAPORS ON THE TIME-RESOLVED SURFACE CURRENT 
INDUCED BY AMMONIA MOLECULES ADSORPTION IN GaAs P-N JUNCTIONS

1I. I. Mechnikov National University of Odessa, Dvoryanska St., 2, Odessa, 65026, Ukraine
2National University "Odessa Maritime Academy", Odessa, Didrikhsona St., 8, Odessa, 65029, 

Ukraine

The time-resolved surface current in an n-conducting channel,  due to ammonia and water molecules 
adsorption in GaAs p-n structures was studied. It is shown that the presence of water vapors in the 
ambient atmosphere strongly affects the current decay curves after the ammonia vapors removal. 
The current decay curve in this case has three exponential components with different characteristic 
times:  ,   and  , as well as a component with  . The results are explained in terms of a simple model 
taking into account a dynamic equilibrium between the free electrons in the conducting channel  and 
electrons on slow surface centers. Each decay curve exponential component is due to the emptying 
of corresponding centers. The characteristic time of a current decay curve exponential component is 
determined by the depth and density of the corresponding surface levels, as well as the conducting 
channel thickness.

Key words: p-n structure, ammonia vapors, water vapors, adsorption, conducting channel, current 
decay, surface centers.

1. Introduction
Barrier structures on Si and GaAs, such as p-n 

junctions [1–4], porous membranes [5, 6], and 
nanowires  [7], are promising materials for the 
gas sensors development. The Si p-n junctions 
can be combined in a transistor, which has much 
higher gas sensitivity than a single junction [8]. 
They can be  easy integrated into microelectronic 
circuits. And the GaAs p-n junctions have a very 
high gas sensitivity, as well as a threshold ammo-
nia vapors partial pressure of 0,1 Pa [4].  

The sensitivity of  the mentioned barrier struc-
tures, as well of GaP [9] and InGaN [10] p-n junc-
tions, to ammonia vapors was observed only in 
presence of water vapors.

The aim of this work is a study of the influ-
ence of water vapors on the time resolved surface 
current in  GaAs p-n structures, due to  ammonia 
molecules adsorption. 

2. Experiment
The measurements were carried out on GaAs 

p-n structures, described in the previous paper 
[10]. I-V characteristics of the forward and re-

verse currents were measured in air with various 
concentrations of ammonia vapors and saturated 
water vapors at T=290 K. The chemical composi-
tion of the ambient atmosphere was changed in 
2 s by placing the sample in an appropriate con-
tainer.

The curve 1 in Fig.1 represents the time depen-
dence of the forward current, measured at V=0,3 
Volts in a p-n structure, which was first placed in 
dry air; at t1=200 s – in air with wet ammonia va-
pors (NH3 partial pressure P=200 Pa); at t2=3800 
s – in dry air. After changing the ambient atmo-
sphere from wet ammonia vapors to dry air (at 
t>t2) the current drops from Imax=122 nA to 0,1 
Imax in a time of 71 s. In the case of the curve 2, 
at t2=3800 s the sample was placed in the atmo-
sphere, containing air and saturated water vapors. 
And after 3 hours, at t3=14600 s the sample was 
placed in dry air.

It is seen that the current deсay curve 2 has 
three different sections: a “fast” section; a “slow” 
section; and a drop after the atmosphere changing 
from wet air to dry air.
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Fig. 2 shows the time dependence of the current 
in the same sample for a following atmosphere 
change: dry air → (t1) air + water vapors→(t2) 
dry air. It is seen from Fig. 2, that maximum cur-
rent in wet air is of 8,2 nA, which is considerably 
lower than in the “slow” component of the curve 2 
in Fig. 1. This indicates that the slow decrease in 
the current after the atmosphere change from wet 
ammonia vapors to wet air can be explained only 
taking into account the presence of some electri-
cally active centers on the crystal surface.

3.  Discussion  
The experimental results can be explained with 

the model, depicted in fig. 3 [11]. Ionized ammo-
nia molecules 2 are located on the natural oxide 
surface 

Their electric field bends the depletion layer 3 
and forms a n-conducting channel 4. The forward 
current consists of two components. Arrow a cor-
responds to the through component It  of the cur-
rent in the channel

And arrow b represents the current component 
Ii due to electron  injection from the channel into 
the p+ layer at the contact.

The adsorbed water molecules (without am-
monia molecules) also form such an n-conducting 
channel and remarkably enhance the current in the 
p-n junction, which is evident in Fig. 2.

In the uniform section of the channel, the fol-
lowing equation can be written

ns i sf ss sD sAN N N N N N- - + -= - - + - ,       (1)

where 
nsN is the free electrons number in the channel 

per 1cm2 of the surface; iN is the adsorbed ions sur-
face density; sfN - and ssN - are the densities of filled 
fast and slow acceptor surface centers, respectively; 

sDN +  is the ionized donor surface centers density;
sAN -

is the number of ionized acceptor centers in the sur-
face depletion layer per 1cm2 of the surface: 

                 sA A sN N w- -= ;                    (2)

AN - is the ionized acceptor concentration in p- re-
gion; sw is the surface depletion layer thickness 
[10].region; sw is the surface depletion layer 
thickness [10].

The section of the curve 2 in Fig. 1 at 2t t>
can be decomposited in three exponential com-
ponents, presented in Fig. 4. The characteristic 

times for the fast component, presented in Fig. 4a 
is 1 30 st = . 

For two “slow” components, showed in Fig. 
4b, 2 1900 st =  and 3 9400 st = , respectively, are 
obtained. 

The mentioned decomposition includes also a 
“constant” component with a characteristic time 

4 3t t  with the amplitude 0
4 30 nAI = . The fast 

decay component of the curve 2 in Fig. 1 can be 
ascribed  to the desorption of ammonia ions.   An 
analogous component has curve 1 in  Fig. 1.

The components 2, 3 and 4 of the curve 2 in 
Fig. 1 can be explained taking into account pres-
ence of some slow centers on the naturally oxi-
dized GaAs surface [4, 12, 13].  These centers are 
responsible for the peculiarities of the stationary 
characteristics [4] and the response time [13] of 
GaAs p-n structures as gas sensors. 

The gradual descent in the curve 2 in Fig. 1  at 
2t t>  is due to gradual decrease in the density 

of filled slow acceptor surface centers ssN - in (1). 
After an atmosphere ammonia → water vapors 
changing, the ions surface density drops. There-
fore the electrons number 

nsN in the conducting 
channel strongly falls down, which corresponds 
to the «fast» exponential component of the  cur-
rent decay curve, presented in Fig. 4A. And the 
electrons number ssN -  on slow acceptor surface 
centers gradually decreases due to their thermal 
transitions to the conduction band. These transi-
tions generate free electrons in the channel, slow-
ing the decrease of the current. This effect can be 
described with a differential equation

                      

( ) /ns ss
ns

d N N
G N

dt
t

-
+

= - ,          (3)

where G is the electrons generation rate in the 
cannel due to donors (water molecules) adsorp-
tion; t is the electrons life time in the channel. 
In the case of a dynamic equilibrium between the 
free and captured electrons, a relation is valid

/( exp[( ) /( )])ss ns ss c c ssN N N N d E E kT=
-

- ,    (4)

where ssN is the full density of slow acceptor 
surface centers; cN denotes the effective states 
density in the c-band; d is the channel thickness; 

c ssE E-  is the slow surface acceptor level depth; 
kT is the Boltzmann factor. 

The initial condition for equation (3) is
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0(0)
nsnsN N Gt>= ,                          (5)

because at t=0 the ambient atmosphere is changed 
from wet ammonia to water vapors.

Equation (3) under this initial condition has a 
solution

0 exp( /( ) ( ) )
nsns effNN t G G t tt t= -+ - ,(6)

where
(1 )efft ν t= + ,                            (7)

and
/( ) exp[( ) /( )]ss c c ssN N d E E kTν = - .        (8)

It is seen from (7) and (8) that the channel cur-
rent decay time after an ammonia → water vapors 
atmosphere change depends from the depth and 
density of slow surface levels, as well from the 
channel thickness. Two exponential components 
of the current decay curve, presented in Fig. 4b, 
are due to the presence of two slow surface cen-
ters on the GaAs natural oxide.

4. Conclusions
A change from wet ammonia vapors to wa-

ter vapors in the ambient atmosphere results in 
a decrease of the surface current in GaAs p-n 
junctions. The current decay curve has a fast 
exponential component with a characteristic 
time τ1<100 s and three slow components with 

4 3 2 1t t t t   .
The complicated shape of the current decay 

curve can be explained in terms of a simple mod-
el taking into account a dynamic equilibrium be-
tween the free electrons in the conducting chan-
nel  and electrons on slow surface centers. Each 
decay curve exponential component is due to the 
emptying of corresponding centers.

The characteristic time of a current decay 
curve exponential component is determined by 
the depth and density of the corresponding sur-
face levels, as well as the conducting channel 
thickness.
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EFFECT OF WATER VAPORS ON THE TIME-RESOLVED SURFACE CURRENT 
INDUCED BY AMMONIA MOLECULES ADSORPTION IN GaAs P-N JUNCTIONS

Summary
The time-resolved surface current in an n-conducting channel,  due to ammonia and water mol-

ecules adsorption in GaAs p-n structures was studied. It is shown that the presence of water vapors in 
the ambient atmosphere strongly affects the current decay curves after the ammonia vapors removal. 
The current decay curve in this case has three exponential components with different characteristic 
times: 1 30 st = , 2 1900 st =  and 3 9400 st = , as well as a component with 4 3t t . The results are ex-
plained in terms of a simple model taking into account a dynamic equilibrium between the free elec-
trons in the conducting channel and electrons on slow surface centers. Each decay curve exponential 
component is due to the emptying of corresponding centers. The characteristic time of a current decay 
curve exponential component is determined by the depth and density of the corresponding surface 
levels, as well as the conducting channel thickness.

