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UDC 621.315.592

Yu. F. Vaksman, Yu. A. Nitsuk

I. I. Mechnikov Odesa National University
e-mail: nitsuk@onu.edu.ua

PHOTOCONDUCTIVITY AND PHOTOLUMINESCENCE OF ZnSe:Cr CRYSTALS IN 
THE VISIBLE SPECTRAL REGION

The photoconductivity and photoluminescence of ZnSe:Cr crystals in the visible spectra region are studied. 
The scheme of optical transitions within Cr2+ impurity centers is established. It is shown that the high-
temperature impurity photoconductivity of ZnSe:Cr crystals is controlled by optical transitions of electrons 
from the 5T2(D) ground state to the higher levels of excited states of Cr2+ ions, with subsequent thermal 
activation of the electrons to the conduction band. Efficient excitation of intracenter luminescence of ZnSe:Cr 
crystals is attained with light corresponding to the region of intrinsic absorption in Cr2+ ions.

INTRODUCTION

Zinc selenide single crystals doped with chro-
mium are promising materials for use as laser me-
dia. At present lasing in such crystals in the mid-
infrared (IR) region is being extensively studied. 
On the basis of ZnSe:Cr crystals, lasers tunable in 
the wavelength range from 1.9–3 μm [1]. 

The transition elements, among them chro-
mium, are thought to form centers that suppress 
luminescence in the visible spectral region. For 
this reason, the number of studies concerned with 
the effect of chromium ions on the optical prop-
erties of ZnSe in the visible region is rather lim-
ited. At the same time, the calculation of energy 
states of chromium impurity centers in ZnSe [2,3] 
suggests that radiative transitions with the photon 
energy close to the band gap of the semiconduc-
tor can really occur. In this context, the study of 
optical properties of ZnSe:Cr crystals in the vis-
ible spectral region presents a topical problem. In 
previous studies of optical absorption in the range 
1.7–2.6 eV [3], we detected absorption bands de-
fined by intracenter transitions in Cr2+ ions. 

In this study, we analyze and identify the 
structure of the photoconductivity and photolu-
minescence (PL) spectra of ZnSe:Cr crystals in 
the visible spectral region. The photoconductivity 
and PL bands associated with transitions within 
chromium ions are observed.

The purpose of this study is to identify the 
photoconductivity and PL spectra in ZnSe:Cr 
crystals.

EXPERIMENTAL

The samples under study were fabricated by 
diffusion doping of initially pure ZnSe crystals 
with the Cr impurity. The undoped crystals were 
obtained by the technique of free growth on sin-
gle crystal ZnSe substrate oriented in the (111) 
plane. The advantage of diffusion doping is that it 
is possible to vary the impurity concentration and 
profile. The procedure of doping and the studies 
of optical absorption in the crystals are described 
in detail elsewhere [3,4]. The chromium content in 
the crystals was determined from the change in the 
band gap as a function of the dopant concentration.

The photoconductivity spectra were recorded 
with the use of an MUM-2 monochromator. For 
the source of excitation light, we used a halogen 
lamp. The power of the light flux was kept constant 
by controlling the filament current of the lamp. For 
the photoconductivity measurements, ohmic indi-
um contacts were deposited onto the crystals. 

The PL spectra were recorded with the use of 
an ISP-51 prism spectrograph. The emission signal 
was detected with an FEU-100 photomultiplier.

The PL signal was excited with light-emitting 
diodes (LEDs), Edison Opto Corp., the emission 
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(Fig. 1, curves 2, 3). As the Cr concentration is 
increased, the intensity of these bands increases. 
We observe well-defined bands at 1.74, 1.85, 
1.92, 1.97, 2.04, 2.07, 2.14, 2.22, 2.31, 2.42 and 
2.50 eV. The band at 2.50 eV changes its position 
as the Cr concentration is changed. The positions 
of other bands do not vary with increasing degree 
of doping.

At the temperature T = 77 K, only one inter-
band photoconductivity band is observed in all of 
the crystals under study (Fig. 2, curve 1). As the 
temperature is elevated from 77 to 350 K, the im-
purity photoconductivity makes a weightier con-
tribution to the spectrum (Fig. 2). We observed 
a similar effect previously in studying the photo-
conductivity of ZnSe crystals doped with Fe [5].

As the temperature is elevated from 300 to 350 
K the 2.50 eV photoconductivity band shifts to 
lower photon energies by 20 meV. Such shift cor-
responds to the temperature change in the band 
gap of ZnSe. Other impurity photoconductivity 
bands do not change their position with tempera-
ture, suggesting that the corresponding transitions 
are of intracenter character. In addition, the po-
sition of the above mentioned bands agrees well 
with the position of optical absorption bands de-
tected for these crystals previously. In [3] these 
absorption bands were attributed to intracenter 
optical transitions that occur within the Cr2+ ions. 
The above result suggests that these photocon-
ductivity bands are due to the same optical transi-
tions as those involved in optical absorption. The 
energies and identification of optical transitions 
are given in the table. The table summarizes the 
data obtained in studies of optical absorption [3], 
photoconductivity and luminescence.

The photoconductivity process in the crystals 
under study occurs in the manner briefly described 
below. The 2.50 eV photoconductivity band is as-
sociated with optical transitions from the 5T2(D) 
ground state of the Cr2+ ion into the conduction 
band. Comparison of the photon energy corre-
sponding to the peak of this photoconductivity 
band with the energy position of the intrinsic pho-
toconductivity peak for the crystals with the Cr 
concentration [Cr] = 2∙1018cm–3 (2.60 eV) allows 
us to believe that the level of the ground state of 
the Cr2+ ion is 100 meV above the top of the va-
lence band.

peaks of which corresponded to the wavelengths 
400, 460, and 500 nm, and with an ILGI-503 
nitrogen pulse laser emitting at the wavelength 
337 nm.

ANALYSIS OF PHOTOCONDUCTIVITY 
SPECTRA

Figure 1 shows the photoconductivity spectra 
of the ZnSe:Cr crystals with different Cr concen-
trations.

The photoconductivity spectrum of the un-
doped crystal is shown in Fig. 1 for comparison. 
The undoped crystals exhibit a single photocon-
ductivity band with a peak at 2.65 eV at 300 K 
(Fig. 1, curve 1). This band is due to interband 
optical transitions. On doping of the crystals with 
chromium, the band shifts to lower energies. As 
the Cr concentration is increased, the shift in-
creases and corresponds to the change in the band 
gap determined from the optical absorption spec-
tra in [3].

Doping with chromium brings about the ap-
pearance of series photoconductivity bands in 
the range of photon energies from 1.7 to 2.6 eV 
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the change in the band gap determined from the 
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2.50 eV. The band at 2.50 eV changes its 
position as the Cr concentration is changed. The 
positions of other bands do not vary with 
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At the temperature T = 77 K, only one 
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all of the crystals under study (Fig. 2, curve 1). 
As the temperature is elevated from 77 to 350 
K, the impurity photoconductivity makes a 
weightier contribution to the spectrum (Fig. 2). 
We observed a similar effect previously in 
studying the photoconductivity of ZnSe crystals 
doped with Fe [5]. 

As the temperature is elevated from 300 to 
350 K the 2.50 eV photoconductivity band 
shifts to lower photon energies by 20 meV. 
Such shift corresponds to the temperature 
change in the band gap of ZnSe. Other impurity 
photoconductivity bands do not change their 
position with temperature, suggesting that the 
corresponding transitions are of intracenter 
character. In addition, the position of the above 
mentioned bands agrees well with the position 
of optical absorption bands detected for these 
crystals previously. In [3] these absorption 
bands were attributed to intracenter optical 
transitions that occur within the Cr2+ ions. The 
above result suggests that these 
photoconductivity bands are due to the same 
optical transitions as those involved in optical 
absorption. The energies and identification of 
optical transitions are given in the table. The 
table summarizes the data obtained in studies of 
optical absorption [3], photoconductivity and 
luminescence. 

The photoconductivity process in the crystals 
under study occurs in the manner briefly 
described below. The 2.50 eV 
photoconductivity band is associated with 
optical transitions from the 5T2(D) ground state 
of the Cr2+ ion into the conduction band. 
Comparison of the photon energy 
corresponding to the peak of this 
photoconductivity band with the energy 
position of the intrinsic photoconductivity peak 
for the crystals with the Cr concentration [Cr] = 
2∙1018cm–3 (2.60 eV) allows us to believe that 
the level of the ground state of the Cr2+ ion is 
100 meV above the top of the valence band. 

The other photoconductivity bands are 
formed in a two-stage process. Initially, the 
intracenter optical transitions of electrons from 
the 5T2(D) ground state to the higher excited 
states of the Cr2+ ions (table) occur; then 
thermally activated transitions of these 

1.8 2.0 2.2 2.4 E, eV 

0.2 

0.4 

0.6 

0.8 

1.0 

1 

2 

3 

Fig.1. Photoconductivity spectra of (1) ZnSe and 
(2, 3) ZnSe:Cr crystals. The Cr dopant 
concentrations are [Cr] = (2) 2∙1018 and (3) 
2∙1019 cm–3. 
. Inset: highˇ  
energy fragments of curves 2 and 

Ipc, arb.un. 
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The other photoconductivity bands are formed 
in a two-stage process. Initially, the intracenter 
optical transitions of electrons from the 5T2(D) 
ground state to the higher excited states of the Cr2+ 
ions (table) occur; then thermally activated tran-
sitions of these electrons to the conduction band 
are observed. As a result the local centers transit 
to the Cr3+ charged state. Later the Cr3+ centers 
trap electrons and the centers transit to their initial 
Cr2+ state.

It should be noted that the results of studies 
of the thermoelectric power are indicative of the 
electron photoconductivity of the ZnSe:Cr crys-
tals.

ANALYSIS OF LUMINESCENCE 
PROPERTIES 

The PL spectra were studied in the temperature 
range from 77 to 300 K. The PL spectra of un-
doped crystals excited with nitrogen laser radia-
tion (λ =337 nm) at T = 77 K exhibit one emission 
band with peak at 2.77 eV (Fig. 2, curve 1). In 
our previous studies the 2.77 eV emission band 
was attributed to emission of excitons localized at 
neutral zinc vacancies [6].

Upon doping of the crystals with chromium, 
the excitonic emission bands shift to lower ener-

gies (Fig. 2, curve 2). The shift corresponds to the 
change in the band gap with the chromium con-
centration [Cr] in ZnSe, as determined in [3].
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energies (Fig. 2, curve 2). The shift corresponds 
to the change in the band gap with the 
chromium concentration [Cr] in ZnSe, as 
determined in [3]. 

Doping of the crystals with chromium brings 
about a series of long-wavelength emission lines 
with peaks at 1.16, 1.54, 1.62, 1.72, 1.81, 1.95, 
2.02, 2.12, 2.20, 2.30, 2.38, 2.46, 2.58 (Fig. 2, 

curve 2). As the Cr concentration is increased, 
the intensity of these emission lines increases, 
whereas their position remains unchanged. 

Figure 2 (curve 3) shows the absorption 
spectrum of the ZnSe:Cr crystals at T = 77 K. 
The spectrum involves lines that correlate with 

1.5 2.0 2.5 Е, eV 

0.2 

0.4 

0.6 

0.8 

1.0 

IPL, D, arb.un 

1 
2 

3 

Fig. 2. (1, 2) Photoluminescence and (3) 
absorption spectra of (1) ZnSe and (2, 3) 
ZnSe:Cr crystals. 

Energies of optical transitions in ZnSe:Cr crystals 
Line 
No 

Absorption Photoconductivity, 
E, eV 

Luminescence, 
E, eV 

Stokes shift, 
E, meV E, eV[3] Transition 

1 --- 5Т2(D)→4T1(F)+e-
c.b

 2.5 --- --- 
2 2.6 5Т2(D)→1A2(I) --- 2.58 20 
3 2.49 5Т2(D)→3T2(D) --- 2.46 30 
4 2.41 5Т2(D)→1T2(I) 2.42 2.38 30 
5 2.31 5Т2(D)→1A1(G) 2.31 2.30 20 
6 2.22 5Т2(D)→1E (I) 2.22 2.20 20 
7 2.14 5Т2(D)→3Т1(F) 2.14 2.12 20 
8 2.07,2.04 5Т2(D)→3E(G) 2.07,2.04 2.02 20 
9 1.97 5Т2(D)→ 3A2(F) 1.97 1.95 20 
10 1.92 5Т2(D)→1T2(I) 1.92 --- --- 
11 1.85 5Т2(D)→3T2(G) 1.85 1.81 40 
12 1.74 5Т2(D)→ 3E(H) 1.74 1.72 20 
13 1.67 5Т2(D)→ 3T2(F) --- 1.62 50 
14 1.58 5Т2(D)→ 3Т1(H) --- 1.54 40 
15 1.19 5Т2(D)→ 3Т2(H) --- 1.16 30 
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Fig. 2. (1, 2) Photoluminescence and (3) 
absorption spectra of (1) ZnSe and (2, 3) 
ZnSe:Cr crystals. 

Energies of optical transitions in ZnSe:Cr crystals 
Line 
No 

Absorption Photoconductivity, 
E, eV 

Luminescence, 
E, eV 

Stokes shift, 
E, meV E, eV[3] Transition 

1 --- 5Т2(D)→4T1(F)+e-
c.b

 2.5 --- --- 
2 2.6 5Т2(D)→1A2(I) --- 2.58 20 
3 2.49 5Т2(D)→3T2(D) --- 2.46 30 
4 2.41 5Т2(D)→1T2(I) 2.42 2.38 30 
5 2.31 5Т2(D)→1A1(G) 2.31 2.30 20 
6 2.22 5Т2(D)→1E (I) 2.22 2.20 20 
7 2.14 5Т2(D)→3Т1(F) 2.14 2.12 20 
8 2.07,2.04 5Т2(D)→3E(G) 2.07,2.04 2.02 20 
9 1.97 5Т2(D)→ 3A2(F) 1.97 1.95 20 

10 1.92 5Т2(D)→1T2(I) 1.92 --- --- 
11 1.85 5Т2(D)→3T2(G) 1.85 1.81 40 
12 1.74 5Т2(D)→ 3E(H) 1.74 1.72 20 
13 1.67 5Т2(D)→ 3T2(F) --- 1.62 50 
14 1.58 5Т2(D)→ 3Т1(H) --- 1.54 40 
15 1.19 5Т2(D)→ 3Т2(H) --- 1.16 30 
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Doping of the crystals with chromium brings 
about a series of long-wavelength emission lines 
with peaks at 1.16, 1.54, 1.62, 1.72, 1.81, 1.95, 
2.02, 2.12, 2.20, 2.30, 2.38, 2.46, 2.58 (Fig. 2, 
curve 2). As the Cr concentration is increased, the 
intensity of these emission lines increases, where-
as their position remains unchanged.

Figure 2 (curve 3) shows the absorption spec-
trum of the ZnSe:Cr crystals at T = 77 K. The 
spectrum involves lines that correlate with the 
emission lines observed in this study. As can be 
seen from the table, the Stokes shifts of the PL 
lines with respect to the corresponding absorption 
lines are in the range 10–50 meV.

It is established that the relative luminescence 
intensity of the ZnSe:Cr crystals heavily depends 
on the photon energy of excitation light (Fig. 3, 
curves 1–4).

Emission with the lowest intensity is excit-
ed with a nitrogen laser with the photon energy 
3.67 eV. The highest emission intensity is attained 
on excitation with LEDs with the photon energy 
in the emission peak 2.69 and 2.25 eV (Fig. 3, 
curves 3, 4). This suggests that the band-to-band 
excitation of long-wavelength luminescence of 
the ZnSe:Cr crystals is inefficient. At the same 

time, under changes in the excitation photon en-
ergy, the position of emission peaks remains un-
changed. It is also established that, as the excita-
tion photon energy is lowered, the contribution of 
low-energy bands to the luminescence spectrum 
increases. This effect is typical of intracenter lu-
minescence.

As the temperature is elevated from 77 to 
300 K, the intensity of all emission lines de-
creases, while the positions of the peaks remain 
unchanged. Similar temperature behavior was ob-
served for the corresponding absorption 

lines. This suggests that the absorption and lu-
minescence lines under study are due to intracen-
ter optical transitions that occur within chromium 
ions.

CONCLUSIONS

1. It is shown that the high-temperature long-
wavelength photoconductivity of the ZnSe:Cr 
crystals is controlled by intracenter optical ransi-
tions within the Cr2+ ions and by subsequent ther-
mally induced transitions of electrons from the 
levels of the excited Cr3+ states into the conduc-
tion band.

2. It is established that doping with iron gives 
rise to a series of emission lines in the visible 
spectral region. The luminescence bands detected 
for the ZnSe:Cr crystals are attributed to intracen-
ter transitions in the Cr2+ ions.

3. Efficient excitation in impurity-related lu-
minescence of the ZnSe:Cr crystals is attained 
with light corresponding to the region of intrinsic 
absorption in the Cr2+ ions.
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be seen from the table, the Stokes shifts of the 
PL lines with respect to the corresponding 
absorption lines are in the range 10–50 meV. 

It is established that the relative luminescence 
intensity of the ZnSe:Cr crystals heavily depends 
on the photon energy of excitation light (Fig. 3, 
curves 1–4). 

Emission with the lowest intensity is excited 
with a nitrogen laser with the photon energy 
3.67 eV. The highest emission intensity is 
attained on excitation with LEDs with the 
photon energy in the emission peak 2.69 and 
2.25 eV (Fig. 3, curves 3, 4). This suggests that 
the band-to-band excitation of long-wavelength 
luminescence of the ZnSe:Cr crystals is 
inefficient. At the same time, under changes in 
the excitation photon energy, the position of 
emission peaks remains unchanged. It is also 
established that, as the excitation photon energy 
is lowered, the contribution of low-energy bands 
to the luminescence spectrum increases. This 
effect is typical of intracenter luminescence. 