Key words: p-n structure, ammonia vapors, water vapors, adsorption, conducting channel, current 
decay, surface centers
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О. О. Птащенко, Ф. О. Птащенко, , В. Р. Гільмутдінова

ВПЛИВ ПАРІВ ВОДИ НА КІНЕТИКУ ПОВЕРХНЕВОГО СТРУМУ, ІНДУКОВАНОГО 
АДСОРБЦІЄЮ МОЛЕКУЛ АМІАКУ В P-N ПЕРЕХОДАХ НА ОСНОВІ GaAs

Резюме
Досліджено кінетику поверхневого струму в n-провідному каналі, обумовленому адсорбці-

єю молекул аміаку і води, в p-n переходах н основі GaAs. Показано, що наявність парів води у 
навколишньому середовищі сильно впливає на криві спадання струму після видалення парів 
аміаку. Крива спадання струму в цьому випадку має три експоненціальні компоненти з різни-
ми значеннями характеристичного часу: 1 30 ct = , 2 1900 ct =  і 3 9400 ct = , а також компоненту 
з 4 3t t . Результати пояснюються в рамках простої моделі, яка враховує динамічну рівнова-
гу між вільними електронами у провідному каналі та електронами на повільних поверхневих 
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центрах. Кожна експоненціальна компонента обумовлена спустошенням відповідних центрів. 
Характеристичний час кожної експоненціальної компоненти кривої спадання струму визнача-
ється глибиною і щільністю відповідних поверхневих рівнів, а також товщиною провідного 
каналу.

Ключові слова: p-n структура, пари аміаку, водяні пари, адсорбція, провідний канал, спа-
дання струму, поверхневі центри.
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ВЛИЯНИЕ ПАРОВ ВОДЫ НА КИНЕТИКУ ПОВЕРХНОСТНОГО ТОКА, 
ИНДУЦИРОВАННОГО АДСОРБЦИЕЙ МОЛЕКУЛ АММИАКА В P-N ПЕРЕХОДАХ НА 

ОСНОВЕ GaAs

Резюме
Исследована  кинетика поверхностного тока в n-проводящем канале, обусловленном адсорб-

цией молекул аммиака и воды, в p-n переходах н основе GaAs. Показано, что наличие паров 
воды в окружающей среде сильно влияет на кривые спадания тока после удаления паров ам-
миака. Кривая спадания тока в этом случае имеет три экспоненциальные компоненты с раз-
личными значениями характеристического времени: 1 30 ct = , 2 1900 ct =  и 3 9400 ct = , а также 
компоненту с 4 3t t . Результаты объясняются в рамках простой модели, которая учитывает ди-
намическое равновесие между свободными электронами в проводящем канале и электронами 
на медленных поверхностных центрах. Характеристическое время каждой экспоненциальной 
компоненты кривой спадания тока определяется глубиной и плотностью соответствующих по-
верхностных уровней, а также толщиной проводящего канала.

Ключевые слова: p-n структура, пары аммиака, водные пары, адсорбция, проводящий ка-
нал, спадание тока, поверхностные центры.
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The technology of semiconductor crystal processing in the corona discharge has been developed. 
It was established that as a result of this exposure, the samples acquire alternating spectral 
sensitivity. 

The observed phenomenon is explained by the emergence of a saddle of the potential barrier in 
the element surface region the unusual properties which can allow the creation of a new type  device.

It is known that the properties of semiconduc-
tor crystals can vary within wide limits depending 
on the quantity and quality of the formed defects. 
It must have an effect on the contact of the semi-
conductor sample.

In the present work we consider the problem 
about the behavior of the originally ohmic con-
tact to the semiconductor at the appearance in its 
space charge region of charged unevenly distrib-
uted electron traps. Despite the urgency of this 
problem, in the literature it is almost not lit.

The introduction of the trapping centers in 
the crystal contact layer can dramatically change   
this region energy structure. In particular, in the 
case of electronic traps, the formation of the lock-
ing barrier is possible. This significantly changed 
the conditions of current transfer and hasspecific 
effects, similar in nature to the negative photo-
conductivity.

To analyze this situation it is necessary to elimi-
nate the dependencies that describes the kind of  
arising barrier  in the conduction band, as in the 
dark and in the light. As well as depending of the 
parameters of this barrier, its width, height, the  
maximum coordinate, the wall slopes – on the 
properties of trap – theirs energy depth, initial con-
centration and distribution in the sample depth.

The aim of this work is to show that the 
charged unevenly distributed of electron traps are 

able to form a locking barrier in ohmic contact 
space  charge region. Its parameters are associ-
ated uniquely with the parameters of the traps and 
thus can manage  technologically. In this case 
thank  to the resulting barrier the sensor based on 
semiconductor crystal acquires new properties, 
including anomalous.

The change of photoconductivity, caused by 
the processing of cadmium chalcogenides mono-
crystal samples in the gas discharge was studied 
by authors   [1-3]. The technology of this treat-
ment is as follows. The element was placed in a 
vacuum 

1. The effect of traps on the barrier structure
If the contact is formed for high-resistance 

semiconductor, due to the considerable differ-
ences of transmissibility prectically all the space  
charge region (SCR) is in its contact layer.

Let’s in such a semiconductor were introduced 
electron traps Nt, which concentration  decreases 
from the surface deep into the volume according 
to the law

                          
0

0

x

t tN N e
-

= 

                    (3)
 

where Nt0 - the concentration on a geometric sur-
face, and l0 -  a characteristic length that indicates 
how far the number of traps decreases in e times.
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The activation energy of the traps (EC–Et). 
Then, just at the contact (region I Fig.1), traps are 
below the Fermi level. Such traps are filled with 
electrons regardless of the free charge concentra-
tion . On the surface their distance from the Fermi 
energy and, consequently, the filling will be at its 
maximum. Therefore, at point x=0 the appearance 
of such  trap concentration of free electrons and 
the energy distribution do not change. Still they 
are described by formulas (1) and (2).

As can be seen from Fig.1, the greater is the 
depth of the traps (EC–Et), the wider is the  region 
1, enriched by electrons, as for large coordinate x 
traps are below the Fermi level and in the region 
of the Fermi level.

And, as will be further shown, the greater the 
initial concentration of traps Nt0, the steeper the 

dependence 
dx
dE  goes up. Both of these factors, 

acting together, should provide greater height of 
the formed barrier.

On the contrary, in the depth of the volume at 
x > L1 the aquarance of electronic trap conditions 
will change significantly. The traps are partially 
filled and are able to capture an additional charge. 
The concentration of free charge, initially account 
n0 (curve 1 Fig.1a) should decrease, which is ac-
companied by increase in the distance from the 
bottom of the conduction band up to the Fermi 
level.

Let’s consider the impurities Nt edge of the 
front of spreading (region III of Fig.1a). The con-
centration of traps in the region x = L1 is small, 
so in general it remains electroneutral. The part 
of free charge goes to the traps. The equation of 
electroneutrality in this case looks like:

        
0

( )

0 0

xE x
kT

d tN n e N e
--+ = +                  (4)

Given the fact that numerically the of ion-

ized donors concentration +
dN  is equal to n0 and 

using the decay exponent in the range from (4) 
obtain

0
0 0

( ) x

t
E xn N e
kT

-

= 

.

From which

       

0

2

0
3

0

( )
x

t
x L

NE x kTe
n

-

→ = 

          (5)

Decreasing of the x coordinate to the surface 
side, the value of the energy of the conduction 
band edge increases, although only slightly. If all 
the free charge n0 will move to traps, then (E–Ec) 
~ kT (on the border of areas II and III).

Fig. 1. (a) - structure of the SCR of ohmic contact 
to the high resistance semiconductor: (1) - the ini-
tial state; (2) – after the introduction of the traps; 
(b) - the distribution of the electron traps concen-

tration  in depth of the sample

The studied processes on the edges of the SCR 
are sufficient for predicting the energy distribu-
tion changes. If in the volume depth the energy 
curve Ec(x) is directed upward, and on contact 
with the metal comes to the same point where 
it was without taking into account the traps, the 
overall profile of the SCR should be bell-shaped  
(curve 2 Fig.1a). And its width is controlled only 
by these traps penetration  depth   determined by 
technological factors in the crystal processing.

1. The energy distribution in the crystal 
near-contact layers with traps for electrons

The profile of the barrier in region I of Fig.1a 
can be determined by using the Poisson equation

2 2 2
1

2

4 4( ) ( ) ( )d t
d E e ex N N x n x
d x

p pρ
e e

+ = = - -     (6)
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where  E – the energy, a 
+
dN = n0 << nk. Using 

expressions (2) and (3) formula (6) takes the 
form 

0

22 2
1

02

4 x

t k
d E e aN e n
dx a x

p
e

-  = - -  +   

 .    (7)

Note that negative values of the second de-
rivative indicate the convexity of the function E1 
in the region I.

After integrating

0

2
2 2

1 0 0 1 2
4( ) ln

x

t k
eE x N e n a a x C x Cp

e

- 
= - + + + + 

  





. (8)

The values of the constants C1 and C2 can be 
determined from comparison with the distribution 
(1) for a pure semiconductor.

When using for contact of metals with possi-
bly  small work function the value of the jump at 
the boundary of ∆E(0)→0. In this case, when x=0 
(EC–F)=0 and nk ≈ Nc = 1019сm-3. According to [4] 
value of cadmium concentration on the surface ~ 
1021сm-3. Taking this quantity for 0.1÷1% of the to-
tal values we obtain  that on the surface   Nt0 ≤ nk.

Considering also the calculations described 
in paragraph 1, regarding the filling of the traps 
without the free charge concentration changing, 
would be fair:

    
1

0 0x x
dE dE
dx dx= ==    or from (7) and (1)

0

22

0 0 1
2 4 x

k
t

n akT e N e C
a x a x

p
e

- 
= + + 

+ +  



 ,where as 

x=0 is obtained      1 0 02

2
4 t k

kTC N n a
a e

e
p

= - - . (9)

The value of the constant C2 in (8) can be found 
from the condition E1 (0) = 0. From this it follows

                       aanNC kt ln2
0

2
02 -=  .                (10)

Finally (8) with (9) and (10) becomes:

0

2
2 2

1 0 0 0 02

4 2( ) 1 ln
4

x

t k t k
e a x kTE x N e n a N n a x

a a e
p e
e p

-    +
= - + + - -          



 

.(11)

The resulting expression is too cumbersome 
for further analysis. Therefore, we believe that the 

value l0 in the traps distribution is large enough, 
and the point of linkage with the function E2 (x) 
(i.e. the width of region I) lies in the coordinate 
that is smaller than the screening radius a. Then 
expanding in a number of the exponent and the 
logarithm of (11) will obtain the expression:

                  1
2( ) kTE xõ

à
=                         (12)

which, as expected, not influenced by the pa-
rameters l0 and traps Nt0. In the surface layer the 
distribution of the energy barrier represented by 
almost a straight line with a slope 2kT/a. In this 
graph E1(x) lies above the curve 1 Fig. 1a. This 
means that from the beginning with the coordi-
nate increasing the concentration of free charge 
decreases faster than the concentration of traps.

2. The barrier structure in depleted layer
In the central part of the barrier (region II Fig. 

1) free charge virtually absent and the concentra-
tion of electrons on traps significantly exceeds 
the number of ionized donors, since for these dis-
tances x number of traps is still quite large. Then 

+>> dt Nxn )( ; n(x). In this case, the charge den-
sity

( ) ( ) ( ) ( )t tx en x eN x f xρ = - = - ,
where f(x) - the probability of filling traps 

Fermi – Dirac

kT
FEc

kT
EEc

kT
FEcEEc

eeexf
tt -

-
-

-
---

-
⋅==

)()(

)(

In this expression, the first exponent associ-
ated with the activation energy of the traps, with 
the coordinate does not change, and the rate of the 
second exponent depends on x. 

Finally, the Poisson equation has a view

2
0

2
2

2

( ) x E
kTd E x Ae e

dx

-

=-            (13)

where 

                
kT

EE

t

tc

eNeA
-

= 0

24
e
p .                   (14)

It is seen that in this region the second deriva-
tive is negative. The curve is concave. Using the 
substitution

4 
 

1
0 0x x

dE dE
dx dx   

or from (7) and (1) 

0

22

0 0 1
2 4 x

k
t

n akT e N e C
a x a x




 
   

   
, 

where as x=0 is obtained      

1 0 02

2
4 t k

kTC N n a
a e




   .      (9) 

The value of the constant C2 in (8) can be 
found from the condition E1 (0) = 0. From this it 
follows 

aanNC kt ln2
0

2
02   .    (10) 

 
Finally (8) with (9) and (10) becomes: 
            

0

2
2 2

1 0 0 0 02

4 2( ) 1 ln
4

x

t k t k
e a x kTE x N e n a N n a x

a a e
 
 

    
               

.(1

1) 

The resulting expression is too 
cumbersome for further analysis. Therefore, we 
believe that the value l0 in the traps distribution 
is large enough, and the point of linkage with the 
function E2 (x) (i.e. the width of region I) lies in 
the coordinate that is smaller than the screening 
radius a. Then expanding in a number of the 
exponent and the logarithm of (11) will obtain 
the expression: 

 1
2( ) kTE x х
а

                                          

(12) 
which, as expected, not influenced by the 
parameters l0 and traps Nt0. In the surface layer 
the distribution of the energy barrier represented 
by almost a straight line with a slope 2kT/a. In 
this graph E1(x) lies above the curve 1 Fig. 1a. 
This means that from the beginning with the 
coordinate increasing the concentration of free 
charge decreases faster than the concentration of 
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On the rising curve where x<x max and E< E 
max is true (see 15)
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2. Detalization of the explicit form of the 
energy distribution function 

From the equality of the derivatives at the 
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On the rising curve where x<x max and E< E 
max is true (see 15) 
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In the second term on the right in (24) takes 
into account the dependence (22). Reducing 2kT 
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If the growing part of the barrier sufficiently 
sharp, then the value x0 in (23) is not large 

5 
 

dze
kT
A

dx
dzd Z







2

2
1

. 

Where after integration 

1

2

2 Сe
kT
A

dx
dz Z 







       (17) 

The value of C1 can be obtained at the position 

of the maximum, where  dE
dx

= 0. Then 

max max
0

2

1
0

1 2
x E

kTАС е е
kT

  
   
 

   (18) 
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In the second term on the right in (24) takes 
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In the second term on the right in (24) takes 
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In the second term on the right in (24) takes 
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In the second term on the right in (24) takes 
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In the second term on the right in (24) takes 
into account the dependence (22). Reducing 2kT 

and bringing like, it turns to a02  
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In the second term on the right in (24) takes 
into account the dependence (22). Reducing 2kT 

and bringing like, it turns to a02  
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In the second term on the right in (24) takes 
into account the dependence (22). Reducing 2kT 

and bringing like, it turns to a02  
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In the second term on the right in (24) takes 
into account the dependence (22). Reducing 2kT 

and bringing like, it turns to a02  
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In the second term on the right in (24) takes 
into account the dependence (22). Reducing 2kT 

and bringing like, it turns to a02  
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falling apart for all 
0

dE kT
dx

  (i.e. slow decay), 

it also remains in force. Then in (19) should 
leave the sign "–". Where after integration is 
determined 

2
2 22 Сx

kT
Ae

Z




.      

(20) 

Substituting (10) into (16) and simplifying the 
expression, it turns out 

                                

2 2
0

( ) 2 ln
2

x AE x kT kT x С
kT

 
    

 
.    (21) 
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From the equality of the derivatives at the 
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In the second term on the right in (24) takes 
into account the dependence (22). Reducing 2kT 

and bringing like, it turns to a02  
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On the rising curve where x<x max and E< E 
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energy distribution function  
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The width of increasing side of the barrier 
and, consequently, the field strength is controlled 
by the parameters of the distribution of traps 2l0. 
Substituting (27) in (26) is determined by the 
value of the function E2 in maximum: 
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The more the 2l0, the higher the barrier. 
The dependence on the initial concentration 

of traps Nt0 and their activation energy (EC–Et) is 
dened by the value 
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follows that with increasing of these parameters, 
the barrier height also increases linearly in 
proportion to (EC – Et) and logarithmically 
proportional to Nt0. 

The total width of the SCR can be 
determined when E2(x)=0: 
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It is considered that for this task the traps 
diffuse on L1 and already at the maximum 
coordinate is xmax > a. Equation (29) does not allow 
to explicitly obtain the dependence of  L2( l0, A), but 
allows to reveal tendencies of this dependence by 
using methods borrowed from the theory of 
numbers. 

Consider (29) in the form 
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The type of traps is not changed (i.e., fixed 
A), but at the expense of technological methods 
increasing l0. In this case, since the right part does 
not change, and the denominator of the first term 
increases, the value of L2 should increase, although 
not proportionally. If  L2  is not changed, the left 
side of (30) is also decreased. This follows from 
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Conversely, l0=const, and the value of A 
increases. Then the left side in (30) should increase. 
Since the logarithmic function y = lnL2 slower 

linear change 
0

2

2
Lу  ,  in general, L2 increases. 

With increasing concentration of the traps on the 
surface of the Nt0 and their activation energy (EC–
Et) of the SCR width increases. 

Note that for this conclusion it is important 
simultaneous increase in both parameters. 
Fundamentally, it is possible when there are few 

deeper traps [  kT
EE tcехр 

 more] on the geometric 
surface (less Nt0). Since the value of Nt0 is 
controlled technologically, this competition can be 
avoided. 
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and, consequently, the field strength is controlled 
by the parameters of the distribution of traps 2l0. 
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The more the 2l0, the higher the barrier. 
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of traps Nt0 and their activation energy (EC–Et) is 
dened by the value 
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. From (28) it 

follows that with increasing of these parameters, 
the barrier height also increases linearly in 
proportion to (EC – Et) and logarithmically 
proportional to Nt0. 

The total width of the SCR can be 
determined when E2(x)=0: 
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It is considered that for this task the traps 
diffuse on L1 and already at the maximum 
coordinate is xmax > a. Equation (29) does not allow 
to explicitly obtain the dependence of  L2( l0, A), but 
allows to reveal tendencies of this dependence by 
using methods borrowed from the theory of 
numbers. 

Consider (29) in the form 
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The type of traps is not changed (i.e., fixed 
A), but at the expense of technological methods 
increasing l0. In this case, since the right part does 
not change, and the denominator of the first term 
increases, the value of L2 should increase, although 
not proportionally. If  L2  is not changed, the left 
side of (30) is also decreased. This follows from 
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Conversely, l0=const, and the value of A 
increases. Then the left side in (30) should increase. 
Since the logarithmic function y = lnL2 slower 

linear change 
0
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Lу  ,  in general, L2 increases. 

With increasing concentration of the traps on the 
surface of the Nt0 and their activation energy (EC–
Et) of the SCR width increases. 

Note that for this conclusion it is important 
simultaneous increase in both parameters. 
Fundamentally, it is possible when there are few 

deeper traps [  kT
EE tcехр 

 more] on the geometric 
surface (less Nt0). Since the value of Nt0 is 
controlled technologically, this competition can be 
avoided. 
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The width of increasing side of the barrier and, 
consequently, the field strength is controlled by 
the parameters of the distribution of traps 2l0. 
Substituting (27) in (26) is determined by the val-
ue of the function E2 in maximum:
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From (28) it follows that with increasing of these 
parameters, the barrier height also increases lin-
early in proportion to (EC – Et) and logarithmi-
cally proportional to Nt0.

The total width of the SCR can be determined 
when E2(x)=0:
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It is considered that for this task the traps dif-
fuse on L1 and already at the maximum coordinate 
is xmax > a. Equation (29) does not allow to explic-
itly obtain the dependence of  L2( l0, A), but allows 
to reveal tendencies of this dependence by using 
methods borrowed from the theory of numbers.

Consider (29) in the form
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The type of traps is not changed (i.e., fixed A), 
but at the expense of technological methods in-
creasing l0. In this case, since the right part does 
not change, and the denominator of the first term 
increases, the value of L2 should increase, al-
though not proportionally. If  L2  is not changed, 
the left side of (30) is also decreased. This follows 
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Conversely, l0=const, and the value of A in-
creases. Then the left side in (30) should increase. 
Since the logarithmic function y = lnL2 slower lin-
ear change 
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Ló = ,  in general, L2 increases. 

With increasing concentration of the traps on the 
surface of the Nt0 and their activation energy (EC–
Et) of the SCR width increases.

Note that for this conclusion it is impor-
tant simultaneous increase in both parameters. 
Fundamentally, it is possible when there are few 

deeper traps [ ( )kT
EE tcåõð -

 more] on the geomet-
ric surface (less Nt0). Since the value of Nt0 is con-
trolled technologically, this competition can be 
avoided.

3. Energy profile of the barrier in the bulk 
of semiconductor

After stitching at point x0 the function E2(x) in 
the depth of the volume has also been found as-
sociated with the surface condition (see 6).

The standard procedure for suturing in the 
depth of the scope of functions E2(x) and E(x) 
leads to a too complicated system of equations 
that can be solved only by numerical methods.

Therefore, it was applied workaround [5]. The 
value of the function at the maximum at х=хm is 
equal to

     

From that            

and   

This is after substitution in E2(x) gives

and in maximum ( x=xm )                                                                       (31)
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The width of increasing side of the barrier 
and, consequently, the field strength is controlled 
by the parameters of the distribution of traps 2l0. 
Substituting (27) in (26) is determined by the 
value of the function E2 in maximum: 
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The more the 2l0, the higher the barrier. 
The dependence on the initial concentration 

of traps Nt0 and their activation energy (EC–Et) is 
dened by the value 

kT
EE

t

tc

eNeA


 0

24



. From (28) it 

follows that with increasing of these parameters, 
the barrier height also increases linearly in 
proportion to (EC – Et) and logarithmically 
proportional to Nt0. 