As the temperature is elevated from 77 to 
300 K, the intensity of all emission lines 
decreases, while the positions of the peaks 
remain unchanged. Similar temperature behavior 
was observed for the corresponding absorption  

lines. This suggests that the absorption and 
luminescence lines under study are due to 
intracenter optical transitions that occur within 
chromium ions. 

 
CONCLUSIONS 
1. It is shown that the high-temperature 

long-wavelength photoconductivity of the 
ZnSe:Cr crystals is controlled by intracenter 
optical ransitions within the Cr2+ ions and by 
subsequent thermally induced transitions of 
electrons from the levels of the excited Cr3+ 
states into the conduction band. 

2. It is established that doping with iron 
gives rise to a series of emission lines in the 
visible spectral region. The luminescence 
bands detected for the ZnSe:Cr crystals are 
attributed to intracenter transitions in the Cr2+ 
ions. 

3. Efficient excitation in impurity-related 
luminescence of the ZnSe:Cr crystals is 
attained with light corresponding to the region 
of intrinsic absorption in the Cr2+ ions. 
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UDC 621.315.592

Yu. F. Vaksman, Yu. A. Nitsuk 

PHOTOCONDUCTIVITY AND PHOTOLUMINESCENCE OF ZnSe:Cr CRYSTALS IN 
THE VISIBLE SPECTRAL REGION

Abstract
The photoconductivity and photoluminescence of ZnSe:Cr crystals in the visible spectra region are 

studied. The scheme of optical transitions within Cr2+ impurity centers is established. It is shown that 
the high-temperature impurity photoconductivity of ZnSe:Cr crystals is controlled by optical transi-
tions of electrons from the 5T2(D) ground state to the higher levels of excited states of Cr2+ ions, with 
subsequent thermal activation of the electrons to the conduction band. Efficient excitation of intra-
center luminescence of ZnSe:Cr crystals is attained with light corresponding to the region of impurity 
absorption.

Key words: zinc selenide, diffusion doping, chromium impurity, photoconductivity, photolumi-
nescence.

УДК 621.315.592

Ю. Ф. Ваксман, Ю. А. Ницук 

ФОТОПРОВОДИМОСТЬ И ФОТОЛЮМИНЕСЦЕНЦИЯ КРИСТАЛЛОВ ZnSe:Cr В 
ВИДИМОЙ ОБЛАСТИ СПЕКТРА

Резюме
Исследована фотопроводимость и фотолюминесценция кристаллов ZnSe:Cr в видимой об-

ласти спектра. Установлена схема оптических переходов, происходящих в пределах примесных 
центров Cr2+.  

Показано, что высокотемпературная фотопроводимость кристаллов ZnSe:Cr обусловлена оп-
тическими переходами электронов из основного состояния 5T2(D) на более высокие возбужден-
ные энергетические уровни иона Cr2+ с их последующей термической активацией в зону про-
водимости. Эффективное возбуждение внутрицентровой люминесценции кристаллов ZnSe:Cr 
осуществляется светом из области примесного поглощения.
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Ключевые слова: селенид цинка, диффузионное легирование, примесь хрома, фотопрово-
димость, фотолюминесценция.

УДК 621.315.592

Ю. Ф. Ваксман, Ю. А. Ніцук 

ФОТОПРОВІДНІСТЬ І ФОТОЛЮМІНЕСЦЕНЦІЯ КРИСТАЛІВ ZnSe:Cr 
У ВИДИМІЙ ОБЛАСТІ СПЕКТРУ

Резюме
Досліджено фотопровідність і фотолюмінесценцію кристалів ZnSe:Cr у видимій області 

спектру. Встановлено схему оптичних переходів  в межах домішкових центрів Cr2+.  
Показано, що високотемпературна фотопровідність кристалів ZnSe:Cr обумовлена оптични-

ми переходами електронів з основного стану 5T2(D) на більш високі збуджені енергетичні рівні 
іону Cr2+ з їх подальшою термічною активацією в зону провідності. Ефективне збудження внут-
ришньоцентрової люмінесценції кристалів ZnSe:Cr відбувається світлом з області домішкового 
поглинання іонів Cr2+.

Ключові слова: селенід цинку, дифузійне легування, домішка хрому, фотопровідність, фо-
толюмінесценція.
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ADVANCED RELATIVISTIC ENERGY APPROACH TO RADIATION DECAY PROCESSES IN 
ATOMIC SYSTEMS 

We consider the fundamental aspects of the advanced generalized energy approach to relativistic calculation 
of the radiative decay (transitions) probabilities in heavy neutral atomic systems and multicharged ions. The 
approach is based on the Gell-Mann and Low S-matrix formalism and the relativistic many-body perturbation 
theory (PT) with using the optimized one-quasiparticle representation and an accurate account of the relativistic 
and correlation. In relativistic case the Gell-Mann and Low formula expresses an energy shift   through the 
electrodynamical scattering matrix including the interaction with as the laser field as the photon vacuum field. 
The last case is corresponding to definition of the traditional radiative transitions probabilities for atoms and ions.

1.  Introduction

Accurate radiative decay widths and probabili-
ties, oscillator strengths of atomic and ionic line 
transition are of a great interest for astrophysical 
analysis, laboratory, thermonuclear plasma diag-
nostics, fusion research, laser physics etc [1–160]. 

Spectral lines are usually characterized by 
their wavelength and oscillator strength. Typi-
cally, transition probabilities are known less ac-
curately than wavelengths. Moreover, for many 
spectral lines of heavy atoms and especially mul-
ticharged ions the radiative transition probabilities 
are not reliably known at all. Radiative transition 
probabilities have been mainly determined from 
calculations and to a much smaller extent from 
experiment [1,2]. Many theoretical methods use 
techniques which include extensive configuration 
interaction or multi-configuration treatments [2-
22]. The well known multi-configuration Hartree-
Fock method (the relativistic effects are often 
taken into account in the Pauli approximation or 
Breit Hamiltonian etc) allowed to obtain the use-
ful spectral data on light and not heavy atomic 
systems [8]. The multi-configuration (MC) Dirac-
Fock (DF) method is the most reliable version of 

calculation for multielectron systems with a large 
nuclear charge. In these calculations the effects 
are taken into account practically precisely [3-
17]. The calculation program of Desclaux (the 
Desclaux program, Dirac package) is compiled 
with proper account of the one- and two-particle 
relativistic, a finiteness of the nucleus size etc. In 
last decades a consistent quantum-electrodynam-
ical (QED) techniques have been implemented to 
atomic theory calculations (look [17]). It should 
be given special attention to two very general and 
important computer systems for relativistic and 
QED calculations of atomic and molecular prop-
erties developed in the Oxford group and known 
as GRASP (“GRASP”, “Dirac”; “BERTHA”, 
“QED”, “Dirac”) (see [3–7] and references there). 
Besides, the well known density functional theory 
(DFT), relativistic coupled-cluster approach and 
model potential approaches in heavy atoms and 
ions should be mentioned too [18-24]. 

In order to determine the transition probabili-
ties one usually uses usually a standard ampli-
tude approach. Each of theoretical approaches 
to calculation of transition probabilities contains 
critical factors (configuration interaction or mul-
ticonfiguration treatment, spectroscopic coupling 
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schemes and relativistic corrections, exchange-
correlation corrections convergence of probabili-
ties results and of the dipole length and velocity 
forms, accuracy of transition energies etc) which 
need to be adequately taken care of to get reliable 
results. 

The purpose of this paper is to review  the 
fundamental ideas of the generalized relativistic 
energy approach to calculation of the radiative 
decay characteristics for atoms and multich-
arged ions, in particular,  transition probabilities 
and oscillators strengths, line strengths etc. The 
bases of the energy approach to one-electron ions 
have been considered by Labzovsky et al [25]. 
Originally the energy approach to radiative and 
autoionization processes in multielectron atoms 
and ions has been developed by Ivanova-Ivanov 
et al [23,24] (the PC code “Superatom-ISAN”). 
More accurate, advanced version of the relativ-
istic energy approach has been further developed 
in Refs. [26,27]). The energy approach is based 
on the Gell-Mann and Low S-matrix formalism 
combined with the relativistic perturbation theory 
(PT). In relativistic case the Gell-Mann and Low 
formula expressed an energy shift DΕ  through 
the electrodynamical scattering matrix includ-
ing interaction with as the photon vacuum field 
as a laser field. The first case is corresponding to 
determination of radiative decay characteristics 
for atomic systems. Earlier we have applied the 
corresponding generalized versions of the energy 
approach to many problems of atomic, nuclear 
and even molecular spectroscopy, including, co-
operative electron-gamma-nuclear “shake-up” 
processes, electron-muon-beta-gamma-nuclear 
spectroscopy, spectroscopy of atoms in a laser 
field etc [28-34].

2.  Relativistic energy approach to radiative 
decay processes

Generally speaking, the majority of com-
plex atomic systems possesses a dense energy 
spectrum of interacting states with essentially 
relativistic properties. In the theory of the non-
relativistic atom a convenient field procedure is 
known for calculating the energy shifts DΕ  of de-
generate states. This procedure is connected with 
the secular matrix M diagonalization [24-26]. In 
constructing M, the Gell-Mann and Low adiabat-

ic formula for DΕ  is used. A similar approach, 
using the Gell-Mann and Low formula with the 
electrodynamic scattering matrix, is applicable 
in a theory of relativistic atom; the approach is 
consistently electrodynamical. In contrast to the 
non-relativistic case, the secular matrix elements 
are already complex in the second order of the PT 
( first order of the interelectron  interaction). Their 
imaginary parts are connected with the radiation 
decay (radiation) probability. The total energy 
shift of the state is usually presented in the form:
                                

Re Im Im 2E i E EDΕ= D + D D =-G   (1)

where G is interpreted as the level width, and the 
decay possibility Ρ = G .

In this approach, the whole calculation of the 
energies and decay probabilities of a non-degen-
erate excited state is reduced to the calculation 
and diagonalization of the complex matrix M. In 
the papers of different authors, the Re ED  calcula-
tion procedure has been generalized for the case 
of nearly degenerate states, whose levels form a 
more or less compact group. One of these vari-
ants has been previously [23,26] introduced: for 
a system with a dense energy spectrum, a group 
of nearly degenerate states is extracted and their 
matrix M is calculated and diagonalized. If the  
states are well separated in energy, the matrix M 
reduces to one term, equal to ED . The non-rela-
tivistic secular matrix elements are expanded in a 
PT series for the  interelectron interaction. 

The complex  secular matrix M is represented 
in the form [23]:  

           
( ) ( ) ( ) ( )0 1 2 3 .M M M M M= + + +           (2)

where ( )0M  is the contribution of the vacuum dia-
grams of all order of PT, and ( )1M , ( )2M , ( )3M  those 
of the one-, two- and three- quasiparticle diagrams 
respectively. ( )0M  is a real matrix, proportional to 
the unit matrix. It determines only the general 
level shift. It is usually assumed ( )0 0.M =  The di-
agonal matrix ( )1M  can be presented as a sum of 
the independent one-quasiparticle contributions. 
For simple systems (such as alkali atoms and 
ions) the one-quasiparticle  energies can be taken 
from the experiment. Substituting these quanti-
ties into (2) one could have summarized  all the 
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contributions of the one -quasiparticle  diagrams 
of all orders of the formally exact relativistic PT. 
However, the necessary experimental quantities 
are not often available. The first two order cor-
rections to ( )2Re M  have been analyzed previously 
[23,35] using the Feynman diagrams technique. 

The contributions of the first-order diagrams 
have been completely calculated. In the second 
order, there are two kinds of diagrams: polariza-
tion and ladder ones.  The polarization diagrams 
take into account the quasiparticle interaction 
through the polarizable core, and the ladder dia-
grams account for the immediate quasiparticle 
interaction. 

An effective form for the two-particle polariz-
able operator has been proposed in Ref. [28]; it 
has the following form:

                              
( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( ) ( )

( ) ( )( ) ( ),
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where 0
cρ  is the core electron density (without ac-

count for the quasiparticle), X is numerical coef-
ficient, c is the light velocity. The similar approx-
imate potential representation has been received 
for the exchange polarization interaction of qua-
siparticles. Some of the ladder diagram contribu-
tions as well as some of the three-quasiparticle 
diagram contributions in all PT orders have the 
same angular symmetry as the two-quasiparticle 
diagram contributions of the first order. These 
contributions have been summarized by a modifi-
cation of the central  potential, which  must now 
include the  screening (anti-screening) of the 
core potential  of each particle by the two others 
(look details in Refs. [23,26,35]). The additional 
potential modifies the one-quasiparticle orbitals 
and energies. Then the secular matrix can be ap-
proximated as follows: )2()1( ~~~ MMM + , where ( )1M  
is the modified one-quasiparticle matrix ( diago-
nal), and ( )2M  the modified two-quasiparticle one. 

( )1M  is calculated by substituting the modified 
one-quasiparticle energies), and ( )2M  by means of 
the first PT order formulae for ( )2M , putting the 

modified radial functions of the one-quasiparticle 
states in the radial  integrals (look below) 

Let us remind that in the QED theory the pho-
ton propagator D(12) plays the role of interpar-
ticle interaction. Naturally the analytical form of 
D(12) depends on the gauge, in which the electro-
dynamical potentials are written. In general, the 
results of all approximate calculations depended 
on the gauge. Naturally the correct result must be 
gauge invariant. The gauge dependence of the am-
plitudes of the photoprocesses in the approximate 
calculations is a well known fact and is in details 
investigated by Grant, Armstrong, Aymar, Luc-
Koenig, Glushkov-Ivanov (look Refs. [1,3,26]). 
Grant has investigated the gauge connection with 
the limiting non-relativistic form of the transi-
tion operator and has formulated the conditions 
for approximate functions of the states, in which 
the amplitudes of the photoprocesses are gauge 
invariant. These results remain true in the energy 
approach because the final formulae for the prob-
abilities coincide in both approaches. 

 
3.  Imaginary part of the secular matrix and 
transition probability

Within the relativistic energy approach the ra-
diative processes are determined by the imaginary 
part of the interaction (1b) between the active qua-
siparticle and the electrodynamic vacuum of the 
electronic field. The presence of the polarizable 
core can be effectively accounted for by modifi-
cation of (1b). This corresponds to a modification 
of the radiation transition operator in the tradi-
tional amplitude approach. A local form of the 
modified transition operator has been previously 
treated by Hibbert, Migdalec, Ivanova-Ivanov et 
al (look, for example, see Refs. [9,21,23,24,26]).  
An integral form of the  additional  polarization 
interaction,  including the imaginary part, has 
been deduced on the base  of the analysis of the 
second-order ( the QED PT fourth order) polar-
ization diagrams. In result one could take into ac-
count for the corresponding corrections to Im ED
. The detailed description of the accounting for 
the correlation corrections of the PT high orders 
within the Green functions method (with the use 
of the Feynman diagram’s technique) is given in 
Refs. [23,24, 34,35], where additional details can 
be found.  The corresponding form of the polariz-
able operator is given below.

(3)
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The probability is directly connected with 
imaginary part of electron energy of the system, 
which is defined in the lowest order of the PT as 
follows [23]: 
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where ∑-
>> fna  for electron and ∑-

≤< fna
 for vacan-

cy. The potential V is as follows:

                                                                     
                                                                    (5) 

The individual terms of the sum in (5) repre-
sent the contributions of different channels and a 
probability of the dipole transition is: 

                                                                     
                                                                     (6)

The corresponding oscillator strength is de-
fined as:   

                                                               
                                                                    (7)

where g is the degeneracy degree,  l is a wave-
length in angstroms (Ǻ). When calculating the 
matrix elements (5), one should use the angle 
symmetry of the task and write the corresponding 
expansion for sin|w|r12/r12  on spherical harmonics 
as follows: 

                                        
                                                                     (8)

where J –is the Bessel function of first kind and 
(l) = 2l + 1. This expansion is corresponding to 
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polarizable core can be effectively accounted 
for by modification of (1b). This corresponds 
to a modification of the radiation transition 
operator in the traditional amplitude 
approach. A local form of the modified 
transition operator has been previously 
treated by Hibbert, Migdalec, Ivanova-
Ivanov et al (look, for example, see Refs. 
[9,21,23,24,26]).  An integral form of the  
additional  polarization interaction,  
including the imaginary part, has been 
deduced on the base  of the analysis of the 
second-order ( the QED PT fourth order) 
polarization diagrams. In result one could 
take into account for the corresponding 
corrections to Im E . The detailed description 
of the accounting for the correlation 
corrections of the PT high orders within the 
Green functions method (with the use of the 
Feynman diagram’s technique) is given in 
Refs. [23,24, 34,35], where additional details 
can be found.  The corresponding form of the 
polarizable operator is given below. 
The probability is directly connected with 
imaginary part of electron energy of the 
system, which is defined in the lowest order 
of the PT as follows [23]:  
 

 







fn
fn

nn
nVeE








  

2

4
Im ,                                            

                                                                 (4) 
where 

 fn 
 for electron and 

 fn
 for 

vacancy. The potential V is as follows: 
                     

  )()1(
sin

)( 121
12

12
221 r)Ψ(rΨ

r
r

r)Ψ(rΨdrdrV *
l2

*
k

*
j1

*
iijkl 

                                                                       

                                                                    (5)  
The individual terms of the sum in (5) 
represent the contributions of different 
channels and a probability of the dipole 
transition is:  
                                                                      
                           nα

nnn

ω
αα V

π
Г 

4
1            (6) 

 
The corresponding oscillator strength is 
defined as:    

                                                                

                152 1067.6/ 
nggf  ,           (7) 

where g is the degeneracy degree,   is a 
wavelength in angstroms (Ǻ). When 
calculating the matrix elements (5), one 
should use the angle symmetry of the task 
and write the corresponding expansion for 
sinr12/r12  on spherical harmonics as 
follows:  
                            

       











0
212

2
11

2
1

2112

12

2
rrcos

sin
PrJrJ

rrr
r              

                                                                    (8) 
where J –is the Bessel function of first kind 
and () = 2 + 1. This expansion is 
corresponding to usual multipole expansion 
for probability of the radiative transition. 
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where ji are the entire single electron 
momentums, тi – their projections; CulQ and  

BrQ are connected with the Coulomb and 
Breit magnetic  parts of the operator (1b). 
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where J –is the Bessel function of first kind 
and () = 2 + 1. This expansion is 
corresponding to usual multipole expansion 
for probability of the radiative transition. 
Substitution of the expansion (11) to matrix 
element of interaction gives the following 
expression:  
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where ji are the entire single electron 
momentums, тi – their projections; CulQ and  

BrQ are connected with the Coulomb and 
Breit magnetic  parts of the operator (1b). 
The total radiation width of the one-
quasiparticle state is presented in the form: 
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where J –is the Bessel function of first kind 
and () = 2 + 1. This expansion is 
corresponding to usual multipole expansion 
for probability of the radiative transition. 
Substitution of the expansion (11) to matrix 
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expression:  
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where J –is the Bessel function of first kind 
and () = 2 + 1. This expansion is 
corresponding to usual multipole expansion 
for probability of the radiative transition. 
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expression:  
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where ji are the entire single electron 
momentums, тi – their projections; CulQ and  

BrQ are connected with the Coulomb and 
Breit magnetic  parts of the operator (1b). 
The total radiation width of the one-
quasiparticle state is presented in the form: 
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The individual terms of the 
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correspond to the partial contribution of the 
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Coulomb and Breit parts can be found in 
Refs. [23,35]. The imaginary part CulQ  
contains the radial R and angular  S  
integrals as follows (in the Coulomb units): 
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The angular coefficient has only a real part: 
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 1 3l l  means that 1, l and 3l  must satisfy 
the triangle rule and the sum 1 3l l    must 
be an even number. The rest terms in (12) 
include the small components of the Dirac 
functions. The tilde designates that the large 
radial component f  must be replaced by the 
small one g , and instead of , 1i i il l l   

should be taken for i ij l  and 1i il l   for 

i ij l . The Breit (magnetic) part can be 
expressed as follows: 
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The corresponding imaginary part (15) is as 
follows:  
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The total probability of a  - pole transition 
is usually represented as a sum of the electric 

EP  and magnetic MP  parts. The electric (or 
magnetic)  - pole transition    
connects two states with parities which by 
 ( or  +1) units. In our designations: 
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In the numerical calculations the transition 
probability, as usually, is expanded to the 
series on the known parameter  as 
follows:  
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In a case of the two-quasi-particle states (for 
example, this is a case of the Ne-like ions, 
where the excited state can be represented as 
stale with the two quasiparticles – electron 
and vacancy above the closed shells core 
1s22s22p6) the corresponding probability has 
the following form (say, transition:  
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In the non-relativistic limit there remains 
only the first term in (14) depending only on 
the large component  f r  of the one-
electron Dirac functions:  
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The angular coefficient has only a real part: 
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 1 3l l  means that 1, l and 3l  must satisfy 
the triangle rule and the sum 1 3l l    must 
be an even number. The rest terms in (12) 
include the small components of the Dirac 
functions. The tilde designates that the large 
radial component f  must be replaced by the 
small one g , and instead of , 1i i il l l   

should be taken for i ij l  and 1i il l   for 

i ij l . The Breit (magnetic) part can be 
expressed as follows: 
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The corresponding imaginary part (15) is as 
follows:  
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The total probability of a  - pole transition 
is usually represented as a sum of the electric 

EP  and magnetic MP  parts. The electric (or 
magnetic)  - pole transition    
connects two states with parities which by 
 ( or  +1) units. In our designations: 
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In the numerical calculations the transition 
probability, as usually, is expanded to the 
series on the known parameter  as 
follows:  
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In a case of the two-quasi-particle states (for 
example, this is a case of the Ne-like ions, 
where the excited state can be represented as 
stale with the two quasiparticles – electron 
and vacancy above the closed shells core 
1s22s22p6) the corresponding probability has 
the following form (say, transition:  
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The corresponding imaginary part (15) is as 
follows: 
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The angular part lSl  has the form
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The total probability of a l - pole transition is 
usually represented as a sum of the electric EPl  
and magnetic MPl  parts. The electric (or magnet-
ic) l - pole transition g δ→  connects two states 
with parities which by l ( or l +1) units. In our 
designations:
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In the numerical calculations the transition 
probability, as usually, is expanded to the series 
on the known parameter aw as follows: 
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In a case of the two-quasi-particle states (for 
example, this is a case of the Ne-like ions, where 
the excited state can be represented as stale with 
the two quasiparticles – electron and vacancy 
above the closed shells core 1s22s22p6) the corre-
sponding probability has the following form (say, 
transition: 

                                                                    (23)

It should be noted that that all calculation is 
usually carried out in the jj-coupling scheme rep-
resentation. The transition to the intermediate 

coupling scheme has been realized by diagonal-
ization of the secular matrix. Indeed, only Re M
should be diagonalized. The imaginary part is 
converted by means of the matrix of eigenvectors 
{ }mkC , obtained by diagonalization of Re M :

      
Im mk mi ij jk

ij
M C M C∗=∑                       (24)

ijM  are the matrix elements in the  jj-coupling 
scheme, and mkM  in the intermediate coupling 
scheme representation. This procedure is correct 
to terms of the order of Im ReM M  . Further let us 
also underline that the tedious procedure of phase 
convention in calculating the matrix elements of 
different operators is avoided in the energy ap-
proach, although the final formulae, of course, 
must coincide with the formulae obtained using 
the traditional amplitude method operating with 
the amplitudes of the processes. Therefore, the 
energy approach simplifies the analysis of com-
plex atomic processes including processes with 
the interference of different kinds of channels (i.e. 
radiation and autoionization ones).

4.  The one-quasiparticle optimized 
representation

The problem of the searching for the optimal 
one-electron representation is one of the oldest in 
the theory of multielectron atoms.  Two  decades  
ago  Davidson  had  pointed   the   principal dis-
advantages of the traditional representation based 
on the self-consistent field  approach  and sug-
gested the optimal “natural orbitals”  representa-
tion. Nevertheless , there remain insurmountable 
calculational difficulties in  the  realization  of the 
Davidson program (look, for example, Ref.[12]). 
One of the simplified recipes  represents, for ex-
ample, the DFT method  [18,19].  

Unfortunately,  this  method   doesn’t provide  
a  regular  refinement  procedure  in  the  case  
of  the complicated atom with few quasiparticles 
(electrons  or  vacancies  above a core  of the 
closed electronic shells).  For simplicity, let us 
consider now the one-quasiparticle atomic system 
(i.e. atomic system with one electron or vacancy 
above a core of the closed electronic shells). The 
multi-quasiparticle case doesn’t contain princi-
pally new moments. In the lowest, second order, 
of the QED PT for the DE there is the only one- 
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In the non-relativistic limit there remains 
only the first term in (14) depending only on 
the large component  f r  of the one-
electron Dirac functions:  
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The angular coefficient has only a real part: 
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 1 3l l  means that 1, l and 3l  must satisfy 
the triangle rule and the sum 1 3l l    must 
be an even number. The rest terms in (12) 
include the small components of the Dirac 
functions. The tilde designates that the large 
radial component f  must be replaced by the 
small one g , and instead of , 1i i il l l   

should be taken for i ij l  and 1i il l   for 

i ij l . The Breit (magnetic) part can be 
expressed as follows: 
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The total probability of a  - pole transition 
is usually represented as a sum of the electric 

EP  and magnetic MP  parts. The electric (or 
magnetic)  - pole transition    
connects two states with parities which by 
 ( or  +1) units. In our designations: 
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In the numerical calculations the transition 
probability, as usually, is expanded to the 
series on the known parameter  as 
follows:  
 

          
    
    .5λ

1λ,λ
3λBr

λλ

λBr
1λ,λ

λQul
λ

αωQ,αωQ

,αωQ,αωQ










 (22) 

 
In a case of the two-quasi-particle states (for 
example, this is a case of the Ne-like ions, 
where the excited state can be represented as 
stale with the two quasiparticles – electron 
and vacancy above the closed shells core 
1s22s22p6) the corresponding probability has 
the following form (say, transition:  
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only the first term in (14) depending only on 
the large component  f r  of the one-
electron Dirac functions:  
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The angular coefficient has only a real part: 
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 1 3l l  means that 1, l and 3l  must satisfy 
the triangle rule and the sum 1 3l l    must 
be an even number. The rest terms in (12) 
include the small components of the Dirac 
functions. The tilde designates that the large 
radial component f  must be replaced by the 
small one g , and instead of , 1i i il l l   

should be taken for i ij l  and 1i il l   for 

i ij l . The Breit (magnetic) part can be 
expressed as follows: 
                                                
                     , 1 , , 1
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The corresponding imaginary part (15) is as 
follows:  
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The total probability of a  - pole transition 
is usually represented as a sum of the electric 

EP  and magnetic MP  parts. The electric (or 
magnetic)  - pole transition    
connects two states with parities which by 
 ( or  +1) units. In our designations: 
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In the numerical calculations the transition 
probability, as usually, is expanded to the 
series on the known parameter  as 
follows:  
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In a case of the two-quasi-particle states (for 
example, this is a case of the Ne-like ions, 
where the excited state can be represented as 
stale with the two quasiparticles – electron 
and vacancy above the closed shells core 
1s22s22p6) the corresponding probability has 
the following form (say, transition:  
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 1 3l l  means that 1, l and 3l  must satisfy 
the triangle rule and the sum 1 3l l    must 
be an even number. The rest terms in (12) 
include the small components of the Dirac 
functions. The tilde designates that the large 
radial component f  must be replaced by the 
small one g , and instead of , 1i i il l l   

should be taken for i ij l  and 1i il l   for 

i ij l . The Breit (magnetic) part can be 
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The total probability of a  - pole transition 
is usually represented as a sum of the electric 

EP  and magnetic MP  parts. The electric (or 
magnetic)  - pole transition    
connects two states with parities which by 
 ( or  +1) units. In our designations: 
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In the numerical calculations the transition 
probability, as usually, is expanded to the 
series on the known parameter  as 
follows:  
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In a case of the two-quasi-particle states (for 
example, this is a case of the Ne-like ions, 
where the excited state can be represented as 
stale with the two quasiparticles – electron 
and vacancy above the closed shells core 
1s22s22p6) the corresponding probability has 
the following form (say, transition:  
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(23) 
It should be noted that that all calculation is 
usually carried out in the jj-coupling scheme 
representation. The transition to the 
intermediate coupling scheme has been 
realized by diagonalization of the secular 
matrix. Indeed, only Re M should be 
diagonalized. The imaginary part is 
converted by means of the matrix of 
eigenvectors  mkC , obtained by 

diagonalization of Re M : 
 

Im mk mi ij jk
ij

M C M C                                  

                                                             (24) 
ijM  are the matrix elements in the  jj-

coupling scheme, and mkM  in the 
intermediate coupling scheme representation. 
This procedure is correct to terms of the 
order of Im ReM M  . Further let us also 
underline that the tedious procedure of phase 
convention in calculating the matrix elements 
of different operators is avoided in the energy 
approach, although the final formulae, of 
course, must coincide with the formulae 
obtained using the traditional amplitude 
method operating with the amplitudes of the 
processes. Therefore, the energy approach 
simplifies the analysis of complex atomic 
processes including processes with the 
interference of different kinds of channels 
(i.e. radiation and autoionization ones). 

4.  The one-quasiparticle optimized 
representation 

 
The problem of the searching for the optimal 
one-electron representation is one of the 
oldest in the theory of multielectron atoms.  
Two  decades  ago  Davidson  had  pointed   
the   principal disadvantages of the traditional 
representation based on the self-consistent 
field  approach  and suggested the optimal 
"natural orbitals"  representation. 

Nevertheless , there remain insurmountable 
calculational difficulties in  the  realization  
of the Davidson program (look, for example, 
Ref.[12]). One of the simplified recipes  
represents, for example, the DFT method  
[18,19].   

Unfortunately,  this  method   
doesn't provide  a  regular  refinement  
procedure  in  the  case  of  the complicated 
atom with few quasiparticles (electrons  or  
vacancies  above a core  of the closed 
electronic shells).  For simplicity, let us 
consider now the one-quasiparticle atomic 
system (i.e. atomic system with one electron 
or vacancy above a core of the closed 
electronic shells). The multi-quasiparticle 
case doesn’t contain principally new 
moments. In the lowest, second order, of the 
QED PT for the E there is the only one- 
quasiparticle Feynman  diagram a (fig.1), 
contributing the ImE (the radiation decay 
width).  

 
 
 
 
                                                                                      
 

(a)                     (b)                      (c) 

Figure 1. a: second other PT diagram 
contributing the imaginary energy part 

related to the radiation transitions; b and c: 
fourth order  polarization  diagrams. 

In  the  next, the fourth order there appear 
diagrams,  whose  contribution  into the  
ImE  account  for  the  core  polarization   
effects. This contribution describes collective 
effects and it is dependent upon the 
electromagnetic potentials gauge (the gauge 
non-invariant contribution). Let us examine  
the  multielectron  atom  with  one 
quasiparticle in the  first  excited  state,  
connected  with  the ground state  by  the  
radiation  transition.  In the PT zeroth 
approximation one can use the  one-electron 
bare potential:                 
                                                                      
                     VN(r)+VC(r),                         (25)   
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quasiparticle Feynman  diagram a (fig.1), contrib-
uting the ImDE (the radiation decay width). 

                                                                                     

(a)                     (b)                      (c)
Figure 1. a: second other PT diagram contrib-
uting the imaginary energy part related to the 
radiation transitions; b and c: fourth order  polar-
ization  diagrams.

In  the  next, the fourth order there appear dia-
grams,  whose  contribution  into the  ImDE  ac-
count  for  the  core  polarization   effects. This 
contribution describes collective effects and it is 
dependent upon the electromagnetic potentials 
gauge (the gauge non-invariant contribution). Let 
us examine  the  multielectron  atom  with  one 
quasiparticle in the  first  excited  state,  connected  
with  the ground state  by  the  radiation  transi-
tion.  In the PT zeroth approximation one can use 
the  one-electron bare potential:                

                                                                     
                     VN(r)+VC(r),                         (25)  

with VN(r) describing the electric potential of 
the nucleus, VC(r), imitating the interaction of the  
quasiparticle  (initial  or  any other appearing in 
the real and virtual processes)  with the  core of  
closed  shells. 

The perturbation in terms of the  second quan-
tization representation reads as follows:

          -VC(r) y+(r) y(r)  -  jm(x) Am(x).              (26)

The core potential VC(r) is  related to the core 
electron density rC(r) in a standard way. The lat-
ter fully defines the one electron representation. 
Moreover, all  the  results  of  the approximate 
calculations are the functionals of the density 
rC(r). Here, the lowest order multielectron effects, 
in particular, the gauge dependent radiative con-
tribution for the certain class of the photon propa-
gator gauge is  treating.  This  value  is considered 
to  be  the  typical  representative  of  the  electron 

correlation effects, whose minimization is a  rea-
sonable  criteria in the searching for the optimal 
one-electron  basis  of  the  PT. Besides, this pro-
cedure derives an undoubted profit in the routine 
spectroscopic  calculations  as  it  provides  the  
way   of   the refinement of the atomic characteris-
tics  calculations,  based  on the “first principles”  
.  Remember  that  the  closeness  of  the radiation 
probabilities calculated with the alternative  forms  
of the transition operator is commonly used as  a  
criterion  of  the multielectron calculations qual-
ity. It is of special  interest  to verify the compat-
ibility of the new  optimization  principle  with 
the  other  requirements  conditioning  a    “good”   
one-electron representation. 

The imaginary part of the diagram a (fig.1)  
contribution has been presented  previously as a 
sum of the partial contributions of a-s transitions 
from the initial state a to the final state s [26]:

                 ImDEa (a) = ∑
S

Im DE (a-s; a). (27)

Two  fourth  order  polarization  diagrams  b,c  
(fig.1)  should be considered further.  The  contri-
butions   being   under consideration, are gauge- 
dependent, though  the  results  of  the exact  cal-
culation  of  any  physical  quantity  must  be    
gauge  independent . All the non-invariant terms 
are multielectron by their nature.  

Let us take the photon propagator calibration 
as follows:

D = DT + CDL ,

DT = dmn   / ( k - k 2 ),                      
                        DL = - kmkn / ( k- k2 ).            (28)
     
Here C is the gauge constant; DT represents the  

exchange  of  electrons  by  transverse photons, 
DL that by longitudinal ones. One could calculate 
the contribution of the a,b,c diagrams (fig.1) into 
the Im DE taking into account  both the  DT  and 
DL parts. The a diagram (fig.1) contribution into 
the Im DE related to the  a -s transition reads as 

            - e2

8p ∫∫ dr1dr2ya
+ (r1) ys

+  (r2)x 

           x 1 1 2

12

- a a
r

sin(was r12 )ya (r2)ys
 (r1),    (29)

for   D = DT, and      
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It should be noted that that all calculation is 
usually carried out in the jj-coupling scheme 
representation. The transition to the 
intermediate coupling scheme has been 
realized by diagonalization of the secular 
matrix. Indeed, only Re M should be 
diagonalized. The imaginary part is 
converted by means of the matrix of 
eigenvectors  mkC , obtained by 

diagonalization of Re M : 
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ijM  are the matrix elements in the  jj-

coupling scheme, and mkM  in the 
intermediate coupling scheme representation. 
This procedure is correct to terms of the 
order of Im ReM M  . Further let us also 
underline that the tedious procedure of phase 
convention in calculating the matrix elements 
of different operators is avoided in the energy 
approach, although the final formulae, of 
course, must coincide with the formulae 
obtained using the traditional amplitude 
method operating with the amplitudes of the 
processes. Therefore, the energy approach 
simplifies the analysis of complex atomic 
processes including processes with the 
interference of different kinds of channels 
(i.e. radiation and autoionization ones). 