The total width of the SCR can be 
determined when E2(x)=0: 
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It is considered that for this task the traps 
diffuse on L1 and already at the maximum 
coordinate is xmax > a. Equation (29) does not allow 
to explicitly obtain the dependence of  L2( l0, A), but 
allows to reveal tendencies of this dependence by 
using methods borrowed from the theory of 
numbers. 

Consider (29) in the form 
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The type of traps is not changed (i.e., fixed 
A), but at the expense of technological methods 
increasing l0. In this case, since the right part does 
not change, and the denominator of the first term 
increases, the value of L2 should increase, although 
not proportionally. If  L2  is not changed, the left 
side of (30) is also decreased. This follows from 
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Conversely, l0=const, and the value of A 
increases. Then the left side in (30) should increase. 
Since the logarithmic function y = lnL2 slower 

linear change 
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Lу  ,  in general, L2 increases. 

With increasing concentration of the traps on the 
surface of the Nt0 and their activation energy (EC–
Et) of the SCR width increases. 

Note that for this conclusion it is important 
simultaneous increase in both parameters. 
Fundamentally, it is possible when there are few 

deeper traps [  kT
EE tcехр 

 more] on the geometric 
surface (less Nt0). Since the value of Nt0 is 
controlled technologically, this competition can be 
avoided. 
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The width of increasing side of the barrier 
and, consequently, the field strength is controlled 
by the parameters of the distribution of traps 2l0. 
Substituting (27) in (26) is determined by the 
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The more the 2l0, the higher the barrier. 
The dependence on the initial concentration 

of traps Nt0 and their activation energy (EC–Et) is 
dened by the value 
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. From (28) it 

follows that with increasing of these parameters, 
the barrier height also increases linearly in 
proportion to (EC – Et) and logarithmically 
proportional to Nt0. 

The total width of the SCR can be 
determined when E2(x)=0: 
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It is considered that for this task the traps 
diffuse on L1 and already at the maximum 
coordinate is xmax > a. Equation (29) does not allow 
to explicitly obtain the dependence of  L2( l0, A), but 
allows to reveal tendencies of this dependence by 
using methods borrowed from the theory of 
numbers. 

Consider (29) in the form 
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The type of traps is not changed (i.e., fixed 
A), but at the expense of technological methods 
increasing l0. In this case, since the right part does 
not change, and the denominator of the first term 
increases, the value of L2 should increase, although 
not proportionally. If  L2  is not changed, the left 
side of (30) is also decreased. This follows from 
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Conversely, l0=const, and the value of A 
increases. Then the left side in (30) should increase. 
Since the logarithmic function y = lnL2 slower 

linear change 
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With increasing concentration of the traps on the 
surface of the Nt0 and their activation energy (EC–
Et) of the SCR width increases. 

Note that for this conclusion it is important 
simultaneous increase in both parameters. 
Fundamentally, it is possible when there are few 

deeper traps [  kT
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 more] on the geometric 
surface (less Nt0). Since the value of Nt0 is 
controlled technologically, this competition can be 
avoided. 
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The width of increasing side of the barrier 
and, consequently, the field strength is controlled 
by the parameters of the distribution of traps 2l0. 
Substituting (27) in (26) is determined by the 
value of the function E2 in maximum: 

 2max 02 2 ln 2
2

AE kT kT
kT

   .(2

8) 

The more the 2l0, the higher the barrier. 
The dependence on the initial concentration 

of traps Nt0 and their activation energy (EC–Et) is 
dened by the value 
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. From (28) it 

follows that with increasing of these parameters, 
the barrier height also increases linearly in 
proportion to (EC – Et) and logarithmically 
proportional to Nt0. 

The total width of the SCR can be 
determined when E2(x)=0: 
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It is considered that for this task the traps 
diffuse on L1 and already at the maximum 
coordinate is xmax > a. Equation (29) does not allow 
to explicitly obtain the dependence of  L2( l0, A), but 
allows to reveal tendencies of this dependence by 
using methods borrowed from the theory of 
numbers. 

Consider (29) in the form 
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The type of traps is not changed (i.e., fixed 
A), but at the expense of technological methods 
increasing l0. In this case, since the right part does 
not change, and the denominator of the first term 
increases, the value of L2 should increase, although 
not proportionally. If  L2  is not changed, the left 
side of (30) is also decreased. This follows from 
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Conversely, l0=const, and the value of A 
increases. Then the left side in (30) should increase. 
Since the logarithmic function y = lnL2 slower 

linear change 
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With increasing concentration of the traps on the 
surface of the Nt0 and their activation energy (EC–
Et) of the SCR width increases. 

Note that for this conclusion it is important 
simultaneous increase in both parameters. 
Fundamentally, it is possible when there are few 

deeper traps [  kT
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 more] on the geometric 
surface (less Nt0). Since the value of Nt0 is 
controlled technologically, this competition can be 
avoided. 
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The width of increasing side of the barrier 
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It is considered that for this task the traps 
diffuse on L1 and already at the maximum 
coordinate is xmax > a. Equation (29) does not allow 
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using methods borrowed from the theory of 
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Conversely, l0=const, and the value of A 
increases. Then the left side in (30) should increase. 
Since the logarithmic function y = lnL2 slower 
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With increasing concentration of the traps on the 
surface of the Nt0 and their activation energy (EC–
Et) of the SCR width increases. 

Note that for this conclusion it is important 
simultaneous increase in both parameters. 
Fundamentally, it is possible when there are few 

deeper traps [  kT
EE tcехр 

 more] on the geometric 
surface (less Nt0). Since the value of Nt0 is 
controlled technologically, this competition can be 
avoided. 
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5. Energy profile of the barrier in the 
bulk of semiconductor 

After stitching at point x0 the function 
E2(x) in the depth of the volume has also been 
found associated with the surface condition (see 
6). 

The standard procedure for suturing in the 
depth of the scope of functions E2(x) and E(x) 
leads to a too complicated system of equations 
that can be solved only by numerical methods. 

Therefore, it was applied workaround [5]. 
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It is seen that the closer to the boundary 

the barrier forms ( xm decreases), the higher it is. 
With increasing concentration of traps Nt0 and 

their depth (EC – Et) (i.e., increases) the barrier also 
increases. This coincides with the previously 
obtained. 

At the point of stitching the barrier function 
E2(x) with the function in the quasi-neutral region E 
≈ kT. Therefore, we can assume that x00 determines 
the overall width of the SCR: x00 = L2. It turns out: 
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The width of the space charge region 
increases with increasing 2l0, which also coincides 
with the previously obtained. 

The technology of sample doping  
In [2], a method of creating electron traps on 

the semiconductor surface due to the processing gas 
discharge is described. The advantages of this 
technique are associated with the presence of an 
electric field during technological operations. By 
varying the magnitude and direction of this field it 
is possible to control the process of introduction of 
defects and profile of their distribution. 

In [6] indicates significant migration of the 
impurity ions in wide band gap semiconductors in 
the fields of order 105 V/m. 

In addition to creating electronic traps and 
managed process of introducing them into the 
volume of semiconductor sensor, the proposed 
method of treatment in a corona discharge 
contributes to the formation of donor on the surface 
of the sample [3]. The same electric field which 
promotes the outflow of these traps, accumulates 
donors in the surface layers, increasing their 
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It is seen that the closer to the boundary 
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With increasing concentration of traps Nt0 and 
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It is seen that the closer to the boundary 

the barrier forms ( xm decreases), the higher it is. 
With increasing concentration of traps Nt0 and 

their depth (EC – Et) (i.e., increases) the barrier also 
increases. This coincides with the previously 
obtained. 

At the point of stitching the barrier function 
E2(x) with the function in the quasi-neutral region E 
≈ kT. Therefore, we can assume that x00 determines 
the overall width of the SCR: x00 = L2. It turns out: 
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The width of the space charge region 
increases with increasing 2l0, which also coincides 
with the previously obtained. 

The technology of sample doping  
In [2], a method of creating electron traps on 

the semiconductor surface due to the processing gas 
discharge is described. The advantages of this 
technique are associated with the presence of an 
electric field during technological operations. By 
varying the magnitude and direction of this field it 
is possible to control the process of introduction of 
defects and profile of their distribution. 

In [6] indicates significant migration of the 
impurity ions in wide band gap semiconductors in 
the fields of order 105 V/m. 

In addition to creating electronic traps and 
managed process of introducing them into the 
volume of semiconductor sensor, the proposed 
method of treatment in a corona discharge 
contributes to the formation of donor on the surface 
of the sample [3]. The same electric field which 
promotes the outflow of these traps, accumulates 
donors in the surface layers, increasing their 
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It is seen that the closer to the boundary the 

barrier forms ( xm decreases), the higher it is. With 
increasing concentration of traps Nt0 and their 
depth (EC – Et) (i.e., increases) the barrier also 
increases. This coincides with the previously ob-
tained.

At the point of stitching the barrier function 
E2(x) with the function in the quasi-neutral region 
E ≈ kT. Therefore, we can assume that x00 deter-
mines the overall width of the SCR: x00 = L2. It 
turns out:
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technique are associated with the presence of an 
electric field during technological operations. By 
varying the magnitude and direction of this field 
it is possible to control the process of introduction 
of defects and profile of their distribution.

In [6] indicates significant migration of the im-
purity ions in wide band gap semiconductors in 
the fields of order 105 V/m.

In addition to creating electronic traps and 
managed process of introducing them into the 
volume of semiconductor sensor, the proposed 
method of treatment in a corona discharge con-
tributes to the formation of donor on the surface 
of the sample [3]. The same electric field which 
promotes the outflow of these traps, accumulates 
donors in the surface layers, increasing their con-

ductivity. Thus, it becomes possible to make pro-
cessing of crystals with pre-applied contacts and 
in the same cycle to make measurements without 
the presence of air in the chamber.

The sample was a rectangular plate of mono-
crystal cadmium sulfide with a thickness of ~ The 
width of the space charge region increases with 
increasing 2l0, which also coincides with the 
previously obtained.

The technology of sample doping 
In [2], a method of creating electron traps on 

the semiconductor surface due to the processing 
gas discharge is described. The advantages of this 
technique are associated with the presence of an 
electric field during technological operations. By 
varying the magnitude and direction of this field 
it is possible to control the process of introduction 
of defects and profile of their distribution.