4.  The one-quasiparticle optimized 
representation 

 
The problem of the searching for the optimal 
one-electron representation is one of the 
oldest in the theory of multielectron atoms.  
Two  decades  ago  Davidson  had  pointed   
the   principal disadvantages of the traditional 
representation based on the self-consistent 
field  approach  and suggested the optimal 
"natural orbitals"  representation. 

Nevertheless , there remain insurmountable 
calculational difficulties in  the  realization  
of the Davidson program (look, for example, 
Ref.[12]). One of the simplified recipes  
represents, for example, the DFT method  
[18,19].   

Unfortunately,  this  method   
doesn't provide  a  regular  refinement  
procedure  in  the  case  of  the complicated 
atom with few quasiparticles (electrons  or  
vacancies  above a core  of the closed 
electronic shells).  For simplicity, let us 
consider now the one-quasiparticle atomic 
system (i.e. atomic system with one electron 
or vacancy above a core of the closed 
electronic shells). The multi-quasiparticle 
case doesn’t contain principally new 
moments. In the lowest, second order, of the 
QED PT for the E there is the only one- 
quasiparticle Feynman  diagram a (fig.1), 
contributing the ImE (the radiation decay 
width).  
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Figure 1. a: second other PT diagram 
contributing the imaginary energy part 

related to the radiation transitions; b and c: 
fourth order  polarization  diagrams. 

In  the  next, the fourth order there appear 
diagrams,  whose  contribution  into the  
ImE  account  for  the  core  polarization   
effects. This contribution describes collective 
effects and it is dependent upon the 
electromagnetic potentials gauge (the gauge 
non-invariant contribution). Let us examine  
the  multielectron  atom  with  one 
quasiparticle in the  first  excited  state,  
connected  with  the ground state  by  the  
radiation  transition.  In the PT zeroth 
approximation one can use the  one-electron 
bare potential:                 
                                                                      
                     VN(r)+VC(r),                         (25)   
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- e2

8p ∫∫ dr1 dr2  ya
+ (r1) ys

+ (r2) {[(1- a1 n12 a2 n12 

)/ r12 ] sin (was r12 )+was  (1+  a1   

             n12a2n12)´cos(wasr12)}ya(r2)ys(r1),              (30)

for D=DL , where was is the a -s transition ener-
gy. According to the Grant theorem [1], the Dmn,L 
contribution vanishes, if  the  one-quasiparticle  
functions  ya  , ys satisfy the same Dirac equation. 
Nevertheless this term is to be retained when us-
ing the distorted waves approximation, for exam-
ple. Another very important example  represents  
the  formally exact approach based  on  the  bare  
Hamiltonian  defined  by  its spectrum without 
specifying its analytic form  [26,34].  Here the 
non-invariant contribution appears already in the 
lowest order. When calculating the forth order 
contributions some approximations are inevita-
ble. 

These approximations have been formulated 
in Refs.[26], where the polarization corrections to 
the state energies have been considered. 

Let us consider the direct polarization diagram 
b (fig.1) as an  example.  After the some transfor-
mations the formal expression for the sought for 
value looks as  

 

                                                                   (31)

and the upper continuum electron states;  m £ f in-
dicates the finite number of states in the  core  and  
the states of the negative  continuum  (accounting  
for  the  electron vacuum  polarization). 

All  the  vacuum   polarization and the self-
energy corrections to the  sought  for  values  are  
omitted. Their  numerical  smallness  compared 
with the other  relativistic corrections to  the  dif-
ferent  atomic  characteristics  had  been verified  
by  the  numerous  calculations.   The   renormal-
ization procedure is not needed here. Neverthe-
less the second-order vacuum polarization and 
self-energy corrections can be additively added 
to the complex state energy. The remaining ex-

pression includes summation over the bound 
and upper continuum atomic states. To evaluate 
this  sum,  we use the analytic relation  between 
the atomic electron Fermi level  and  the  core  
electron  density r c (r), appropriate  to the ho-
mogeneous   nonrelativistic  electron gas (the 
Tomas- Fermi approximation). Now the sum ån>f, 

m<f can be calculated analytically, its value be-
comes a functional of the core electron density.  
The  resulting  expression  looks  as  the correc-
tion due to  the  additional nonlocal interaction  of  
the active quasiparticle with  the  closed  shells.  
Nevertheless,  its calculation is reducible to the  
solving  of  the  system  of  the ordinary differ-
ential equations (1-D procedure) [26]. The most 
important refinements can be introduced by ac-
counting for the relativistic and the density gradi-
ent corrections to the Tomas- Fermi formula (see  
Refs. [23,26]).  The  same  program  is realized  
for other polarization diagrams. The minimiza-
tion of the functional Im dEninv (b+c) leads to the 
integro-differential equation for the r c (the DF or 
Dirac-Kohn-Sham-like equations for the electron 
density) that are numerically solved. In result we 
obtain the optimal one-quasiparticle representa-
tion, which is further used in calculation of the 
radiative (autoionization) transition characteris-
tics (7)-(10).   

5.  Conclusion

We have considered the fundamental blocks 
of the generalized energy approach to relativis-
tic calculation of the radiative decay (transitions) 
probabilities in heavy neutral atomic systems 
and multicharged ions. The approach is based on 
the Gell-Mann and Low S-matrix formalism and 
the gauge-invariant relativistic many-body per-
turbation theory (PT) with using the optimized 
one-quasiparticle representation and an accurate 
account of the relativistic and exchange-corre-
lation effects. In relativistic case the Gell-Mann 
and Low formula expresses an energy shift DΕ  
through the electrodynamical scattering matrix 
including the interaction with the photon vacuum 
field. This case is corresponding to definition of 
the traditional radiative transitions probabilities 
for atoms and ions. Obviously, the same program 
can be realized in order to give adequate quantita-
tive description of interaction of atomic systems 

waves approximation, for example. Another 
very important example  represents  the  
formally exact approach based  on  the  bare  
Hamiltonian  defined  by  its spectrum 
without specifying its analytic form  [26,34].  
Here the non-invariant contribution appears 
already in the lowest order. When calculating 
the forth order contributions some 
approximations are inevitable.  

These approximations have been 
formulated in Refs.[26], where the 
polarization corrections to the state energies 
have been considered.  
Let us consider the direct polarization 
diagram b (fig.1) as an  example.  After the 
some transformations the formal expression 
for the sought for value looks as   
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                                                                 (31) 
and the upper continuum electron states;  m  
f indicates the finite number of states in the  
core  and  the states of the negative  
continuum  (accounting  for  the  electron 
vacuum  polarization).  
All  the  vacuum   polarization and the self-
energy corrections to the  sought  for  values  
are  omitted. Their  numerical  smallness  
compared with the other  relativistic 
corrections to  the  different  atomic  
characteristics  had  been verified  by  the  
numerous  calculations.   The   
renormalization procedure is not needed 
here. Nevertheless the second-order vacuum 
polarization and self-energy corrections can 
be additively added to the complex state 
energy. The remaining expression includes 
summation over the bound and upper 
continuum atomic states. To evaluate this  
sum,  we use the analytic relation  between 
the atomic electron Fermi level  and  the  
core  electron  density  c (r), appropriate  to 
the homogeneous   nonrelativistic  electron 
gas (the Tomas- Fermi approximation). Now 
the sum n>f, m<f can be calculated 

analytically, its value becomes a functional 
of the core electron density.  The  resulting  
expression  looks  as  the correction due to  
the  additional nonlocal interaction  of  the 
active quasiparticle with  the  closed  shells.  
Nevertheless,  its calculation is reducible to 
the  solving  of  the  system  of  the ordinary 
differential equations (1-D procedure) [26]. 
The most important refinements can be 
introduced by accounting for the relativistic 
and the density gradient corrections to the 
Tomas- Fermi formula (see  Refs. [23,26]).  
The  same  program  is realized  for other 
polarization diagrams. The minimization of 
the functional Im Eninv (b+c) leads to the 
integro-differential equation for the  c (the 
DF or Dirac-Kohn-Sham-like equations for 
the electron density) that are numerically 
solved. In result we obtain the optimal one-
quasiparticle representation, which is further 
used in calculation of the radiative 
(autoionization) transition characteristics (7)-
(10).    

5.  Conclusion 
We have considered the fundamental blocks 
of the generalized energy approach to 
relativistic calculation of the radiative decay 
(transitions) probabilities in heavy neutral 
atomic systems and multicharged ions. The 
approach is based on the Gell-Mann and Low 
S-matrix formalism and the gauge-invariant 
relativistic many-body perturbation theory 
(PT) with using the optimized one-
quasiparticle representation and an accurate 
account of the relativistic and exchange-
correlation effects. In relativistic case the 
Gell-Mann and Low formula expresses an 
energy shift   through the electrodynamical 
scattering matrix including the interaction 
with the photon vacuum field. This case is 
corresponding to definition of the traditional 
radiative transitions probabilities for atoms 
and ions. Obviously, the same program can 
be realized in order to give adequate 
quantitative description of interaction of 
atomic systems with a laser field and further 
computing the radiation emission and 
absorption lines parameters, the 
corresponding lines moments etc. [28,29]. 
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with a laser field and further computing the radia-
tion emission and absorption lines parameters, the 
corresponding lines moments etc. [28,29].
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ADVANCED RELATIVISTIC ENERGY APPROACH TO RADIATION DECAY 
PROCESSES IN ATOMIC SYSTEMS

Abstract. 
We consider the fundamental aspects of the generalized energy approach to relativistic calculation 

of the radiative decay (transitions) probabilities in heavy neutral atomic systems and multicharged 
ions. The approach is based on the Gell-Mann and Low S-matrix formalism and the relativistic many-
body perturbation theory (PT) with using the optimized one-quasiparticle representation and an ac-
curate account of the relativistic and correlation. In relativistic case the Gell-Mann and Low formula 
expresses an energy shift DΕ  through the electrodynamical scattering matrix including the interaction 
with as the laser field as the photon vacuum field. The last case is corresponding to definition of the 
traditional radiative transitions probabilities for atoms and ions.

Key words: energy approach, atomic systems and multicharged ions, radiative transitions,  Gell-
Mann and Low S-matrix formalism   
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А. В. Глушков, В. Б. Терновский, В. В. Буяджи, П. А. Заичко, Л. В. Никола

РЕЛЯТИВИСТСКИЙ ЭНЕРГЕТИЧЕСКИЙ ПОДХОД К ОПИСАНИЮ ПРОЦЕССОВ 
РАДИАЦИОННОГО РАСПАДА В АТОМНЫХ СИСТЕМАХ

Резюме. 
В работе рассмотрены фундаментальные аспекты обобщенного релятивистского энергети-

ческого подхода в релятивистской теории радиационных распадов (переходов) вероятностей 
в тяжелых нейтральных атомных системах и многозарядных ионов. Подход базируется на 
S-матричном формализма Гелл-Манна и Лоу и релятивистской многочастичных теории возму-
щений с выполнением оптимизированного одинквазичастинквого представления и аккуратным 
учетом релятивистских и корреляционных поправок. В релятивистском случае формула Гелл-
Манна и Лоу выражает энергетический сдвиг через электродинамическую матрицу рассеяния, 
в том числе, с учетом взаимодействия как с полем лазерного излучения, так и полем фотонного 
вакуума. Последний случай соответствует определению традиционных вероятностей радиаци-
онных переходов для атомов и ионов

Ключевые слова: энергетический подход, атомные системы и многозарядные ионы, радиа-
ционные переходы, S-матричный формализм Гелл-Манна и Лоу
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УДК 539.182

А. В. Глушков, В. Б. Терновський, В. В. Буяджи, П. О. Заїчко, Л. В. Нікола

PЕЛЯТИВІСТСЬКИЙ ЕНЕРГЕТИЧНИЙ ПІДХІД ДО ОПИСУ ПРОЦЕСІВ РАДІАЦІЙ-
НОГО РОЗПАДУ В АТОМНИХ СИСТЕМАХ

Резюме. 
У роботі розглянуті фундаментальні аспекти удосконаленого релятивістського енергетич-

ного підходу в релятивістській теорії радіаційних розпадів (переходів) ймовірностей у важ-
ких нейтральних атомних системах і багатозарядних іонів. Підхід базується на S-матричному  
формалізму Гелл-Манна та Лоу і релятивістської багаточастинковій теорії збурень з імплемен-
тацією оптимізованого одинквазічастинквого представлення і акуратним урахуванням реляти-
вістських і кореляційних поправок.  У релятивістському випадку формула  Гелл-Манна і Лоу 
виражає енергетичний зсув  через електродинамічну матрицю розсіювання, в тому числі, з ура-
хуванням  взаємодії як з полем лазерного випромінювання, так й полем фотонного вакууму. 
Останній випадок відповідає визначенню традиційних ймовірностей радіаційних переходів  
для атомів та іонів

Ключові слова: енергетичний підхід, атомні системи і багатозарядні іони, радіаційні пере-
ходи, S-матричний  формалізм Гелл-Манна та Лоу
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EXPERIMENTAL AND THEORETICAL STUDYING OF PHOTOCONDUCTIVITY OF 
POLYMERIC LAYERS WITH DYES

We present the results of the experimental and theoretical studying photoconductivity of polymer layers 
with the dyes. It’s investigated photoconductivity of organic dyes in solid polymeric matrices with rectangular 
pulse excitation light. The obtained experimental data indicate on the quadratic (i.e. non-linear) relationship 
between photocurrent values that are obtained for two different levels of radiation intensities.

1. Introduction

To present time there are carried out  numerous 
experimental and theoretical works data showing 
that the excitation relaxation processes in poly-
meric materials with different impurities  do not 
prevent leakage of important science and practice 
processes in the highly excited states such as gen-
eration of carriers, photochemical and radiation-
chemical processes [1-15]. Studying photo-con-
ductivity of the polyacene linear crystals (anthra-
cene, tetracene, pentatsen) showed that its high 
quantum efficiency is observed only under  irradi-
ation of the highly excited molecules when there 
is possible a birth of holes and free electrons. 

In this paper we present the results of the ex-
perimental and theoretical studying photoconduc-
tivity of polymer layers with the dyes. It’s inves-
tigated photoconductivity of organic dyes in solid 
polymeric matrices with rectangular pulse exci-
tation light (methodics details in Refs. [3,4,6,7]). 
Initially,  samples were kept at a constant high 
voltage (for most of them was taken U = 80 V) 
for some time until it is established steady dark 
current. Then through the transparent electrodes 
cell sample are radiated by a light from a mer-
cury lamp, and a light had been focused so that 
the sample was evenly lit. The photocurrent ap-
pearance is recorded on the recorder and a photo-
current grew exponentially to a constant value іc. 
Time of stationary photocurrent is dependent on 

dye concentration, nature of the polymer matrix, 
and presence of alkali in the layer, and equal one 
to a few min. 

After the cessation of current lighting around 
the same time period reached its original value. 
Typical kinetics of the photocurrent growth and 
decline for most of the samples (PVP= polyvi-
nylpyrrolidone; PVA= Polyvinyl acetate; PVC= 
Polyvinyl alcohol; PVE= Poliviniletylal) is 
shown in Fig.1.
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Figure 1. Time dependence of the photocurrent 
changing for solid solvents of rezazuryne: a)  in 
polymers of PVP, PVA, PVC, b) in PVE (C = 10-3).

Kinetics of photoconductivity for PvE layer 
of rezazuryne (P = 10-3 mol/l) without alkali was 
somewhat complicated character. As it is shown 
in Fig. 1b, photocurrent model has two compo-
nents (fast and slow) which are superimposed, 
giving the appearance of a complex curve. Quick 
component met in some other examples, and they 
have not helped to increase and sharp decline in 
photocurrent for the first time after turning on the 
light.
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This component of the photocurrent disappears 
quickly, and for some samples it did not appear. 
Its rapid disappearance indicates that there are 
traps in the sample volume that capture electrons 
and holes, or carriers localized near the sample 
surface, creating an electrical double layer. As it 
is shown in Fig.1a, the growth photocurrent relax-
ation curve has  exponential areas (i.e. relaxation 
occurs in a continuous lifetime on the consider-
able distance). To obtain quantitative information 
it is suggested that the increasing the photocur-
rent satisfies to the law:
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Figure 2. Kinetics of the photocurrent for reza-
zuryne in PVP (C = 10-3mol/l  in presence of the  
KOH) in the coordinates “t-ln(1-iph/ic)

The exponential areas are plotted by the straight 
lines with a slope that determines t , which is on 
the absolute value equal to the cotangent of the 
angle of the curve inclination (look Figure 2). 
Found lifetimes depending on the concentration 

rezazuryne polymer matrix and the presence of 
alkali are shown in Table. 1.

Table 1. 
The lifetimes τ (s) in dependence on the reza-
zuryne concentration (C) in a polymer matrix 
and availability an alkalis KOH (light without 
filter).

Polimer t, s
Pure С = 

10-3,
KOH.

С = 
10-3, 
KOH

С = 
10-4, 
KOH

PVP
PVE
PVA

123
42
67

90
42
60

65
70
76

78
95
-

In Figures 3a,b,c we present the related 
changing photocurrent in polymers with different 
concentration of rezazuryne in dependence on a 
light intensity I.  

ic/i0

I, rel.units
PVP

Figure 3a. The related changing photocurrent 
in polymers with different concentration of 
rezazuryne in dependence on a light intensity  
a) PVP (1 – С = 0; 2 – С = 10-4, KOH; 3–С = 
10-3;  4 – С = 10-3, KOH); n = ic/io: 3(2), 3 (3), 4 
(4);  

Using the obtained kinetical curves of a pho-
tocurrent for all polymers with the rezazuryne 
concentration C=10-3 mol/l , it has been found the 
following relationship: 
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         ic/i0

I, rel.units

Figure 3b. The related changing photocurrent 
in polymers with different concentration of re-
zazuryne in dependence on a light intensity:  
b). PVE (1 – С = 10-4, KOH; 2 – С = 10-3, KOH); 
n = ic/io: 2,5 (1), 4,2 (2);  

ic/i0

I, rel.units
Figure 3b. The related changing photocur-

rent in polymers with different concentration 
of rezazuryne in dependence on a light inten-
sity:  c) PVA (1 – С = 0; 2 – С=10-3; 3 – С =10-3, 
KOH); n = ic/io:3 (3,7).
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where  ic is the value of a photocurrent under sat-

uration; 0i  is the value of a dark current under 
some constant voltage.

In order to determine an influence of the dyes 
concentration on a photosensitivity of the poly-

mer layer it is studied a dependence )(0 tfiiph =   
for different concentrations of the rezazuryne 
(look Figure 4). 

i ph/i0

                             PVC            t, 
s 

Figure 4a. Dependence )(0 tfiiph =   for differ-
ent rezazuryne concentrations in matrix PVC

The obtained experimental data  indicate on 
the quadratic (i.e. non-linear) relationship be-
tween photocurrent values   that are obtained for 
two different levels of radiation intensities. 

This phenomenon is characteristic for the two-
quantum processes and confirms earlier obtained 
the results [5,6]. Note that when irradiated the 
sample through the filter UFS-1 
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   i ph/i0

                             PVP            t, s 

Figure 4b. Dependence )(0 tfiiph =   for dif-
ferent rezazuryne concentrations in matrix 
PVP (P- pure)

i ph/i0

                             PVE            t, s 

Figure 4c. Dependence )(0 tfiiph =   for differ-
ent rezazuryne concentrations in matrix PVE 
(P- pure)

  i ph/i0

                  PVA            t, s 

Figure 4d. Dependence )(0 tfiiph =   for differ-
ent rezazuryne concentrations in matrix PVA 
(P- pure)

it is observed a linear dependence of a photocur-
rent on the intensity of exposure.
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Abstract. 
We present the results of the experimental and theoretical studying photoconductivity of polymer 

layers with the dyes. It’s investigated photoconductivity of organic dyes in solid polymeric matrices 
with rectangular pulse excitation light. The obtained experimental data indicate on the quadratic (i.e. 
non-linear) relationship between photocurrent values   that are obtained for two different levels of ra-
diation intensities.
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ЭКСПЕРИМЕНАТЛЬНОЕ И ТЕОРЕТИЧЕСКОЕ ИЗУЧЕНИЕ ФОТОПРОВОДИМОС-
ТИ ПОЛИМЕРНЫХ СЛОЕВ С КРАСИТЕЛЯМИ

Резюме. 
Представлены результаты экспериментального и теоретического изучения фотопроводимо-

сти полимерных слоев с красителями. Приведены результаты исследования фотопроводимости 
органических красителей в твердых полимерных матрицах со светом (импульс прямоугольной 
формы).  Полученные экспериментальные данные показывают квадратичное (т.е. нелинейное) 
соотношение между  значениями фототока, полученными для двух различных уровней интен-
сивности излучения.

Ключевые слова: полимерные слои с красителями, фотопроводимость
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ЕСПЕРИМЕНТАЛЬНЕ ТА ТЕОРЕТИЧНЕ ВИВЧЕННЯ ПОЛІМЕРНИХ ШАРІВ З 
БАРВНИКАМИ 

Резюме.  
Представлені результати експериментального та теоретичного вивчення фотопровідності 

полімерних шарів з барвниками. Наведено результати дослідження фотопровідності органіч-
них барвників в твердих полімерних матрицях зі світлом (імпульс прямокутної форми). Отри-
мані експериментальні дані показують квадратичне (тобто нелінійне) співвідношення між зна-
ченнями фототока, отриманими для двох різних рівнів інтенсивності випромінювання.
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PHOTOLUMINESCENCE OF TAUTOMERIC FORMS OF NANOPARTICLE ENSEMBLES OF 
DYES BASED ON THE 4-VALENCE STANNUM COMPLEXES IN POROUS SILICA GLASS
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Luminescence of tautomeric forms of dyes based on the 4-valence stannum complexes was researched. 
Symmetry of photoluminescence spectra of different tautomeric forms relative to direction of reading of atom 
positions in the hydrazide fragment was found clockwise or anti clockwise. It was determined that the illumina-
tion of nanoparticle ensembles of dyes in A-type porous silica glass is always more intensive than in appropriate 
solution. It was shown that the luminescence intensity of tautomeric forms increases, if the substituent comes 
nearer to the coordination set irrespective of type and nature of substituent and type of coordination set. At the 
same time, change of illumination energy of tautomeric forms depends on both type and nature of substituent 
and coordination set. The results were explained by the development of inner surface of matrix and also by the 
features of atom disposition in dye molecule and by interaction between them.

1. INTRODUCTION

Interest to the dyes on base of the 4-valence 
stannum complexes is non-random, as far as it 
is known [1-3] that such dyes are most sensitive 
to the gas composition of environment, therefore 
they can be used for construction of gas sensors, 
used for the ecological monitoring [4]. It is a big 
group of dyes, which are close structurally and 
differ with some details of their molecular com-
position only. So arise an opportunity to research 
the influence of these details on the optical prop-
erties of dyes. Investigation of the mechanism of 
optical processes in such systems will make it 
possible to improve the luminescence efficiency 
of new nanostructures. It would give the opportu-
nity to create new generation of microelectronic 
devices, such as new classes of luminophores and 
photosensitive optoelectronics elements, which 
would promote expansion of potential resources 
of optoelectronics.

It is known [5] that the dyes usually luminesce 
onle in the solutions, which provide formation of 
electron-vibration sublevels in the system, so its 
illumination is a result of transitions among them. 
We managed to find luminescence of nanoparticle 
ensembles of dyes formed in А-type porous silica 
glass. Illumination intensity of such system con-
siderably exceeds luminescence intensity of ap-
propriate solution.

The photoluminescence spectra of all the fea-
sible tautomeric forms of dyes based on the 4va-
lence stannum complexes with coordination sets 
of 2 types and with the substituent in hydrazide 
fragment of both nicotinoyl (HN+) and benzoyl 
types were researched in the present paper. The 
last ones were of 2 sorts: hydroxyl (OH) and 
amine (NH3). We studied 4-dimethylaminbenzal-
dehydes {SnCl4ON} and 2hydroxynaftaldegydes 
{SnCl3O2N}. Fig.1 shows the structural formulas 
of appropriate coordination sets (e.g., see [6]).
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Fig. 1. Structural formulas of coordination sets 
of 4-dimethylaminbenzaldehydes (a) and 2hy-
droxynaftaldegydes (b) in the case of hydroxyl 
substituent. Loss of hydrogen atom on nitro-
gen atom occurs for providing electroneutral-
ity for amine substituents

Hydrazide fragment represents usual benzene 
ring with substituent (A). The substituent can be of 
nicotinoyl or benzoyl type. In the first case some 
nitrogen group incorporates into the benzene ring 
directly (i.e. in fact a substitution of carbon atom 
with nitrogen one takes place), in the second case 
one of the hydrogen atoms in some position of 
hydrazide fragment is substituted with hydroxyl 
or amine group. The isomeric dyes, which dif-
fer only in substituent (A) position relative to the 
hydrazide fragment, are called the dyes with dif-
ferent tautomeric forms. Substituent position in 
current tautomeric form is designated by number. 
The bond, connecting the hydrazide fragment 
with the coordination set, is market as «1». One 
indicates the other positions with the natural num-
bers anticlockwise from «2» to «6» by increase. 
Fig.2 shows the nicotinoyl substituent in position 
«5», and benzoyl one in position «3».

Fig. 2. Hydrazide fragment with constituent of 
nicotinoyl (a) and benzoyl (b) types

2. MATERIALS AND METHODS

The porous glass A is obtained from sodium 
boron-silicate glass. The glass is heated at the 
temperature of 763 K at 165 hours in order to 
separate phases rich in silica and sodium-boron. 
Then it is immersed in 0.5N hydrochloric acid and 
deionized water. The porosity determined from 
the mass decrement after etching was: 38%. The 
texture parameters of investigated glasses were 
determined by adsorption poroscopy method. The 
average diameter of pores was 30 nm, total aver-
age pore volume was 292 mm3 g-1 and the aver-
age surface area was 54.7 m2 g-1. The residual fine 
dispersed secondary silica gel presents in pores of 
glass after this chemical treatment.

Nanoparticle ensembles of dyes in porous sil-
ica glass were formed by soaking glass, embed-
ding it directly into dimethylformamide (DMFA) 
solution of appropriate dye with concentration 
1×10-3 gMole l-1. We have selected particularly 
this solvent because it adsorbs the light in radi-
ated range minimally, and so all dyes fluoresced 
most intensively in it. Storage duration of glass 
in the solution of each concrete dye was verified 
visually and usually formed more than 12 hours. 
After finish of soaking the specimen was exposed 
to low-temperature anneal that was necessary in 
order to provide sufficiently uniform space distri-
bution of nanoparticles in glass.

Composition and structure of the investigated 
dyes were determined by the complex of spectro-
scopic and X-ray methods. Fig.1 and Fig.2 show 
these results.

Photoluminescence spectra were excited 
with UV laser LCS-DTL-374QT (wavelength 
λ=355 nm, power 15 mW) and were recorded by 
standard set-up [7].

3. EXPERIMENTAL RESULTS

Fig.3 shows photoluminescence spectra for 
three dyes on the basis of complexes, molecu-
lar structures of which are the most alike. They 
all have similar coordination set (depicted in 
Fig.1,a), shortened {SnCl4}) and similar tauto-
meric form «2». They differ only in substituent. 
The spectra, marked with thick and dash line are 
for dyes with substituents of benzoil type OH or 
NH3, correspondingly, and spectrum, marked with 
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Luminescence of tautomeric forms of dyes based on the 4-valence stannum 
complexes was researched. Symmetry of photoluminescence spectra of different 
tautomeric forms relative to direction of reading of atom positions in the hydrazide 
fragment was found clockwise or anti clockwise. It was determined that the 
illumination of nanoparticle ensembles of dyes in A-type porous silica glass is 
always more intensive than in appropriate solution. It was shown that the 
luminescence intensity of tautomeric forms increases, if the substituent comes nearer 
to the coordination set irrespective of type and nature of substituent and type of 
coordination set. At the same time, change of illumination energy of tautomeric 
forms depends on both type and nature of substituent and coordination set. The 
results were explained by the development of inner surface of matrix and also by the 
features of atom disposition in dye molecule and by interaction between them. 

 
 
 

1. INTRODUCTION 

Interest to the dyes on base of the 4-valence 
stannum complexes is non-random, as far as it is 
known [1-3] that such dyes are most sensitive to the 
gas composition of environment, therefore they can be 
used for construction of gas sensors, used for the 
ecological monitoring [4]. It is a big group of dyes, 
which are close structurally and differ with some 
details of their molecular composition only. So arise an 
opportunity to research the influence of these details 
on the optical properties of dyes. Investigation of the 
mechanism of optical processes in such systems will 
make it possible to improve the luminescence 
efficiency of new nanostructures. It would give the 
opportunity to create new generation of 
microelectronic devices, such as new classes of 
luminophores and photosensitive optoelectronics 
elements, which would promote expansion of potential 
resources of optoelectronics. 

It is known [5] that the dyes usually luminesce 
onle in the solutions, which provide formation of 
electron-vibration sublevels in the system, so its 
illumination is a result of transitions among them. We 
managed to find luminescence of nanoparticle 
ensembles of dyes formed in А-type porous silica 
glass. Illumination intensity of such system 
considerably exceeds luminescence intensity of 
appropriate solution. 

The photoluminescence spectra of all the 
feasible tautomeric forms of dyes based on the 
4-valence stannum complexes with coordination sets 
of 2 types and with the substituent in hydrazide 
fragment of both nicotinoyl (HN+) and benzoyl types 
were researched in the present paper. The last ones 
were of 2 sorts: hydroxyl (OH) and amine (NH3). We 

studied 4-dimethylaminbenzaldehydes {SnCl4ON} and 
2-hydroxynaftaldegydes {SnCl3O2N}. Fig.1 shows the 
structural formulas of appropriate coordination sets 
(e.g., see [6]). 

 
 

 
Fig.1. Structural formulas of coordination sets of 
4-dimethylaminbenzaldehydes (a) and 
2-hydroxynaftaldegydes (b) in the case of 
hydroxyl substituent. Loss of hydrogen atom on 
nitrogen atom occurs for providing 
electroneutrality for amine substituents 
 

Hydrazide fragment represents usual benzene 
ring with substituent (A). The substituent can be of 
nicotinoyl or benzoyl type. In the first case some 
nitrogen group incorporates into the benzene ring 
directly (i.e. in fact a substitution of carbon atom with 
nitrogen one takes place), in the second case one of the 
hydrogen atoms in some position of hydrazide 
fragment is substituted with hydroxyl or amine group. 
The isomeric dyes, which differ only in substituent (A) 
position relative to the hydrazide fragment, are called 
the dyes with different tautomeric forms. Substituent 
position in current tautomeric form is designated by 
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thin line belongs to dye with substituent of nicoti-
noyl type NH+. The left part of Fig.3 corresponds 
to solutions of the specified dyes in DMFA, and 
the right one – to ensemble of nanoparticles in 
porous matrix. One may see from the figure that 
similar dyes in porous matrix glow considerably 
more intensively than in solution.

Fig. 3. Photoluminescence spectra for some 
dyes, which have similar molecular structure, 
in DMFA solution (on the left) and as nanopAr-
ticles ensemble in porous glass (on the right)

A comparison of the photoluminescence spec-
tra of DFMA-solutions of dyes based on the 
4-valence stannum complexes and A-type silica 
porous glass matrixes, soaked in same solution, 
showed [8] that they have one maximum for all 
the considered dyes. These spectra only differ in 
glow intensity and spectral position of this maxi-
mum. Taking it into account and as the coordina-
tion set preserves its original for isomerous dyes 
with different tautomeric forms we have com-
pared the histograms, which correspond with the 
intensity and maximum position of photolumi-
nescence spectrum depending on the complex’s 
tautomeric forms for further research.

Fig.4 shows the histograms of dependences of 
intensity and maximum position of photolumi-
nescence spectra of dyes with benzoyl type hy-
droxyl (OH) substituent on its position in tauto-
meric form for the complexes with coordination 
sets {SnCl4ON} and {SnCl3O2N}. One can see 
that the glow intensity of nanoparticle ensemble 
of dye always exceeds the glow intensity of its 
solution. Dye with coordination set {SnCl3O2N} 
illuminates more intensively both in solution and 
in porous matrix. However, the photolumines-
cence intensity for the dye with coordination set 
{SnCl4ON} increases almost sixfold by transi-
tion from solution to the nanoparticles ensemble, 

whereas for the dye with coordination set {Sn-
Cl3O2N} it increases roughly threefold only.

One can see from histograms, which describe 
the change of luminescence maximum position, 
that all the photoluminescence spectra are hyper-
chromic ones by transition from solution to the 
nanoparticle ensemble irrespective of tautomeric 
form and coordination   set   for  the  dyes   with  
benzoyl   type

Fig. 4. Dependence of photoluminescence in-
tensity and maximum position of its spectrum 
for dye with coordination set {SnCl4ON} (on 
the left) and {SnCl3O2N} (on the right) on posi-
tion of benzoyl type OH substituent in tauto-
meric form

hydroxyl (OH) substituent. We also can mark that 
the wavelength of illumination differs by the change 
of the coordination set insignificantly for each tauto-
meric form. In all the cases the illumination energy 
of current tautomeric form of dyes based on 2-hy-
droxynaftaldegyde {SnCl3O2N} is a little less than 
of those based on 4dimethylaminbenzaldehyde {Sn-
Cl4ON}. Besides, one can conclude from histograms 
that the illumination of dyes with tautomeric form 
«4», in which the substitutient is most distant from 
the coordination set in it, has maximal energy.

Fig.5 shows the histograms of dependences of 
intensity and maximum position of photolumines-
cence of dyes with benzoyl type amine (NH3) sub-
stituent on it position in tautomeric form for the 
complexes with coordination sets {SnCl4ON} and 
{SnCl3O2N}. One can observe for such dyes the 
same regularity as for ones with hydroxyl substitu-
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ent: illumination of nanoparticle ensemble of dye in 
the porous glass is more intensive than in its solution 
irrespective of tautomeric form. The illumination of 
dye with coordination set {SnCl3O2N} in solution is 
about 2.5-fold fainter than that with coordination set 
{SnCl4ON}, which has the same tautomeric form. 
Intensity of photoluminescence for the dye with co-
ordination set {SnCl3O2N} increases by almost ten 
times by transition from solution to the nanoparticle 
ensemble, whereas for the dye with coordination set 
{SnCl3O2N} it increases less than 2-fold (while for 
the tautomeric form «4» it doesn’t change practically 
in this case).

Researching change of maximum position of 
photoluminescence spectrum for dyes with ben-
zoyl type amine (NH3) substituent on its position in 
tautomeric form shows bathochromic shift of pho-
toluminescence spectra for all tautomeric forms of 
dyes with coordination set {SnCl4ON} by transition 
from solution to the nanoparticle ensemble, where-
as in the case of coordination set {SnCl3O2N} they 
remain hyperchromic. Herewith the wavelength of 
illumination, when tautomeric form changes for the 
case of coordination set {SnCl3O2N}, changes to a 
very little degree (within 10 nm). Same effect occurs 
also for the solution of dyes with coordination set 
{SnCl4ON}. However, wavelength of illumination 
changes more considerably (up to 50 nm) by transi-
tion to the nanoparticle ensemble in this case. Illumi-
nation of dyes with tautomeric form «4», in which 
substituent is the most distant from coordination set, 
also has maximal energy for this substitutient.