In [6] indicates significant migration of the 
impurity ions in wide band gap semiconductors 
in the fields of order 105 V/m.

In addition to creating electronic traps and 
managed process of introducing them into the 
volume of semiconductor sensor, the proposed 
method of treatment in a corona discharge 
contributes to the formation of donor on the surface 
of the sample [3]. The same electric field which 
promotes the outflow of these traps, accumulates 
donors in the surface layers, increasing their 
conductivity. Thus, it becomes possible to make 
processing of crystals with pre-applied contacts 
and in the same cycle to make measurements 
without the presence of air in the chamber.

The sample was a rectangular plate of 
monocrystal cadmium sulfide with a thickness of 
~ 1,5 mm and an area of the front surface of about 
one square centimeter. The crystal was placed in a 
vacuum chamber, which created a vacuum of the 
order of 10-2÷10-3 mm. Hg.

Stable symmetric discharge (Fig. 2.b) 
managed to create [7] when the cathode end was 
attached to the conical form. When an insufficient 
degree of vacuum in a chamber, the discharge 
passed into the avalanche and was twisting, and 
in the working field of high voltage the twisting 
moment was almost independent of the field. All 
the following results are obtained after processing 
in the mode of glow discharge.
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It is seen that the closer to the boundary 

the barrier forms ( xm decreases), the higher it is. 
With increasing concentration of traps Nt0 and 
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the semiconductor surface due to the processing gas 
discharge is described. The advantages of this 
technique are associated with the presence of an 
electric field during technological operations. By 
varying the magnitude and direction of this field it 
is possible to control the process of introduction of 
defects and profile of their distribution. 

In [6] indicates significant migration of the 
impurity ions in wide band gap semiconductors in 
the fields of order 105 V/m. 

In addition to creating electronic traps and 
managed process of introducing them into the 
volume of semiconductor sensor, the proposed 
method of treatment in a corona discharge 
contributes to the formation of donor on the surface 
of the sample [3]. The same electric field which 
promotes the outflow of these traps, accumulates 
donors in the surface layers, increasing their 

(32)
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The best results are obtained when the gap 
width is 8-12 mm. We attribute this to the fact that 
with the insufficient value of the period expiring 
on the electron has not gained enough energy to 
create defects in the structure of the investigated 
crystal.

The high voltage of the order of 4-5 kV was 
created by high-voltage rectifier. In this case, the 
contrast described earlier (see [1-3]) is to use DC 
voltage for processing.

For processing in a gas discharge were selected 
samples, which have symmetrical linear graphs 
like the VAC in the dark and in the light. Has been 
used quite photosensitive crystals. In both cases 
– and in the dark and when illuminated – after 
the manufacturing process, the overall resistance 
of the crystal increased. After the appearance of 
these traps initially low resistivity space-charge 
region of the ohmic contact due to formation of the 
barrier significantly increases its resistance. The 
base resistance in the dark was ~ 5∙104 Ohm, in 
the light - (2÷3)104 Ohm. Insignificant difference 
of the obtained values leads to the conclusion that 
the resulting width of the barrier is determined 
only by the penetration depth of the traps. Far 
from the surface of the crystal layers of the traps 
is very small and therefore they are already filled 
in in the dark. The light does not change their fill 
and, therefore, the width of the SCR, and with it 
the resistance.

 

           а)                                           b)
Fig. 2. The design of the arrester (a) and processing 
of the samples the vacuum in the gas discharge (b)

 
When illumination by strongly absorbed light 

carriers are generated in the surface layers of 

the sensor and must move along the surface by 
the applied field. Processing in a gas discharge 
contributes, according to [1,2], the formation 
on the surface additional donor centers. In this 
case the surface conductivity increases, and the 
impact of recombination is weakened.

In the spectral range 540-600 nm by the 
impact of a gas discharge, we observed a slight 
increase of the photocurrent. This indicates the 
predicted occurrence as a result of processing of 
crystals of deep trap levels.

Conditions of formation barrier in our 
structures are also seen in the dependence of the 
curve shape of the spectral distribution of the 
photocurrent polarity from the applied voltage. 
For conventional barriers with increasing 
applied forward bias, the barrier height and width 
decrease. The field strength in the SCR barrier, 
as the ratio of these quantities varies little. When 
changing the polarity of the applied field on the 
opposite of both these parameters – the height 
and width are simultaneously increased, but 
their ratio is again significant changes does not 
undergo.

In our case it is not. The resulting width of 
the barrier is determined only by the penetration 
depth of the traps and does not depend on the 
applied voltage. An external electric field in 
this case reduces the height of the barrier and 
distorts its symmetry (see Fig.1). The side of 
the potential barrier, the field strength at which 
is opposite to external, is reduced to a greater 
extent. Because it is one-sided coverage, short-
wave and long-wave part of the curve the spect

Experimentally proved to be correct to 
investigate the spectral distribution of the 
emerging photo – EMF. Such an approach 
allows not to take into account the nuances of the 
formation of the photocurrent – recombination 
in the inner regions of the crystal, the influence 
of the resistances of its parts, etc. But instead to 
identify the main – effect of the emerging traps 
in the surface layers of the sample due to the 
processing in a gas discharge and donor levels 
on its geometric surface.

Without the participation of the external field 
on the samples processed in a gas discharge, for 
the longitudinal conductivity, we observed the 
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unusual origin and distribution of EMF in the 
excitation light of different wavelengths. A curve 
is represented in Fig. 3

  
 
.
 
 

Fig. 3.The spectral distribution of the photo EMF 
for crystals, processed in a gas discharge

In our case, we found that the magnitude of 
photo-EMF under white light of 100 Lux was less 
than that in monochromatic light. This is due to 
the unusual form of a graph Fig.3. Shortwave and 
longwave contributions do not add up as usual in 
the white light, and subtracted.

This happens due to the unusual kind of 
barrier. Typically, SCR is either a growing part 
from the surface deep into the crystal (ohmic 
contact) or falling (gate contact). In our case 
presented both of the slope of the barrier (Fig.1). 
It shifted in the whole volume of the crystal from 
the surface. In this regard, when illuminated from 
the side of a contact on the surface of the sample, 
first, the absorption occurs in the increasing part 
of the barrier to short wavelength light with 
strong absorption. Photoexcited electrons by 
the field barrier are returned to the contact on 
the illuminated surface, where they increase the 
negative potential relatively to the lower contact 
to the sample. In Fig.3 we adopted this value for 
the positive part of the curve (area 440-540 nm).

As can be seen from the figure, with increasing 
the excitation wavelength, the contribution of this 
component decreases. This is because of that 
for larger wavelength the absorption coefficient 
decreases, and part of the photons reaches the 
deeper layers of the crystal, where the falling part 
of the barrier is. In this case, the field strength 
causes the non-equilibrium electrons move in the 
opposite direction. It is obvious that for a wave 

length of 540 nm, when in Fig.3, there is a curve 
crossing the x-axis, both processes balance each 
other and the resulting potential difference is 
equal to zero.

With further increase in wavelength, more 
photons are absorbed by the falling part of the 
barrier (Fig.1). Field barrier primarily directs the 
electrons into the sample, a negative potential of 
lower contact increases.

For sufficiently large wavelengths ~ 800 nm 
or more, the signal Fig.3 stabilizes, remaining 
negative. This indicates the predominant light 
absorption in the right side of the barrier (Fig.1). 
In addition, the photons can penetrate deep 
enough into the crystal and be absorbed outside 
the SCR contact without making any contribution 
to the signal formation Fig. 3.

The limit of the change curve Fig.3 is a 
conventional spectral distribution of photo reply.

Used processing methods cause changes in 
this schedule with some ratio of temperature, 
light, tension, the used field and the duration 
of the treatment. In our case the best results we 
have obtained with 15 min treatment with 8 mm 
distance to the needle on which it was 4000 V. 
Then the schedule gets abnormal appearance with 
maximally large negative values.

If too large saturation of the traps during 
processing in a gas discharge, their concentration 
gradient is insignificant, and the spectral 
distribution returns to its original state. This is the 
same crystal, which just increased the resistance 
due to the presence of traps.

Thus, the proposed technology of sensors, in 
full accordance with the developed model allows to 
obtain sensors with abnormal spectral sensitivity. 
The view according to Fig. 3 makes it possible 
to use them as receptors in a certain, prescribed 
in the course of technological processing, the 
wavelength of the radiation. Moreover, since 
at this point the value of the signal is zero, this 
sensor will be completely insensitive to any noise 
and interference, including artificially supplied.

In addition, since the light from different 
spectral regions the sign of the EMF and therefore 
the current is reversed, this property can be used 
to create optical devices of new generation.
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FEATURES LUMINOUS CONDUCTIVITY IN
THE CRYSTALS TREATED IN A CORONA DISCHARGE

Abstract
The technology of processing of semiconductor crystals is developed in the corona discharge. It is 

established that as a result of this exposure, the samples acquire alternating spectral sensitivity. 
The observed phenomenon is explained by the emergence of a saddle of the potential barrier in the 

surface region of the element, the unusual properties which can allow the creation of a new type of 
device.
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ОСОБЕННОСТИ СВЕТОВОЙ ПРОВОДИМОСТИ В КРИСТАЛЛАХ, 
ОБРАБОТАННЫХ В КОРОННОМ РАЗРЯДЕ 

Резюме
Разработана технология обработки полупроводниковых кристаллов в коронном разряде. 

Установлено, что в результате этого воздействия образцы приобретают знакопеременную спек-
тральную чувствительность. Наблюдаемые явления объяснены возникновением двухскатного 
потенциального барьера в приповерхностной области элемента, необычные свойства которого 
могут позволить создание прибора нового типа.
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УДК 621.315.592                                                                           

О. П. Мінаєва, А. С. Симанович, Н. П. Затовська, Ю. М. Каракіс, М. І. Куталова, Г. Г. Чемересюк

ОСОБЛИВОСТІ СВІТЛОВОЇ ПРОВІДНОСТІ В 
КРИСТАЛАХ, ОБРОБЛЕНИХ У КОРОННОМУ РОЗРЯДІ 

Резюме
Розроблено технологію обробки напівпровідникових кристалів у коронному розряді. 