Fig. 5. Dependence of photoluminescence inten-
sity and maximum position of its spectrum for 
dye with coordination set {SnCl4ON} (on the left) 
and {SnCl3O2N} (on the right) on position of ben-
zoyl type NH3 substituent in tautomeric form

The dyes with nicotinoyl type amine (HN+) sub-
stituent behave somewhat in a different way. Fig.6 
shows that the histograms of dependences of pho-
toluminescence intensity on the substitutient po-
sition in tautomeric form are very similar for both 
types of coordination sets for the dyes with such 
substitutient. In both cases the illumination intensity 
changes to a little degree for different tautomeric 
forms in solution, but by transition from solution to 
the nanoparticle ensemble it increases about by ten 
times (for the tautomeric form «4» this increment 
is a little less). The difference is only that the dyes 
based on 2-hydroxynaftaldegyde {SnCl3O2N} glow 
about 4-fold more intensively than those based on 
4dimethylaminbenzaldehyde {SnCl4ON}.However 
quite notable difference in dependences of photo-
luminescence spectra of dyes with nicotinoyl type 
amine (HN+) substituent on the substitutient posi-
tion in tautomeric form deduces from histograms of 
change of maximum position of photoluminescence 
spectrum of dyes with such substituent as against 
similar spectra of dyes with benzoyl substituent. As 
distinct from dyes with benzoyl type substituents ra-
diant energy decreases for these dyes when substitu-
ent moves away from coordination set (irrespective 
of its type), and thus it turns out to be minimum for 
tautomeric form «4». Besides, hypsochromic shift of 
photoluminescence spectra takes place for all tauto-
meric forms by transition from solution to nanopar-
ticle ensemble for dyes on the basis of 4-dimethyl-
aminbenzaldehyde {SnCl4ON}, whereas spectra 
remain hyperchromic for the dyes on the basis of 
2-hydroxynaftaldegyde {SnCl3O2N} irrespective of 
tautomeric form.

Fig. 6. Dependence of photoluminescence inten-
sity and maximum position of its spectrum for 
dye with coordination set {SnCl4ON} (on the left) 
and {SnCl3O2N} (on the right) on position of nic-
otinoyl type HN+

 substituent in tautomeric form
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4. DISCUSSION

The nature of occurrence of nanoparticle en-
semble glow in pores of porous silica glass is the 
same as in solution: luminescence occurs as conse-
quence of transition between level, situated close 
to bottom of first excited dye molecule state, and 
set of electron-vibration sublevels of its ground 
state. Intensity of photoluminescence at that in-
creases on the account of development of inner 
matrix surface and due to insignificant probability 
of aggregations’ appearance because of presence 
of residual silica gel in pores of А-type matrix, it 
always exceeds intensity of glow of appropriate 
solution. The silica gel prevents aggregation of dye 
in big pores by covering the formed dye nanopar-
ticles [9-10]. It is known [11-13] that aggregation 
would lead to dye bleaching. Effect of increasing 
of photoluminescence intensity of dye in porous 
glass takes place irrespective of type of their coor-
dination set and tautomeric form of dyes based on 
4-valence stannum complexes.

Invariability of photoluminescence spectra oc-
curs relative to direction of reading of positions 
of atoms in hydrazide fragment clockwise or anti 
clockwise for tautomeric forms of all the dyes 
based of 4-valence stannum complexes both in 
solution and in the case of nanoparticle ensemble. 
That is, tautomeric forms with substituents in posi-
tions «2» and «6» or «3» and «5» turn out to be 
equivalent. This conclusion seems trivial at first, 
as all connections of benzoyl ring are equivalent. 
Nevertheless, on account of possible intramolecu-
lar hydrogen bondings the specified tautomeric 
forms are not necessarily equivalent. The obtained 
results show that intramolecular hydrogen bond-
ings are not formed in the researched complexes 
for any coordination sets, tautomeric forms or sub-
stituents.

Glow intensity increases when substituent in 
hydrazide fragment moves closer to coordination 
set for all tautomeric forms both in dye solution 
and in its nanoparticle ensemble. This effect can be 
considered as direct consequence of symmetry of 
tautomeric forms relative to direction of reading of 
atom positions in hydrazide fragment. Indeed, as 
tautomeric forms are equivalent to substituents in 
positions «2» and «6» additional rotation symme-
try occurs in dye molecule. It causes formation of 
additional electron rotational levels, fit for radia-
tive transition.

In order to explain the dependence of dye radi-
ative energy on substituent position in tautomeric 
form one should assume presence of two compet-
ing mechanisms in the system. One is connected 
with interaction of substituent with coordination 
set, and the other is connected with the degree of 
freedom of the substituent in relation to benzoyl 
ring of hydrazide fragment. Let us recall that at 
substitution nicotinoyl type substituent incorpo-
rates into benzoyl ring of hydrazide fragment, 
substituting carbon therein. At that no additional 
degree of freedom appears in the substituent. On 
account of interaction of substituent and coordi-
nation set some energy is radiated, and the closer 
the substituent to coordination set is, the higher 
the energy is. And that is why histogram, repre-
sented in the lower part of the Fig.6, shows that 
maximal radiative energy corresponds to tauto-
meric forms with the closest to coordination set 
substituent «2» (or «6»), and minimal energy cor-
responds to tautomeric form with the most distant 
from coordination set substituent «4», as one may 
see from maximum position of photolumines-
cence spectra. In the case of benzoyl substitution 
small hydrogen atom in benzoyl ring of hydrazide 
fragment is substituted by bulky group of atoms, 
which can vibrate relative to benzoyl ring. The 
further from coordination set benzoyl type sub-
stituent is, the more intensively it can vibrate, and 
the more electron-vibration states, fit for radiative 
transition, occur in the system, that, as follows 
from histograms shown in the lower part of Fig.4 
and Fig.5, with a vengeance compensates losses, 
connected with substituent’s moving away from 
coordination set. Thus, at benzoyl substitution 
maximal radiative energy corresponds to tauto-
meric form with maximally distant from coordi-
nation set substituent «4».

5. CONCLUSIONS

Illumination intensity of nanoparticle ensem-
bles of dyes based on the 4-valence stannum com-
plexes in the pores of porous silica glass is always 
more than illumination intensity of appropriate 
solution. Herewith the luminescence intensity of 
dyes of such type with hydroxyl substituent was 
always more than in case with the amine one.

Symmetry of photoluminescence spectra rela-
tive to clockwise or anti clockwise reading of 
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atom positions in the hydrazide fragment takes 
place for the tautomeric forms of all the dyes 
based on the 4-valence stannum complexes both 
in solution and for nanoparticle ensemble. Here-
with the Illumination intensity increases if the 
substituent in the hydrazide fragment moves clos-
er to the coordination set for all the tautomeric 
forms both in dye solution and in its nanoparticle 
ensemble. Probably this effect was connected 
with appearance of additional electron-rotational 
states, which would suit for radiative transition. 
It’s a consequence of the degeneration due to 
abovementioned symmetry. At the same time, it 
was shown that the change of illumination energy 
of tautomeric forms depends on both type and na-
ture of substituent and on coordination set.

Radiative energy at nicotinoyl substitution is 
minimal for the tautomeric form with substitu-
ent, which is most distant from coordination set. 
However, at benzoyl substitution radiative energy 
will be maximal for such tautomeric forms.
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BLES OF DYES BASED ON THE 4-VALENCE STANNUM COMPLEXES IN  POROUS 
SILICA GLASS

Summary
Luminescence of tautomeric forms of dyes based on the 4-valence stannum complexes was re-

searched. Symmetry of photoluminescence spectra of different tautomeric forms relative to direction 
of reading of atom positions in the hydrazide fragment was found clockwise or anti clockwise. It 
was determined that the illumination of nanoparticle ensembles of dyes in A-type porous silica glass 
is always more intensive than in appropriate solution. It was shown that the luminescence intensity 
of tautomeric forms increases, if the substituent comes nearer to the coordination set irrespective of 
type and nature of substituent and type of coordination set. At the same time, change of illumination 
energy of tautomeric forms depends on both type and nature of substituent and coordination set. The 
results were explained by the development of inner surface of matrix and also by the features of atom 
disposition in dye molecule and by interaction between them.

Key words: photoluminescence, porous glass, dyes on base of stannum complexes, 
tautomeric forms, nanoparticle ensembles
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ФОТОЛЮМІНЕСЦЕНЦІЯ ТАУТОМІРНИХ ФОРМ АНСАМБЛІВ НАНОЧАСТИНОК 
БАРВНИКІВ НА БАЗІ КОМПЛЕКСІВ 4-ВАЛЕНТНОГО СТАНУМУ В СЕРЕДИНІ 
ШПАРИСТИХ СИЛІКАТНИХ СТЕКОЛ

Резюме
Досліджено люмінесценцію таутомірних форм барвників на базі комплексів чотиривалентного 

стануму. Виявлено сіметрію спектрів фотолюмінесценції різних таутомірних форм відносно 
напрямку відліку позицій атомів у гідразидному фраґменті за стрілкою годинника або проти 
неї. Виявлено, що світіння ансамблю наночастинок барвника у шпаристому силікатному 
склі типу А є завжди більш інтенсивним, ніж у відповідному розчині. Продемонстровано, 
що інтенсивність люмінесценції таутомірних форм зростає, якщо замісник наближається до 
координаційного вузла, незалежно від типу і природи замісника и типу координаційного вузла. 
Натомість, змінення енерґії випромінювання таутомірніх форм залежить як від типу замісника, 
тік і від його природи і координаційного вузла. Результати пояснено розгорнутістю внутрішньої 
поверхні матриці, а також особливостями розміщення атомів всередині молекули барвника та 
взаємодії між ними.

Ключові слова: фотолюмінесценція, шпаристі стекла, барвники на базі комплексів стануму, 
таутомірні форми, ансамблі наночастинок 
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ФОТОЛЮМИНЕСЦЕНЦИЯ ТАУТОМЕРНЫХ ФОРМ АНСАМБЛЕЙ НАНОЧАСТИЦ 
КРАСИТЕЛЕЙ НА ОСНОВЕ КОМПЛЕКСОВ 4-ВАЛЕНТНОГО ОЛОВА В  
ПОРИСТЫХ СИЛИКАТНЫХ СТЁКЛАХ

Резюме
Исследована люминесценция таутомерных форм красителей на основе комплексов 

четырёхвалентного олова. Обнаружена симметрия спектров фотолюминесценции разных 
таутомерных форм относительно направления отсчёта позиций атомов в гидразидном 
фрагменте по, либо против часовой стрелки. Установлено, что свечение ансамбля наночастиц 
красителя в пористом силикатном стекле типа A всегда интенсивнее, чем в соответствующем 
растворе. Показано, что интенсивность люминесценции таутомерных форм возрастает при 
приближении заместителя к координационному узлу, независимо от типа и природы заместителя 
и типа координационного узла. Вместе с тем, изменение энергии излучения таутомерных 
форм зависит как от типа заместителя, так и от его природы, и от координационного узла. 
Результаты объяснены развитостью внутренней поверхности матрицы, а также особенностями 
расположения атомов в молекуле красителя и взаимодействия между ними.

Ключевые слова: фотолюминесценция, пористое стекло, красители на основе комплексов 
олова, таутомерные формы, ансамбли наночастиц
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NEW NONLINEAR ANALYSIS, CHAOS THEORY AND INFORMATION TECHNOLOGY 
APPROACH TO STUDYING DYNAMICS OF THE THE ERBIUM ONE-RING FIBRE LASER

Within new non-linear analysis, chaos theory and information technology approach it is nu-merically 
investigated chaos dynamics generation in the erbium one-ring fibre laser (EDFL, 20.9mV strength,  
λ= 1550.190nm) with the control parameters: the modulation frequency f and dc bias voltage of the electro-
optical modulator. It is shown that in depending upon  f, V values there are realized 1-period f = 75MHz, 
V = 10V and f = 60MHz, V = 4V), 2-period (f = 68 MHz, V = 10V or f = 60MHz, V = 6V), chaotic  
(f = 64MHz, V = 10 V and f = 60MHz, V = 10V) regimes; there are calculated LE, correlation, embedding, 
Kaplan-York dimensions, Kolmogorov entropy and theoretically shown that chaos in the erbium fiber laser 
device is generated via intermittency by increasing the DC bias voltage and period-doubling bifurcation by 
reducing the modulation fre-quency.

1 Introduction

It is very known that a chaos is alternative of 
randomness and occurs in very simple determin-
istic systems. Although chaos theory places fun-
damental limitations for long-rage prediction (see 
e.g. [1-9] ), it can be used for short-range predic-
tion since ex facte random data can contain sim-
ple deterministic relationships with only a few 
degrees of freedom. Chaos theory establishes that 
apparently complex irregular behaviour could 
be the outcome of a simple deterministic system 
with a few dominant nonlinear interdependent 
variables. The past decade has witnessed a large 
number of studies employing the ideas gained 
from the science of chaos to characterize, model, 
and predict the dynamics of various systems phe-
nomena (see e.g. [1-13]). The outcomes of such 
studies are very encouraging, as they not only re-
vealed that the dynamics of the apparently irregu-
lar phenomena could be understood from a cha-
otic deterministic point of view but also reported 
very good predictions using such an approach for 
different systems. 

In a modern quantum electronics and laser 
physics etc there are many systems and devices 
(such as multi-element semiconductors and gas 
lasers etc), dynamics of which can exhibit  chaot-
ic behaviour. These systems can be considered in 
the first approximation as a grid of autogenerators 
(quantum generators), coupled by different way 
[2,14,15]. In this paper we present an application 
of a new and advanced known non-linear anal-
ysis, chaos theory and information technology 
methods [1-20] to studying non-linear dynamics 
of the erbium one-ring fibre laser (EDFL, 20.9mV 
strength, l= 1550.190nm) with the control param-
eters: the modulation frequency f and dc bias volt-
age of the electro-optical modulator. Technique of 
non-linear analysis includes a whole sets of new 
algorithms and advanced known methods such 
as the wavelet analysis, multi-fractal formalism, 
mutual information approach, correlation inte-
gral analysis, false nearest neighbour algorithm, 
Lyapunov exponent’s (LE) analysis, and surro-
gate data method, neural networks prediction ap-
proach etc (see details in Refs. [1-34]).
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2. Methods of studying dynamics of the 
laser systems

As used non-linear analysis, chaos theory 
and information technology methods to study-
ing non-linear dynamics of the laser systems 
have been earlier in details presented [1-20] here 
we are limited only by the key ideas. As usu-
ally, we formally consider scalar measurements 
s(n) = s(t0 + nDt) = s(n), where t0 is the start time, 
Dt is the time step, and is n the number of the 
measurements. Packard et al. [18] introduced the 
method of using time-delay coordinates to recon-
struct the phase space of an observed dynamical 
system. The direct use of the lagged variables 
s(n + t), where t is some integer to be determined, 
results in a coordinate system in which the struc-
ture of orbits in phase space can be captured. First 
approach to compute t is based on the linear auto-
correlation function. The second method is an ap-
proach with a nonlinear concept of independence, 
e.g. the average mutual information. Briefly, the 
concept of mutual information can be described 
as follows [5,7,13]. One could remind that the 
autocorrelation function and average mutual in-
formation can be  considered as analogues of the 
linear redundancy and general redundancy, re-
spectively, which was applied in the test for non-
linearity. If a time series under consideration have 
an n-dimensional Gaussian distribution, these sta-
tistics are theoretically equivalent as it is shown 
in Ref. [22]. 

The goal of the embedding dimension determi-
nation is to reconstruct a Euclidean space Rd large 
enough so that the set of points dA can be unfolded 
without ambiguity. There are several standard ap-
proaches to reconstruct the attractor dimension 
(see, e.g., [1,7,23]), but let us consider in this 
study two methods only. The correlation integral 
analysis is one of the widely used techniques to 
investigate the signatures of chaos in a time se-
ries. The analysis uses the correlation integral, 
C(r), to distinguish between chaotic and stochas-
tic systems. To compute the correlation integral, 
the algorithm of Grassberger and Procaccia [23] 
is the most commonly used approach. According 
to this algorithm, the correlation integral is 
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where H is the Heaviside step function with 
H(u) = 1 for u > 0 and H(u) = 0 for u £ 0, r is the 
radius of sphere centered on yi or yj, and N is the 
number of data measurements. If the time series 
is characterized by an attractor, then the integral 
C(r) is related to the radius r given by
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where d is correlation exponent that can be de-
termined as the slop of line in the coordinates 
log C(r) versus log r by a least-squares fit of a 
straight line over a certain range of r, called the 
scaling region. 

There are certain important limitations in the 
use of the correlation integral analysis in the 
search for chaos. To verify the results obtained 
by the correlation integral analysis, we use sur-
rogate data method. The method of surrogate data 
[1,7,19] is an approach that makes use of the sub-
stitute data generated in accordance to the proba-
bilistic structure underlying the original data. 
Advanced version is presented in [7-9].

The next step is computing the Lyapunov’s ex-
ponents (LE). The LE are the dynamical invari-
ants of the nonlinear system. A negative exponent 
indicates a local average rate of contraction while 
a positive value indicates a local average rate of 
expansion. In the chaos theory, the spectrum of LE 
is considered a measure of the effect of perturbing 
the initial conditions of a dynamical system. Note 
that both positive and negative LE can coexist in 
a dissipative system, which is then chaotic. Since 
the LE are defined as asymptotic average rates, 
they are independent of the initial conditions, and 
therefore they do comprise an invariant measure 
of attractor. In fact, if one manages to derive the 
whole spectrum of the LE, other invariants of 
the system, i.e. Kolmogorov entropy and attrac-
tor’s dimension can be found. The Kolmogorov 
entropy, K, measures the average rate at which 
information about the state is lost with time. An 
estimate of this measure is the sum of the posi-
tive LE. The inverse of the Kolmogorov entropy 
is equal to an average predictability. 
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Estimate of dimension of the attractor is pro-
vided by the Kaplan and Yorke conjecture. There 
are a few approaches to computing the LE. 

One of them computes the whole spectrum and 
is based on the Jacobi matrix of system [27]. In 
the case where only observations are given and 
the system function is unknown, the matrix has 
to be estimated from the data. In this case, all the 
suggested methods approximate the matrix by fit-
ting a local map to a sufficient number of nearby 
points. 

In our work we use the method with the lin-
ear fitted map proposed by Sano and Sawada [27] 
added by the neural networks algorithm [7-10].   
To calculate the spectrum of the LE from the am-
plitude level data, one could determine the time 
delay t and embed the data in the four-dimension-
al space. 

3. Chaotic elements in dynamics of 
the erbium one-ring fibre laser: Some 
illustrations and conclussions

Here we present results of the quantitative 
studying a chaotic dynamics in the erbium one-
ring fibre laser with the control parameters: the 
modulation frequency f and dc bias voltage of the 
electro-optical modulator. Feng and et al. [35] 
have observed experimentally generate chaos in 
dynamics in the erbium one-ring fibre laser (la-
ser parameters: the initial strength of 20.9 mV, 
1550.190 nm wavelength) with added electro-
optical modulator  made from crystal LiNbO3. 

In the first series of measurements (Exp.1) the 
constant bias voltage was maintained at 10V, the 
frequency modulation control parameter f was f = 
64-75MHz. In figure 1 there are listed the meas-
ured time-series of the output voltage Vout depend-
ence on the frequency modulation by Feng and et 
al. [35]   : Up fig. -  f = 75 MHz ( 1-period state), 
Middle fig.- f = 68MHz (2-period state), Down 
fig.-  f = 64MHz (chaos). 

In a second series of measurements (Exp 2.) 
by Feng and et al. [35]   the frequency modulation 
was kept at the value of 60 MHz, and the constant 
bias voltage V was varied from 4V till 10V. 

  

Figure 1. The temporal dependence of   Vout 
upon f : Up fig. -  f = 75 MHz ( 1-period state), 
Middle fig.-  f = 68MHz (2-period state), Down 
fig.-  f = 64MHz (chaos).

The theoretical examination shows that de-
pending on the values   of f, V the laser device is 
in the one-period (f = 75 MHz, V = 10V or f = 
60MHzs, V = 4V), two-period  (f= 68MHz, V = 
10V or f = 60MHz, V = 6V), chaotic (f = 64MHz, 
V = 10V or f = 60MHz, V=10V) states. 

Further we  have calculated the LE values, cor-
relation dimension, the Kaplan- York dimension, 
the Kolmogorov entropy and other quantities for 
two measured temporal series on the above de-
scrinbed methods and algorithms. In table 1 we 
present the computed values of the Lyapunov’s 
exponents LE l1-l4 in the descending order and 
the Kaplan- York dimension, the Kolmogorov en-
tropy for two series of measurements. 
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Table 1. 
Numerical parameters of the chaotic regime 

in the the erbium one-ring fibre laser with the 
control parameters: the modulation frequen-
cy f and dc bias voltage of the electro-optical 
modulator: £1££4 are the Lyapunov exponents 
in descending order, dL the Kaplan- York di-
mension; K – Kolmogorov entropy (our data)

Series l1 l2 l3
Exp I 0.168 0.0212 -0.223
Exp II 0.172 0.0215 -0.220
Series l4 dL Kentr
Exp I -0.323 2.85 0.19
Exp II -0.318 2.88 0.19

In whole application of the non-linear analy-
sis, chaos theory and information technology 
methods [7-18] to studying non-linear dynamics 
of the erbium one-ring fibre laser (EDFL, 20.9mV 
strength, l= 1550.190nm) with the control param-
eters: the modulation frequency f and dc bias volt-
age of the electro-optical modulator shows that 
there is a chaos in the erbium fiber laser device,  
generated via intermittency by increasing the DC 
bias voltage and the period-doubling bifurcation 
scenario by reducing the frequency modulation.
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NEW NONLINEAR ANALYSIS, CHAOS THEORY AND INFORMATION TECHNOLOGY 
APPROACH TO STUDYING DYNAMICS OF THE QUANTUM GENERATOR AND 
LASER SYSTEMS

Abstract  
 Within new non-linear analysis, chaos theory and information technology approach it is numerical-

ly investigated chaos dynamics generation in the erbium one-ring fibre laser (EDFL, 20.9mV strength, 
l= 1550.190nm) with the control parameters: the modulation frequency f and dc bias voltage of the 
electro-optical modulator. It is shown that in depending upon  f, V values there are realized 1-period f 
= 75MHz, V = 10V and f = 60MHz, V = 4V), 2-period (f = 68 MHz, V = 10V or f = 60MHz, V = 6V), 
chaotic (f = 64MHz, V = 10 V and f = 60MHz, V = 10V) regimes. There are calculated the Lyapunov’s 
exponents,  correlation, embedding, Kaplan-York dimensions, Kolmogorov entropy. Theoretically it 
is shown that a chaos in the erbium fiber laser device is generated via intermittency by increasing the 
DC bias voltage and period-doubling bifurcation by reducing the modulation frequency.

Keywords: laser system,  dynamics, chaos, nonlinear analysis
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НОВЫЙ ПОДХОД НА ОСНОВЕ НЕЛИНЕЙНОГО АНАЛИЗА, ТЕОРИИ ХАОСА И 
ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ К ИЗУЧЕНИЮ ДИНАМИКИ КВАНТОВЫХ 
ГЕНЕРАТОРОВ И ЛАЗЕРНЫХ СИСТЕМ

Резюме. 
На основе нового похода, включающего методы нелинейного анализа, теории хаоса и ин-

формационных технологий численно исследована динамика генерации хаоса в эрбиевом одно-
кольцевом волоконном лазере (EDFL, 20.9mV, l=  1550.190nm) с управляющими параметрами: 
частотой модуляции f и постоянным  напряжением смещения электрооптического модулятора. 
Показано, что в зависимости от f, V в системе реализуются одно-периодный  ( f = 75MHz, V 
= 10V and f = 60MHz, V = 4V), 2-периодный  (f = 68 MHz, V = 10V or f = 60MHz, V = 6V), и 
хаотический  (f = 64MHz, V = 10 V and f = 60MHz, V = 10V) режимы.  Теоретически определе-
ны показатели Ляпунова, размерности вложения, Каплана-Йорка, энтропия Колмогорова и др. 
Теоретически показано, что  хаос в эрбиевом волоконном лазере генерируется посредством 
перемежаемости при увеличения напряжения смещения постоянного тока и через бифуркации 
удвоения периода при уменьшения частоты модуляции.

Ключевые слова: лазерная система, динамика, хаос, нелинейный анализ

УДК 541.13

Г. П. Препелиця

НОВИЙ ПІДХІД НА ОСНОВІ НЕЛІНІЙНОГО АНАЛІЗУ, ТЕОРІЇ ХАОСУ ТА 
ІНФОРМАЦІЙНИХ ТЕХНОЛОГІЙ ДО ВИВЧЕННЯ ДИНАМІКИ КВАНТОВИХ 
ГЕНЕРАТОРІВ І ЛАЗЕРНИХ СИСТЕМ

Резюме.  
На основі нового походу, що включає методи нелінійного аналізу, теорії хаосу та інформа-

ційних технологій, чисельно досліджена динаміка генерації хаосу в ербієвому одно-кільцевому 
волоконному лазері (EDFL, 20.9mV, l = 1550.190nm) з керуючими параметрами: частотою мо-
дуляції f і постійною напругою зміщення електрооптичного модулятора. Показано, що залежно 
від f, V в системі реалізуються одно-періодний ( f = 75MHz, V = 10V and f = 60MHz, V = 4V), 
2-періодний  (f = 68 MHz, V = 10V or f = 60MHz, V = 6V) і хаотичний  (f = 64MHz, V = 10 V 
and f = 60MHz, V = 10V). Теоретично визначені показники Ляпунова, кореляційна розмірність, 
розмірності вкладення, Каплана-Йорка, ентропія Колмогорова та ін. Теоретично показано, що 
хаос в ербієвому волоконному лазері генерується за допомогою переміжаємості при збільшенні 
напруги зсуву постійного струму і скрізь біфуркації подвоєння періоду при зменшення частоти 
модуляції..  

Ключові слова: лазерна система, динаміка, хаос, нелінійний аналіз
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RELATIVISTIC THEORY OF SPECTRA OF PIONIC ATOMS: RADIATION TRANSITION 
PROBABILITIES

A new theoretical approach to the description of spectral parameters pionic atoms in the excited states with 
precise accounting relativistic, radiation and nuclear effects is applied to the study of radiation parameters of 
transitions between hyperfine structure components. As an example of the present approach presents new data 
on the probabilities of radiation transitions between components of the hyperfine structure transitions 5g-4f, 
5f-4d in the spectrum of pionic  nitrogen are presented and it is performed comparison with the corresponding 
theoretical data by Trassinelli-Indelicato

1. Introduction

Our work is devoted to the further application 
of earlier developed new theoretical approach [1-
3] to the description of spectra and different spec-
tral parameters, in particular, radiative transitions 
probabilities for pionic atoms in the excited states 
with precise accouting relativistic, radiation. Here 
problem to be solved is estimate of the hyperfine 
structure components transitions probabilities. As 
it was indicated earlier [1-3] nowadays  investi-
gation of the pionic and at whole the exotic had-
ronic atomic systems represents a  great interest 
as from the viewpoint of the  further development 
of atomic and nuclear spectral theories as creat-
ing new tools for sensing the nuclear structure 
and fundamental pion-nucleus strong interactions 
[1-15]. It is, above all, the strong pion-nucleon in-
teraction, new information about the properties of 
nuclei and hadrons themselves and their interac-
tions with the nucleus of the measured energy X-
rays emitted during the transition pion spectrum 
of the atom. That is, optics and spectroscopy of 
pion atoms already in the electromagnetic sector 
is extremely valuable area of   research that pro-
vide unique data for different areas of physics. 
It should be emphasized that the theory of pion 

spectra of atoms are highly excited, even in the 
electromagnetic sector (ie short-range strong pi-
on-N interaction  

neglects little) is extremely complex and at 
present, despite the known progress remains very 
poorly developed. It is about the fundamental 
theoretical problems describing relativistic atoms 
considering nuclear, radiation effects, and a com-
pletely insufficient spectral data for pion atoms. 
While determining the properties of pion atoms in 
theory is very simple as a series of H such mod-
els and more sophisticated methods such combi-
nation chiral perturbation theory (TC), adequate 
quantitative description of the spectral properties 
of atoms in the electromagnetic pion sector (not 
to mention even the strong interaction sector ) 
requires the development of High-precision ap-
proaches, which allow you to accurately describe 
the role of relativistic, nuclear, radiation QED 
(primarily polarization electron-positron vacuum, 
etc.). pion effects in the spectroscopy of atoms.

The most popular theoretical models are natu-
rally (pion is the Boson with spin 0, mass:  

-p
m =139.57018 МэВ, 

rp-=0.672±0.08 fm
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based on the using the Klein-Gordon-Fock equa-
tion, but there are many important problems con-
nected with accurate accounting for as pion-nu-
clear strong interaction effects as QED radiative 
corrections (firstly, the vacuum polarization effect 
etc.). This topic has been a subject of intensive 
theoretical and experimental interest (see [1-16]). 
The perturbation theory expansion on the physi-
cal; parameter aZ is usually used to take into ac-
count the radiative QED corrections, first of all, 
effect of the polarization of electron-positron 
vacuum etc. This approximation is sufficiently 
correct and comprehensive in a case of the light 
pionic atoms, however it becomes incorrect in a 
case of the heavy atoms with large charge of a 
nucleus Z.

The  more correct accounting of the QED, fi-
nite nuclear size and electron-screening effects 
for pionic atoms is also very serious and actual 
problem to be solved more consistently in com-
parison with available theoretical models and 
schemes.  At last, a development of the compre-
hensive theory of hyperfine structure and comput-
ing radiative transitions probabilities between its 
components is of a great interest and importance 
in a modern theory of the pionic atom spectra.

 
2. Theory

The basic topics  of our theoretical approach 
have been earlier presented [1-3], so here we are 
limited only by the key elements.  Naturally, the 
relativistic dynamic of a spinless boson (pion) 
particle is  described by the Klein-Gordon-Fock 
(KGF) equation. As usually, an electromagnetic 
interaction between a negatively charged pion and 
the atomic nucleus can be taken into account in-
troducing the nuclear potential Aν in the KG equa-
tion via the minimal coupling pν→ pν− qAν. The 
relativistic wave functions of the zeroth approxi-
mation for pionic atoms are determined from the 
KGF equation [1]: 

  (1)

where h is the Planck constant, c the velocity of 
the light and the scalar wavefunction Ψ0(x) de-
pends on the space-time coordinate x = (ct,r). 

Here it is considered a case of a central Cou-
lomb potential (V0(r),0). Then the standard   sta-
tionary equation looks as:

          (2)

where E is the total energy of the system (sum of the 
mass energy mc2 and binding energy e0). In prin-
ciple, the central potential V0 should include the 
central Coulomb potential, the radiative (in partic-
ular, vacuum-polarization) potential as well as the 
electron-screening  potential in the atomic-optical 
(electromagnetic) sector. Surely, the full solution 
of the pionic atom energy especially for the low-
excited state requires an inclusion the pion-nucle-
ar strong interaction potential. However, the main 
problem considered here is computing the radia-
tive transitions probabilities between components 
of the hyperfine structure for sufficiently high 
states, when the strong pion-nuclear interaction is 
not important from the  quantitative viewpoint.   
However, if a pion is on the high orbit of the atom, 
the strong interaction effects can not be accounted 
because of the negligible value.

The next step is accounting the  nuclear fi-
nite size effect or the Breit-Rosenthal-Crawford-
Schawlow one. In order to do it we  use the wide-
spread Gaussian model for nuclear charge distri-
bution. The advantages of this model in compari-
son with usually used models such as for example 
an uniformly charged sphere model and others 
had been analysed in Ref. [1-]. Usually the Gauss 
model is determined as follows: 

         ( ) ( ) ( ),exp4 223 rRr gpgρ -=           (3)

where 24 Rp=g , R is an effective radius of a 
nucleus.

In order to take into account very important 
radiation QED ceffects we use the radiative po-
tential from the Flambaum-Ginges theory [15]. In 
includes the standard Ueling-Serber potential and 
electric and magnetic form-factors plus potentials 
for accounting of the high order QED corrections 
such as:
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a nucleus Z. 
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components is of a great interest and 
importance in a modern theory of the pionic 
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where E is the total energy of the system 
(sum of the mass energy mc2 and binding 
energy 0). In principle, the central potential 
V0 should include the central Coulomb 
potential, the radiative (in particular, 
vacuum-polarization) potential as well as the 
electron-screening  potential in the atomic-
optical (electromagnetic) sector. Surely, the 
full solution of the pionic atom energy 
especially for the low-excited state requires 
an inclusion the pion-nuclear strong 
interaction potential. However, the main 
problem considered here is computing the 
radiative transitions probabilities between 
components of the hyperfine structure for 
sufficiently high states, when the strong pion-
nuclear interaction is not important from the  
quantitative viewpoint.   However, if a pion is on the high orbit of the atom, the strong interaction effects can not be accounted because of the negligible value. 
The next step is accounting the  nuclear finite 
size effect or the Breit-Rosenthal-Crawford-
Schawlow one. In order to do it we  use the 
widespread Gaussian model for nuclear 
charge distribution. The advantages of this 
model in comparison with usually used 
models such as for example an uniformly 
charged sphere model and others had been 
analysed in Ref. [1-]. Usually the Gauss 
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where E is the total energy of the system 
(sum of the mass energy mc2 and binding 
energy 0). In principle, the central potential 
V0 should include the central Coulomb 
potential, the radiative (in particular, 
vacuum-polarization) potential as well as the 
electron-screening  potential in the atomic-
optical (electromagnetic) sector. Surely, the 
full solution of the pionic atom energy 
especially for the low-excited state requires 
an inclusion the pion-nuclear strong 
interaction potential. However, the main 
problem considered here is computing the 
radiative transitions probabilities between 
components of the hyperfine structure for 
sufficiently high states, when the strong pion-
nuclear interaction is not important from the  
quantitative viewpoint.   However, if a pion is on the high orbit of the atom, the strong interaction effects can not be accounted because of the negligible value. 
The next step is accounting the  nuclear finite 
size effect or the Breit-Rosenthal-Crawford-
Schawlow one. In order to do it we  use the 
widespread Gaussian model for nuclear 
charge distribution. The advantages of this 
model in comparison with usually used 
models such as for example an uniformly 
charged sphere model and others had been 
analysed in Ref. [1-]. Usually the Gauss 
model is determined as follows:  
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where 24 R , R is an effective radius 
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Here е – a proton charge and universal 
function B(Z) is defined by expression:  
B(Z)=0.074+0.35Za. 

At last to take into account the electron screen-
ing effect we use the  standard procedure, based on  
addition of the total interaction potential SCF po-
tential of the electrons, which can be determined 
within the Dirac-Fock method by solution of the 
standard relativistic Dirac equations. It should be 
noted however, that contribution of theses correc-
tions is practically zeroth for the pionic nitrogen, 
however it can be very important in transition to 
many-electron as a rule heave pionic atoms. 

As we are planning to consider the radiative 
transitions in heavy pionic atoms in future, this 
block is remained in our approach.