Встановлено, що в результаті цього впливу зразки набувають знакоперемінну спектраль-
ну чутливість. Явища, що спостерігаються, пояснені виникненням двосхилого потенційного 
бар'єра в приповерхній області елемента, незвичайні властивості якого можуть дозволити ство-
рення приладу нового типу.
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NEW QUANTUM APPROACH TO DETERMINATION OF THE MOLECULAR  
SPECTRAL CONSTANTS AND PROBABILITIES FOR COOPERATIVE  VIBRATION-

ROTATION-NUCLEAR TRANSITIONS IN SPECTRA OF DIATOMICS AND THE 
HADRONIC MOLECULES 

It is proposed a new approach to construction of the potential function of diatomic molecules 
as a sum of the known perturbed Morse oscillator function, the Simons-Parr-Finlan molecular 
potential in the middle of the potential curve, function of the -Cn/Rn type at the large internuclear 
distances. Within this approach it is presented  a precise scheme for computing the molecular spectral 
parameters, namely, vibrational, rotational, centrifugal constants for  the electronic states of diatomics. 
As application it was carried out calculation of the of molecular constants (cm-1) for the X1Σ+  B1Π 
states of the KRb dimer and rubidium dimer and performed further comparison with experimental 
data. Within consistent approach to calculation of the electron-nuclear γ transition spectra (set of 
vibration-rotational satellites in molecule) of  molecule there are obtained the estimates for vibration-
rotation-nuclear transition probabilities in a case of the emission and absorption spectrum of nucleus 
127I (Е(0)γ= 203 keV) in the  molecule of H127I for different approximations of the for potential curves: 
the harmonic oscillator, the Dunham model and presented approach.

From physical viewpint it is obvious that any 
alteration of the molecular state must be mani-
fested in the quantum transitions, for example, 
in a spectrum of the g-radiation of a nucleus (see 
for example [1-9]). In result of the gamma nucle-
ar transition in a nucleus of a molecule there is 
arised a set of the electron-vibration-rotation sat-
ellites, which are due to an alteration of the state 
of the molecular system interacting with photon.  
The known example is the Szilard-Chalmers ef-
fect which results to molecular dissociation be-
cause of the recoil during radiating gamma quan-
tum with large energy. 

In series of works [3-9] it has been carried 
out detailed studying the co-operative dynamical 
phenomena due the interaction between atoms, 
ions, molecule electron shells and nuclei nucle-
ons. There have been developed a few advanced 

approaches to description of a new class of dy-
namical laser-electron-nuclear effects in molecu-
lar spectroscopy, in particular, a nuclear gamma-
emission or absorption spectrum of a molecule. 
A consistent quantum- mechanical approach to 
calculation of the electron-nuclear g transition 
spectra (set of vibration-rotational satellites in 
molecule) of a nucleus in the multiatomic mol-
ecules has been earlier proposed [5,7] and gen-
eralizes the well known approach by Letokhov-
Minogin [4]. Earlier there were have been ob-
tained estimates and calculations of the  vibra-
tion-nuclear transition probabilities in a case of 
the emission and absorption spectrum of nucleus  
191Ir (E(0)

g= 82 keV)  in the molecule of IrO4 ,  
188Os (E(0)

g= 155 keV in OsO4  and other molecules 
were  listed. In Ref [8] there are firstly presented 
theoretical data on the vibration-nuclear transition 
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probabilities in a case of the emission and absorp-
tion spectrum of the nucleus of rhenium 186Re (E(0)

g= 186.7 keV) in the molecule of ReO4 , estimated 
on the basis of the simplified version [5,7] of the 
consistent quantum-mechanical  approach to co-
operative  electron-g-nuclear   spectra (a set of 
the vibration-rotational satellites in a spectrum of 
molecule) of multiatomic molecules.

In this paper we present a genetralization of 
the cited theory of cooparative electron-gamma-
nuclear (vibrational, rotational) transitions in a 
case of the diatomic moleules using new prin-
ciple of construction of the potential curves for 
diatomic, which is in some degree analogous to 
the Smirnov approach [10,11]. Moreover the pro-
posed method allow to determine the molecular 
spectral parameters, that ic checked on the ex-
ample of the some alkali dimers. Besides, we will 
give a short generalization of the theory on a case 
of the exotic hadronic (pionic) molecules. 

It should be noted that the diatomics potential 
function can be obtained on the decision of the 
electronic Schrödinger equation, however, due to 
significant computational difficulties in the pres-
ent, this problem is reliably solving only for the 
case of the simplest diatomics having a small 
number of electrons [10-15]. In this regard, the 
first promising more used semi-empirical meth-
odsy, where the potential curves are determined 
in the adiabatic approach using experimental vi-
brational and rotational spectroscopic constants. 
Some authors have studied solutions of the Sch-
rodinger (or Klein-Gordon) equation with some 
known physical potential models, such as the 
Morse potential, Rosen-Morse potential, Man-
ning-Rosen potential, Poschl-Teller potential, 
Deng-Fan potential, ring-shaped potential, and 
hyperbolic Scarf potential etc (look details for ex-
ample in Ref. [10,16-18]).

Ler us remind shortly a scheme for computing 
the cooperative  on the vibration-nuclear transi-
tion probabilities in a case of the emission and 
absorption spectrum of the nucleus of diatomics 
as the corresponding method is earlier presented 
in details (look [5-8]). The aim is to compute pa-
rameters of the  gamma transitions (a probability 
of transition) or spectrum of the gamma satellites 
because of changing the electron-vibration-rota-

tional states of the molecule under gamma quan-
tum radiation (absorption).   

Our purpose is calculation of a structure of the 
gamma transitions (probability of transition) or 
spectrum of the gamma satellites because of the 
changing the electron-vibration-rotational states 
of diatomic molecules under the gamma quantum 
radiation (absorption). In adiabatic approxima-
tion a wave function of molecule is multiplying 
the electronic wave function and wave function 
of nuclei: y(re)y(R1,R2). Hamiltonian of interac-
tion of the gamma radiation with system of nucle-
ons for the first nucleus can be expressed through 
the co-ordinates of nucleons rn

’ in a system of the 
mass centre of the first nucleus [4,7]:

              )exp()()( 1RikrHrH nn g-′=                 (1)

where kg is a wave vector of the gamma quantum. 
The matrix element for transition from initial 
state “a” to final state “b” is presented as usually:                                          

         •>ΨΨ< )(|)(|)(*
nannb rrHr        

>ΨΨΨΨ<• g- ),()(||),()( 2121
** 1 RRråRRr aea

Rik
beb  (2)

The first multiplier in (1) is defined by the 
gamma transition of nucleus and is not dependent 
upon an internal structure of molecule in a good 
approximation. The second multiplier is a matrix 
element of transition of the molecule from initial 
state “a” to final state “b”:

                  •>ΨΨ=< )(|)(*
eaebba rrM

         >ΨΨ<• g- ),(||),( 2121
* 1 RReRR a

Rik
b        (3)

The expression (7) gives a general formula for 
calculation of the probability of changing internal 
state of molecule under absorption or emitting gam-
ma quantum by nucleus of the molecule  and defines 
an amplitude of the corresponding gamma satellites. 
Their positions are fully determined by the energy 
and pulse conserving laws as follows [2]:

2)0(2
0 )2/1()2/1( MvEEMvEE ba ++±=++± gg    

(4)

MvkMv =± g0                                                

Here M is the molecule mass, v0 and v are ve-
locities of molecule before and after interaction of 

cooparative electron-gamma-nuclear 
(vibrational, rotational) transitions in a case 
of the diatomic moleules using new principle 
of construction of the potential curves for 
diatomic, which is in some degree analogous 
to the Smirnov approach [10,11]. Moreover 
the proposed method allow to determine the 
molecular spectral parameters, that ic 
checked on the example of the some alkali 
dimers. Besides, we will give a short 
generalization of the theory on a case of the 
exotic hadronic (pionic) molecules. 

It should be noted that the diatomics 
potential function can be obtained on the 
decision of the electronic Schrödinger 
equation, however, due to significant 
computational difficulties in the present, this 
problem is reliably solving only for the case 
of the simplest diatomics having a small 
number of electrons [10-15]. In this regard, 
the first promising more used semi-empirical 
methodsy, where the potential curves are 
determined in the adiabatic approach using 
experimental vibrational and rotational 
spectroscopic constants. Some authors have 
studied solutions of the Schrodinger (or 
Klein-Gordon) equation with some known 
physical potential models, such as the Morse 
potential, Rosen-Morse potential, Manning-
Rosen potential, Poschl-Teller potential, 
Deng-Fan potential, ring-shaped potential, 
and hyperbolic Scarf potential etc (look 
details for example in Ref. [10,16-18]).

Ler us remind shortly a scheme for 
computing the cooperative  on the vibration-
nuclear transition probabilities in a case of
the emission and absorption spectrum of the 
nucleus of diatomics as the corresponding 
method is earlier presented in details (look 
[5-8]). The aim is to compute parameters of 
the gamma transitions (a probability of 
transition) or spectrum of the gamma 
satellites because of changing the electron-
vibration-rotational states of the molecule
under gamma quantum radiation 
(absorption).   
Our purpose is calculation of a structure of 
the gamma transitions (probability of 
transition) or spectrum of the gamma 
satellites because of the changing the 

electron-vibration-rotational states of 
diatomic molecules under the gamma 
quantum radiation (absorption). In adiabatic 
approximation a wave function of molecule 
is multiplying the electronic wave function 
and wave function of nuclei: ψ(re)ψ(R1,R2). 
Hamiltonian of interaction of the gamma 
radiation with system of nucleons for the first 
nucleus can be expressed through the co-
ordinates of nucleons rn

’ in a system of the
mass centre of the first nucleus [4,7]:

)exp()()( 1RikrHrH nn γ−′= (1)

where kγ is a wave vector of the gamma 
quantum. The matrix element for transition 
from initial state “a” to final state “b” is 
presented as usually:                            

•>ΨΨ< )(|)(|)(*
nannb rrHr

>ΨΨΨΨ<• γ− ),()(||),()( 2121
** 1 RRrеRRr aea

Rik
beb

(2)
The first multiplier in (1) is defined by the 
gamma transition of nucleus and is not 
dependent upon an internal structure of 
molecule in a good approximation. The 
second multiplier is a matrix element of 
transition of the molecule from initial state 
“a” to final state “b”:

•>ΨΨ=< )(|)(*
eaebba rrM

>ΨΨ<• γ− ),(||),( 2121
* 1 RReRR a

Rik
b

(3)
The expression (7) gives a general formula 
for calculation of the probability of changing 
internal state of molecule under absorption or 
emitting gamma quantum by nucleus of the 
molecule  and defines an amplitude of the 
corresponding gamma satellites. Their 
positions are fully determined by the energy 
and pulse conserving laws as follows [2]:

2)0(2
0 )2/1()2/1( MvEEMvEE ba ++±=++± γγ

(4)
MvkMv =± γ0

Here M is the molecule mass, v0 and v are 
velocities of molecule before and after 
interaction of nucleus with γ quantum, Ea and 

cooparative electron-gamma-nuclear 
(vibrational, rotational) transitions in a case 
of the diatomic moleules using new principle 
of construction of the potential curves for 
diatomic, which is in some degree analogous 
to the Smirnov approach [10,11]. Moreover 
the proposed method allow to determine the 
molecular spectral parameters, that ic 
checked on the example of the some alkali 
dimers. Besides, we will give a short 
generalization of the theory on a case of the 
exotic hadronic (pionic) molecules. 

It should be noted that the diatomics 
potential function can be obtained on the 
decision of the electronic Schrödinger 
equation, however, due to significant 
computational difficulties in the present, this 
problem is reliably solving only for the case 
of the simplest diatomics having a small 
number of electrons [10-15]. In this regard, 
the first promising more used semi-empirical 
methodsy, where the potential curves are 
determined in the adiabatic approach using 
experimental vibrational and rotational 
spectroscopic constants. Some authors have 
studied solutions of the Schrodinger (or 
Klein-Gordon) equation with some known 
physical potential models, such as the Morse 
potential, Rosen-Morse potential, Manning-
Rosen potential, Poschl-Teller potential, 
Deng-Fan potential, ring-shaped potential, 
and hyperbolic Scarf potential etc (look 
details for example in Ref. [10,16-18]).

Ler us remind shortly a scheme for 
computing the cooperative  on the vibration-
nuclear transition probabilities in a case of
the emission and absorption spectrum of the 
nucleus of diatomics as the corresponding 
method is earlier presented in details (look 
[5-8]). The aim is to compute parameters of 
the gamma transitions (a probability of 
transition) or spectrum of the gamma 
satellites because of changing the electron-
vibration-rotational states of the molecule
under gamma quantum radiation 
(absorption).   
Our purpose is calculation of a structure of 
the gamma transitions (probability of 
transition) or spectrum of the gamma 
satellites because of the changing the 

electron-vibration-rotational states of 
diatomic molecules under the gamma 
quantum radiation (absorption). In adiabatic 
approximation a wave function of molecule 
is multiplying the electronic wave function 
and wave function of nuclei: ψ(re)ψ(R1,R2). 
Hamiltonian of interaction of the gamma 
radiation with system of nucleons for the first 
nucleus can be expressed through the co-
ordinates of nucleons rn

’ in a system of the
mass centre of the first nucleus [4,7]:
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positions are fully determined by the energy 
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nucleus with g quantum, Ea and Eb are the ener-
gies of molecule before and after interaction, Eg is 
an energy of nuclear transition. Then an energy of 
the g satellite is as follows):
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2/2Mc2. It is well known (c.f.[4,7]) that the practi-
cal interest are presented only transitions between 
vibration-rotational levels of the ground electron 
state, including transitions into continuum with 
further molecular dissociation. The matrix ele-
ment of transition for these transitions is 
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The values of energy, accepted by vibration 
and rotational degrees of freedom of the molecule 
are as follows:
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with definite values of quantum numbers J,K are 
the eigen functions of the angle momentum op-
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solving the corresponding Schrödinger equa-
tion with potential function, choice of which was 
discussed above. The simple  approximation is 
surely the harmonic oscillator onee. The harmon-
ic oscillator wave functions were used for esti-
mating matrix elements of the vibration-nuclear 
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Here Q=(R-Ro)(m)1/2, m=m1m2/M is the re-
duced mass of the molecule, m1 and m2 are the 
masses of nuclei. The co-ordinate of mass centre 
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centre is defined by expression:
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Our new approach in in construction of the fi-

nal potential function as a sum of a few potenty-
ial curves. Each diatomic potential curve dimer 
is approximated by three functions corresponding 
to different portions of it. As in Ref. [10], the first 
portion is approximated by the known perturbed 
Morse oscillator function:  

        ,    (11)
where R, Re- and equilibrium internuclear inter-
nuclear distance;Ve, ρ, bn - the parameters of the 
Morse oscillator function. 

tion VM. 
Often in the middle of the potential curve ( it is  

experimentally investigated range of vibrational 
quantum numbers) it is usuaaly used the poten-
tial of the Rydberg-Klein-Rees (look for example 
[10-15,18]). This potential curve has not  the ana-
lytical form, and it is built as a set of Rmin and Rmax 
classical turning points for experimental study of 
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where the coefficients bi  are linked with corre-
sponding molecular constants [14]. 
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vibrational energy levels. Insit of it in our 
new scheme we apply the Simons-Parr-
Finlan molecular potential which looks as 
follows [15]:

(12a)

or introducing x= r - r0 :

(12b)

where the coefficients bi are linked with 
corresponding molecular constants [14]. 
Finally, the plot of the potential curve for 
large values of the internuclear distance is 
approximated by the standard function:

(13)
where De - experimental value of dissociation 
energy; Cn – the function parameters (6); n = 
3-8. Let us note that the model (11)-(13) is 
obviously more exact and consistent in 
comparison with a simple harmonic oscillator 
one. As an application it was carried out 
computing the rubidium dimers (Rb2, KRb)  
diatomics spectral parameters. The results of 
calculation of molecular constants (cm-1) for 
the X1Σ+ state of the KRb dimer are 
presented in table 1 tohether with 
experimental data [10,19,20] and theoretical 
data [10,11] obtained with using the Morse-
Rydberg - Klein - Rees (M-RKR) method.  

Table 1. The molecular constants (cm-1) for 
the X1Σ+ state of the KRb dimer:

Experimantal data – Exp; Theory: a- [10]; b-
our data

KRb X1Σ+

Th: a Th: b Exp
ωe 75,846 75,844 75,842
ωexe 0,230 0,230 0,230
ωeye –3,7(–4) –3,8(–4) –3,9(–4)
ωeze –3,7(–6) –3,5(–6) – 3,1(–6)
Be 0,03815 0,03812 0,03813
αe 1,21(–4) 1,20(–4) 1,20(–4)
γe –7,3(–7) –7,3(–7) –7,4(–7)
De 3,85(– 8) 3,85(– 8) 3,86(–8)
He 3,7(–14) 3,7(–14) 3,7(–14)

Table 2 contains the results of calculation of 
molecular constants (cm-1) for the B1Π (b) 
state of the KRb dimer

Table 2. The molecular constants (cm-1) for 
for the B1Π (b) state of the KRb dimer:

Experimantal data – Exp; Theory -our data
KRb B1Π

Theory Exp
ωe 61,258 61,256
ωexe 0,2095 0,2089
ωeye 2,88(– 3) 2,87(– 3)
ωeze –1,034(–4) –1,031(–4)
Be 0,03287 0,03288
αe 7,54(– 5) 7,41(– 5)
γe –1,12(– 5) –1,13(–5)
De 3,75(– 8) 3,79(–8)
He 5,5(– 14) 5,7(–14)

Tables 3 and 4 contains the same data for 
states of the rubidium dimer for the 1Σ+

g and 
(1)1Πu(B)states.

Table 3. The molecular constants (cm-1) for 
the 1Σ+

g state of the Rb2 dimer: Experimantal 
data – Exp; Theory: a- [11]; b- our data

[16] Our data Exp
ωe 31,4883 31,4884 31,4880
ωexe –0,1140(–1) – 0,1142(–1) –0,1144(–1)
ωeye –4,255(–4) – 4,263(–4) –4,269(–4)
ωeze 7,20(–7) 7,31(–7) 7,40(–7)
Be 0,13433(–1) 0,13435(–1) 0,13431(–1)
αe –1,449(–6) – 1,468(–6) –1,485(–6)
γe –4,136(–7) – 4,132(– 7) –4,122(–7)

Table 4. The molecular constants (cm-1) for 
the (1)1Πu(B)state of the Rb2 dimer:

Experimantal data – Exp; Theory: our data
Rb2 Theory Exp
ωe 47,471 47,470
ωexe 0,1431 0,1430
ωeye – 8,351(– 7) -
Be 0,19529(– 1) 0,19523(– 1)
αe 1,02(– 4) 1,00(– 4)
γe 1,564(– 7) 1,561(– 7)

Analsysis of the listed data show a physically 
reasonable agreement beyween thepretical 
and experimental data. Further we present the 

vibrational energy levels. Insit of it in our 
new scheme we apply the Simons-Parr-
Finlan molecular potential which looks as 
follows [15]:

(12a)

or introducing x= r - r0 :

(12b)

where the coefficients bi are linked with 
corresponding molecular constants [14]. 
Finally, the plot of the potential curve for 
large values of the internuclear distance is 
approximated by the standard function:

(13)
where De - experimental value of dissociation 
energy; Cn – the function parameters (6); n = 
3-8. Let us note that the model (11)-(13) is 
obviously more exact and consistent in 
comparison with a simple harmonic oscillator 
one. As an application it was carried out 
computing the rubidium dimers (Rb2, KRb)  
diatomics spectral parameters. The results of 
calculation of molecular constants (cm-1) for 
the X1Σ+ state of the KRb dimer are 
presented in table 1 tohether with 
experimental data [10,19,20] and theoretical 
data [10,11] obtained with using the Morse-
Rydberg - Klein - Rees (M-RKR) method.  

Table 1. The molecular constants (cm-1) for 
the X1Σ+ state of the KRb dimer:

Experimantal data – Exp; Theory: a- [10]; b-
our data

KRb X1Σ+

Th: a Th: b Exp
ωe 75,846 75,844 75,842
ωexe 0,230 0,230 0,230
ωeye –3,7(–4) –3,8(–4) –3,9(–4)
ωeze –3,7(–6) –3,5(–6) – 3,1(–6)
Be 0,03815 0,03812 0,03813
αe 1,21(–4) 1,20(–4) 1,20(–4)
γe –7,3(–7) –7,3(–7) –7,4(–7)
De 3,85(– 8) 3,85(– 8) 3,86(–8)
He 3,7(–14) 3,7(–14) 3,7(–14)

Table 2 contains the results of calculation of 
molecular constants (cm-1) for the B1Π (b) 
state of the KRb dimer

Table 2. The molecular constants (cm-1) for 
for the B1Π (b) state of the KRb dimer:

Experimantal data – Exp; Theory -our data
KRb B1Π

Theory Exp
ωe 61,258 61,256
ωexe 0,2095 0,2089
ωeye 2,88(– 3) 2,87(– 3)
ωeze –1,034(–4) –1,031(–4)
Be 0,03287 0,03288
αe 7,54(– 5) 7,41(– 5)
γe –1,12(– 5) –1,13(–5)
De 3,75(– 8) 3,79(–8)
He 5,5(– 14) 5,7(–14)

Tables 3 and 4 contains the same data for 
states of the rubidium dimer for the 1Σ+

g and 
(1)1Πu(B)states.

Table 3. The molecular constants (cm-1) for 
the 1Σ+

g state of the Rb2 dimer: Experimantal 
data – Exp; Theory: a- [11]; b- our data

[16] Our data Exp
ωe 31,4883 31,4884 31,4880
ωexe –0,1140(–1) – 0,1142(–1) –0,1144(–1)
ωeye –4,255(–4) – 4,263(–4) –4,269(–4)
ωeze 7,20(–7) 7,31(–7) 7,40(–7)
Be 0,13433(–1) 0,13435(–1) 0,13431(–1)
αe –1,449(–6) – 1,468(–6) –1,485(–6)
γe –4,136(–7) – 4,132(– 7) –4,122(–7)

Table 4. The molecular constants (cm-1) for 
the (1)1Πu(B)state of the Rb2 dimer:

Experimantal data – Exp; Theory: our data
Rb2 Theory Exp
ωe 47,471 47,470
ωexe 0,1431 0,1430
ωeye – 8,351(– 7) -
Be 0,19529(– 1) 0,19523(– 1)
αe 1,02(– 4) 1,00(– 4)
γe 1,564(– 7) 1,561(– 7)

Analsysis of the listed data show a physically 
reasonable agreement beyween thepretical 
and experimental data. Further we present the 



144

Finally, the plot of the potential curve for large 
values of the internuclear distance is approximat-
ed by the standard function:

                   (13)
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Be 0,13433(–
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Table 4
The molecular constants (cm-1) for the (1)1Πu(B)
state of the Rb2 dimer: Experimantal data – 

Exp; Theory: our data

Rb2 Theory Exp

ωe 47,471 47,470

ωexe 0,1431 0,1430

ωeye – 8,351(– 7) -

Be 0,19529(– 1) 0,19523(– 1)

αe 1,02(– 4) 1,00(– 4)

γe 1,564(– 7) 1,561(– 7)

Analsysis of the listed data show a physi-
cally reasonable agreement beyween thepretical 
and experimental data. Further we present the 
accurate data on  the probabilities for vibration-
rotation-nuclear transitions from state with va=0, 
Ja=0 and state va=1, Ja=0 in a case of the emis-
sion and absorption spectrum of nucleus 127I (E(0)

g= 203 keV) linked with molecule H127I in the 
ground electron state X1S (molecular parameters: 
Ro=1,61Å, ne=2309 cm-1, B=6,55cm-1 ). The recoil 
energy for this molecule is 0,172 eV. Parameters 
which define excitation of vibrations and rota-
tions for this molecule because of the recoil, are 
as follows: ao=1.30 and eo=5.29×10-2

. It should be 
noted also that a width of the gamma lines are 
corresponding to temperature T=300K. In figure 
1 we present the calculated spectrum of emission 
and adsorption of nucleus 127I in the  H127I .

           
                               (a)

          
(b)

Fig. 1. Computed emission (solid curve) and absorp-
tion spectrum of nucleus 127I (E(0)

g= 203 KeV) in the 
molecule H127I. Initial state of molecule: a). above 

na=0, Ja=0 and b). below  na=1, Ja=0 (our data)

We have made comparison of the correspond-
ing vibration-rotation-nuclear transition parobai-
lities from state with va=0, Ja=0 and state va=1, 
Ja=0 in a case of the emission and absorption 
spectrum of nucleus 127I (E(0)

g= 203 keV) in the 
H127I for different approximations of the for po-
tential curves: the harmonic oscillator [4], the 
Dunham model  [5,7] and presented approach. 
The  values for probabilities, calculated within 
the present approach and Dunham model  for po-
tential curve [7,8], differ from the corresponding 
ones, calculated within the harmonic oscillator 
approximation [1], in average on 5-20%. A direct 
experimental observation of the cooperstive 
electron-ganna-nuclear effects represents a great 
fundamental  interest.  Finally let us note that the 
presented theory is related to usual molecular sys-
tems. At the same time in the last years a great at-
tention is turn to the exotic (hadronic) atomic and 
molecular systems such pionic and kaonic atoms 
and molecules. The difference between the usual 
and exotic molecules at the theoretical level is ob-
viously provided by using the Schrodinger equa-
tion  in a case of usual molecules and the Klein-
Gordon-Fock equation for the pionic and kaonic 
systems. Taking into accout the results of the last 
two decades on succseful solutions of the Klein-
Gordon-Fock equation with the difeerent (for ex-
ample, Morse etc) [18] potentials our theory is 
naturally generalized on a case of exotic diatomic 
molecules. All theoretical positions are remained 
the same. Simulteniuosly it is self-undrestood 
that the relatively quick radiative processes with 
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chartacteristic life less than the negative pion and 
kaon lifetime (~10-8s) are of a direct theoretical 
and practical interest.
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A.  S. Kvasikova, V. F. Mansarliysky, A. A. Kuznetsova, Yu. V. Dubrovskaya, E. L Ponomarenko

NEW QUANTUM APPROACH TO DETERMINATION OF THE MOLECULAR  SPEC-
TRAL CONSTANTS AND PROBABILITIES FOR COOPERATIVE  VIBRATION-ROTA-
TION-NUCLEAR TRANSITIONS IN SPECTRA OF DIATOMICS AND THE HADRONIC 

MOLECULES 

Abstract
It is proposed a new approach to construction of the potential function of diatomic molecules as 

a sum of the known perturbed Morse oscillator function, the Simons-Parr-Finlan molecular potential 
in the middle of the potential curve, function of the -Cn/Rn type at the large internuclear distances. 
Within this approach it is presented  a precise scheme for computing the molecular spectral param-
eters, namely, vibrational, rotational, centrifugal constants for  the electronic states of diatomics. As 
application it was carried out calculation of the of molecular constants (cm-1) for the X1Σ+  B1Π states 
of the KRb dimer and rubidium dimer and performed further comparison with experimental data. 
Within consistent approach to calculation of the electron-nuclear g transition spectra (set of vibration-
rotational satellites in molecule) of  molecule there are obtained the estimates for vibration-rotation-
nuclear transition probabilities in a case of the emission and absorption spectrum of nucleus 127I (E(0)

g= 203 keV) in the  molecule of H127I for different approximations of the for potential curves: the 
hadmonic oscillator, the Dunham model and presented approach. 

Key words: electron-g-nuclear transition spectrum, molecules, spectral parameters

УДК 539.183

А. С. Квасикова, В. Ф. Мансарлийский,  А. А. Кузнeцова, Ю. В. Дубровская, Е. Л. Пономаренко

НОВЫЙ КВАНТОВЫЙ ПОДХОД К ОПРЕДЕЛЕНИЮ МОЛЕКУЛЯРНЫХ 
СПЕКТРАЛЬНЫХ КОНСТАНТ И ВЕРОЯТНОСТЕЙ КООПЕРАТИВНЫХ 

КОЛЕБАТЕЛЬНО-ВРАЩАТЕЛЬНО-ЯДЕРНЫХ ПЕРЕХОДОВ В СПЕКТРАХ 
ДВУХАТОМНЫХ И АДРОННЫХ  МОЛЕКУЛ

Резюме
Предлагается новый подход к построению потенциальной функции двухатомных молекул в 

виде суммы известного возмущенной функции осциллятора Морзе, молекулярного потенциала 
Simons-Парра-Finlan в средней части потенциальной кривой, функции типа -Cn/R

n при больших 
межъядерных расстояниях. В рамках этого подхода развита прецизионная схема вычисления 
молекулярных спектральных параметров, а именно колебательных, вращательных, центробеж-
ных постоянных для электронных состояний двухатомных молекул. В качестве приложения 
проведено вычисление молекулярных констант (см-1) для состояний X1Σ+  B1Π димера KRb и 
димера рубидия и выполнено сравнение с экспериментальными данными. В рамках последо-
вательного подхода к расчету спектров электронно-гамма-ядерных  переходов  (набор колеба-
тельно-вращательных спутников в молекуле) в молекуле получены оценки  для колебательно-
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вращательных-ядерных вероятностей переходов в случае испускания и поглощения спектра 
ядро 127I (E(0)

g= 203 keV)) в молекуле H127I для различных приближений для потенциальных 
кривых: модели гармонического осциллятора, модели на основе потенциала Данхэм и пред-
ложенного в работе нового подхода. 

Ключевые слова: спектр электрон- g -ядерных переходов, молекулы, спектральные 
параметры

УДК 539.183

Г. С. Квасикова, В. Ф. Мансарлійський,  А. O. Кузнeцова, Ю. В. Дубровська, О. Л. Пономаренко 

НОВИЙ КВАНТОВИЙ ПІДХІД ДО ВИЗНАЧЕННЯ МОЛЕКУЛЯРНИХ 
СПЕКТРАЛЬНИХ КОНСТАНТ І ІМОВІРНОСТЕЙ КООПЕРАТИВНИХ 

КОЛИВАЛЬНО- ОБЕРТАЛЬНО -ЯДЕРНИХ ПЕРЕХОДІВ У СПЕКТРІ ДВОАТОМНИХ 
І АДРОННИХ МОЛЕКУЛ

Резюме
Пропонується новий підхід до побудови потенційної функції двохатомних молекул у вигляді 

суми відомого обуреної функції осцилятора Морзе, молекулярного потенціалу Simons-Парра-
Finlan в середній частині потенційної кривої, функції типу -Cn / R

n при великих меж’ядерних 
відстанях. В рамках цього підходу розвинена прецизійна схема обчислення молекулярних спек-
тральних параметрів, а саме коливальних, обертальних, відцентрових постійних для електрон-
них станів двохатомних молекул. Як додаток проведено обчислення молекулярних констант 
(см-1) для станів X1Σ+  B1Π димера KRb і димера рубідію і виконано порівняння з експери-
ментальними даними. В рамках послідовного підходу до розрахунку спектрів електронно-
гамма-ядерних переходів (набір колебательно-обертальних супутників в молекулі) в молекулі 
отримані оцінки для колебательно-обертальних-ядерних ймовірностей переходів в разі випу-
скання і поглинання спектра ядро   127I (E(0)

g= 203 keV) в молекулі H127I для різних наближень для 
потенційних кривих: моделі гармонійного осцилятора, моделі на основі потенціалу Данхем і 
запропонованого в роботі нового підходу.

Ключові слова: спектр електрон- g -ядерних переходів, молекули, спектральні параметри
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