Further in order to calculate probabilities of 
the radiative transitions between energy level of 
the pionic atoms we have used the well known 
relativistic energy Ivanova-Ivanov approach 
(look [17-19] and Refs. in [16], which is used for 
computing probabilities. 

 The expression for the energy of the hyperfine 
splitting (magnetic part of) the energy levels of 
the atom in the pion: 

                            
                                                                     (6) 

Here μN= cme p2/ ; other notations are stan-
dard.  In a consistent precise theory it is important 
allowance for the contribution to the energy of the 
hyperfine splitting of the levels in the spectrum of 
the pion atom due to the interaction of the orbital 
momentum of the pion with the quadrupole mo-
ment of the atomic nucleus. The corresponding 
part can be presented as follows [3]:

                                               
                                                                     (7)

where            
                                                
            C=F(F+1)-L(L+1)-I(I+1),        (8)

                                                                    (9)

                                                           (10) 

Here L – is orbital moment of pion, F is a total 
moment of an atom. 

3. Results and conclusions

As example of application of the presented ap-
proach, in table 1 we present the data on radia-
tive transition probabilities  (in s-1) for hyperfine 
transitions 5g-4f in the spectrum of the pion ni-
trogen): Th1- data by Trassinelli-Indelicato; Th2-  
our data. In theory by Trassinelli-Indelicato (look, 
for example, [4]) 

it has been used the standard atomic spectros-
copy amplitude scheme when the transitions ener-
gies and probabilities are calculated in the known 
degree separately. At the same time this comput-
ing within the relativistic energy approach is per-
formed more correctly and self-consistently (look 
details in [16] and multiple references therein). 

Table 1. 
Radiative transition probabilities  (in s-1) 

for hyperfine transitions 5g-4f in the spectrum 
of the pion nitrogen: Th1- data by Trassinelli-
Indelicato; Th2-  our data

F-F’ Т.I : Р (5g-4f) Т.II : Р (5g-4f) 
5-4 7.13× 1013 7.04× 1013

4-3 5.47× 1013 5.41× 1013

4-4 5.27× 1013 5.23× 1013

3-2 4.17× 1013 4.12× 1013

3-3 0.36× 1013 0.34× 1013

3-4 0.01× 1013 0.009× 1013

Ginges theory [15]. In includes the standard 
Ueling-Serber potential and electric and 
magnetic form-factors plus potentials for 
accounting of the high order QED 
corrections such as: 
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Here е – a proton charge and universal 
function B(Z) is defined by expression:  
B(Z)=0.074+0.35Z.  
 At last to take into account the 
electron screening effect we use the  standard 
procedure, based on  addition of the total 
interaction potential SCF potential of the 
electrons, which can be determined within 
the Dirac-Fock method by solution of the 
standard relativistic Dirac equations. It 
should be noted however, that contribution of 
theses corrections is practically zeroth for the 
pionic nitrogen, however it can be very 
important in transition to many-electron as a 
rule heave pionic atoms.  

As we are planning to consider the 
radiative transitions in heavy pionic atoms in 
future, this block is remained in our 
approach. 

Further in order to calculate 
probabilities of the radiative transitions 
between energy level of the pionic atoms we 
have used the well known relativistic energy 
Ivanova-Ivanov approach (look [17-19] and 
Refs. in [16], which is used for computing 
probabilities.  
          The expression for the energy of the 
hyperfine splitting (magnetic part of) the 
energy levels of the atom in the pion:  
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Here N= cme p2/  ; other notations are 
standard.  In a consistent precise theory it is 
important allowance for the contribution to 
the energy of the hyperfine splitting of the 
levels in the spectrum of the pion atom due to 
the interaction of the orbital momentum of 
the pion with the quadrupole moment of the 
atomic nucleus. The corresponding part can 
be presented as follows [3]: 
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Here L – is orbital moment of pion, F is a 
total moment of an atom.  
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important allowance for the contribution to 
the energy of the hyperfine splitting of the 
levels in the spectrum of the pion atom due to 
the interaction of the orbital momentum of 
the pion with the quadrupole moment of the 
atomic nucleus. The corresponding part can 
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Here L – is orbital moment of pion, F is a 
total moment of an atom.  
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Here е – a proton charge and universal 
function B(Z) is defined by expression:  
B(Z)=0.074+0.35Z.  
 At last to take into account the 
electron screening effect we use the  standard 
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the Dirac-Fock method by solution of the 
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In  table 2 we present our data for radiative 
transition probabilities  (in s-1) for hyperfine tran-
sitions 5f-4d in the spectrum of the pion nitrogen: 
our data

Table 2. 
Radiative transition probabilities  (in s-1) for 

hyperfine transitions 5f-4d in the spectrum of 
the pion nitrogen: our data

F-F’ Our data 
(5f-4d ) 

4-3 4.57× 1013

3-2 3.16× 1013

3-3 2.98× 1013

2-1 2.13× 1013

2-2 2.25× 1013

2-3 0.01× 1013

In whole, the computed radiative transition 
probabilities values for considered transitions be-
tween hyperfine structure components in the spec-
trum of the pion within theory by Trassinelli-In-
delicato and ours demonstrate physically reason-
able agreement. , however our values are a little  
lower. This fact can be explained by difference 
in the computing schemes and different level of 
accounting for nuclear finite size, QED and other 
effects (look details [1-3,20,21]). In any case the 
data obtained can be considered as sufficiently 
accurate ones and used in the corresponding ap-
plications, indicated in the introduction. There is 
a great interest the detailed studying the radiative 
transitions parameters for the heavy pionic toms 
especially in the Rydberg states. This topic will be 
considered by us in the next publications. 
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RELATIVISTIC THEORY OF SPECTRA OF PIONIC ATOMS WITH ACCOUNT OF 
THE NUCLEAR AND RADIATIVE CORRECTIONS: RADIATIVE TRANSITION 
PROBABILITIES

Abstract.
A new theoretical approach to the description of spectral parameters pionic atoms in the 

excited states with precise accounting relativistic, radiation and nuclear effects is applied to 
the study of radiation parameters of transitions between hyperfine structure components. As an 
example of the present approach presents new data on the probabilities of radiation transitions 
between components of the hyperfine structure transitions 5g-4f, 5f-4d in the spectrum of pionic  
nitrogen are presented and it is performed comparison with the corresponding theoretical data 
by Trassinelli-Indelicato.
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РЕЛЯТИВИСТСКАЯ ТЕОРИЯ СПЕКТРОВ ПИОННЫХ АТОМОВ С УЧЕТОМ 
ЯДЕРНЫХ И РАДИАЦИОННЫХ ПОПРАВОК: ВЕРОЯТНОСТИ РАДИАЦИОННЫХ 
ПЕРЕХОДОВ

Резюме.
Новый теоретический подход к описанию спектральных параметров пионных атомов в 

возбужденном состоянии с учетом релятивистских, радиационных эффектов применен к 
изучению параметров радиационных переходов между компонентами сверхтонкой структуры. 
В качестве примера применения представленного подхода, представлены новые данные 
о вероятности радиационных переходов между компонентами сверхтонкой структуры 
переходов 5g-4f, 5f-4d в спектре пионного азота и проведено сравнение с соответствующими 
теоретическими данными Trassinelli-Indelicato.

Ключевые слова: релятивистская теория, сверхтонкая структура,  пионный атом, 
радиационные переходы
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РЕЛЯТИВІСТСЬКА ТЕОРІЯ СПЕКТРІВ ПІОННИХ АТОМІВ З УРАХУВАННЯМ  
ЯДЕРНИХ ТА РАДІАЦІЙНИХ ПОПРАВОК: ЙМОВІРНОСТІ РАДІАЦІЙНИХ 
ПЕРЕХОДІВ

Резюме.
Новий теоретичний підхід до опису спектральних параметрів піонних атомів у збудженому 

стані з урахуванням релятивістських, радіаційних ефектів на основі рівняння Клейна-Гордона-
Фока  застосовано до вивчення параметрів радіаційних переходів між компонентами надтонкої 
структури.  Як приклад застосування представленого підходу, представлені нові дані про 
ймовірностей радіаційних переходів між  компонентами  надтонкої структури переходів 5g-4f, 
5f-4d в спектрі піоного азоту і проведено порівняння  з відповідними теоретичними даними  
Trassinelli-Indelicato.
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RAMAN SCATTERING IN NANOSCALE TIN DIOXIDE

The Raman scattering spectra peculiarities are analyzed for nanosized samples of tin dioxide using   the 
authors' own research and the available literature. The presented results show the series of differences in RS 
spectra in the nanoobjects in comparison with  the bulk material. The principle peculiarities comprise: the 
broadening of peaks, the spectra 'washing-out' (the notable dispersion presence), the peaks shifting to the short 
waves part from the basic positions, the new lines appearance which are not specific for the bulk SnO2. The 
principle reason for the deviations is quantum-size effect of the spatial confinement for phonons. The oxygen 
vacancies notably influence the shape and intensity of RS spectra for studied materials. New bands in the low-
frequency part of the spectrum are conditioned by the nanoparticles' normal vibrations. 

INTRODUCTION

Metal oxides are the active components in 
many modern electronic devices [1,2]. There are 
enough comprehensive reviews devoted to the 
properties of tin dioxide [2], and to other trans-
parent conductive oxides [1].

Chemical and electrical properties of tin diox-
ide in the nanocrystalline state strongly depend 
on the particle size [2,3]. The defectiveness of the 
subsurface layers, caused by the decrease of crys-
tallites grains, influences the electronic processes 
in them. This leads both to the appearance of sur-
face vibration modes in the Raman scattering (RS) 
and in the infrared absorption (IR). At the same 
time the temperature of the material’s reduction 
by hydrogen decreases and the intercrystalline 
barriers also influence the charge transport. The 
Raman spectroscopy is one of the most sensitive 
methods for the materials science investigations, 
therefore the nanosized tin dioxide being studied 
by this method gives plenty of information, espe-
cially in the field of its application in electronics. 

The present work comprises the comparison of 
several sources from the available data together 
with the authors’ results on the RS in nanosize tin 
dioxide.

GENERAL STATE IN RAMAN STUDIES 
OF NANOSIZE TIN DIOXIDE

Raman scattering (RS) for bulk SnO2 rutile 
structure crystals was studied in detail by the au-
thors [4]. Tin dioxide has six atoms in the unit 
cell, which resulted in 18 branches of vibration 
modes: 3 acoustic and 15 optical ones. Authors of 
[5] mentioned, that Raman active modes for SnO2 
rutile are: Eg 476 cm-1, A1g 638 cm-1, B2g 782 cm-1, 
and B1g 123 cm-1. The last mode is weakly regis-
tered, as it has low scattering intensity. 

The authors [5] studied SnOx nanoparticles 
produced by gas-phase condensation and by “in-
flight” sintering using Raman spectroscopy. They 
identified different vibration states of the rutile 
crystal phase of bulk SnO2 particles and of sub-
stoichiometric SnOx of different sizes (5, 10, 20 
nm). Raman spectra for different sizes of particles 
are shown in Figure 1 [5].

As soon as the oxygen content in SnO1.5 par-
ticles was significantly lower than in the bulk 
SnO2, it was supposed a higher density of oxy-
gen vacancies in the samples. The weak modes 
A1g and B2g are present only for particles’ spectra 
in comparison with the similar modes in the bulk 
SnO2. The Eg mode, can be registered only in a 
bulk SnO2 sample, the B2g mode is of very weak 
intensity exists at 747 cm-1 for 10 nm and 5 nm 
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thick samples. Furthermore, the two bands of 275 
cm-1 and 515 cm-1 were observed only in nano-
crystalline samples but not in bulk ones. Two pos-
sible interpretations are applicable: the band 275 
cm-1 can be defined as B1g mode and 515 cm-1 as 
A2g mode. Although the both modes are inactive 
in RS for bulk sample and can’t be detected in the 
rutile lattice, the authors [5] believe that the re-
duced lattice symmetry caused by the low oxygen 
stoichiometry make these transitions possible. 
The band 515 cm-1 is most likely connected with 
surface phonon states, similar to those previously 
detected by authors [6].

Fig. 1. Raman spectra for SnO1.5 nanoparticles 
of different diameters [6].

Analyzing the entire Raman spectrum for the 
SnO2 nanoparticles of 3 to 100 nm [7] they showed 
that the state of disorder and size of nanoparticles 
strongly affect the vibration properties of this ma-
terial. The nanoparticles’ sizes decrease is associ-
ated with the classical SnO2 modes shifting and 
broadening. The correspondence between Raman 
bands and nanoparticles’ sizes are well described 
by the spatial correlation model, at least for parti-
cles bigger than 8-10 nm. The decreasing of grain 
size leads to the appearance of two bands in the 
high frequency part of the spectrum. It is suggest-
ed that these bands appear due to the contribution 
of non-stoichiometric surface layer with different 
symmetry that SnO2. The measured thickness of 
this layer is ~ 1.1 nm that is two or three unit cells 
size. The bands corresponding to the vibration of 
spherical as a whole nanoparticles appear in the 
low-frequency part of spectrum.

Raman spectra in the SnO2- nanorods of dif-
ferent diameters obtained by redox reaction at 
different growth conditions were measured at 
room temperature by the authors [8]. The low-
frequency Raman peaks were initially registered 
in the work. It was found that low frequency 
peaks were shifted to the higher frequency region 
with nanorods’ diameter decreasing. The low fre-
quency peaks’ size dependence in SnO2 nanorods 
may be caused by surface modes. Raman peaks 
detected in SnO2 nanorods differ in depending 
on wavelengths of the excitation light (514.5 nm 
and 785 nm), thus, spectral line broadening is ob-
served and the line shape becomes asymmetric. 
Moreover, some IR- active modes turned into the 
Raman-active ones, which is caused by such type 
of order breach as local defects in the crystal lat-
tice and oxygen vacancies in thinner nanorods, 
which ones are formed as nanorods at the reduc-
ing of their diameter to 15 nm or less.

Authors [8], detected 3 categories of peaks: 1st: 
Low-frequency peaks in the interval of 30 – 100 
cm-1 were located at 33.8; (34.9); 45.7; (51.9); 
57.4; and 73.6 cm-1. 2nd: Classic SnO2 modes were 
located at 113.2 (114.6); 472.9 (472.4); 630.4 
(630.1); and 768.5 (770.6) cm-1, corresponding 
to modes B1g, Eg, A1g, and B2g in the bulk SnO2. 
3rd: Abnormal peaks in the range 100-850 cm-1 
were located at the 157.9; (156.3); 247.4; 392.8; 
430.4; 602.1; 711.6 cm-1. Symmetrical and thin 
Raman peak line in the bulk material broadens 
and became asymmetrical for the studied SnO2 
nanorods.

Raman peaks for low frequencies interval may 
be related to the elastic vibrations of nanorods it-
self, i.e., with existing of confined acoustic- pho-
non modes in the nanorodes. In [8] it was shown 
that the wave numbers of the Raman shift for both 
vibration modes are proportional to the sound ve-
locity and inversely proportional to the nanorods’ 
diameter d, i.e., low-frequency peaks are shifted 
to higher frequencies with nanorods diameter re-
duction.

As it is shown in [8] the less strictness of the 
selection rules (k = 0) with increasing disorder or 
size reduction explains the appearance of anoma-
lous peaks in the range 100-850 cm-1 in nanorods 
samples of a smaller diameter. Infrared modes 
may turn into weak, but active Raman ones if 
structural changes are caused by the disorder and 



52

size effects. The peak at 247.4 cm-1 corresponds 
to the IR-active Eu(2)TO, a peak at 430.4 cm-1 - 
IR-active Eu(3)LO, and peaks at 392.8 , 602.1 and 
711.6 cm-1 - silent A2g, IR-active Eu(l)TO A2uLO 
modes, respectively. These modes are low active 
in Raman sense and were observed in other works 
due to structural distortion caused by local dis-
order in the crystal lattice and oxygen vacancies. 
Oxygen vacancies stimulate a non-stoichiometric 
SnOx increase on the surface and may also be re-
sponsible for IR-active modes appearance. In the 
nanorods of SnO2 studied in [8], the atomic ra-
tio of tin to oxygen in the samples with IR-active 
peaks, is 1.44 (compared to 1.86 ratio for bigger 
size samples without IR-active modes) which 
indicates the presence of oxygen vacancies on 
the nanorods surfaces. The peaks of one and the 
same mode are different in different papers; the 
authors [8] explained this by specific microstruc-
tures of SnOx nanorods samples. The peaks 601 
and 300 cm-1 are stimulated by IR-active Eu(l)
TO and Eu(υ2)TO, modes respectively. Nature of 
the peak at 157.9 (156.3) cm-1 stays not evident. 
It may be caused by sircumnuclear modes as the 
Raman spectrum reflects the single-phonon den-
sity of states.

The diameters of the nanorods in samples A 
and B, studied in [8], averaged at 15 ± 3 and 22 ± 
2 nm respectively. The authors registered the Ra-
man line peak’s broadening and its shape asym-
metry. As the samples A and B have different di-
ameters, then the surface area to volume ratio for 
A is more. Moreover, the XPS results showed that 
samples A have more oxygen vacancies on the 
surface of the nanorods than samples B, which 
is mainly responsible for the IR- active modes. 
Thus, samples A have six IR-active modes and the 
samples B none. The Lamb theory application to 
the Raman experiments showed that some surface 
first-order modes can not be detected under these 
experimental conditions. Perhaps that forbidden 
phonon mode for the first order Raman scattering 
can be Raman active in the second-order Raman 
scattering due to the less strictness of the selec-
tion rules k = 0. 

The investigation of RS spectra in tin dioxide 
crystallites with their sizes 4 nm and 25 nm (Fig-
ure 2) is presented in [3]. 

As it can be seen at the figure, the Raman spec-
tra for different crystallites’ size differ sharply. 

This agrees well with the results of previous stud-
ies and is a result of the selection rules violations 
for nanocrystalline objects due to the large num-
ber of surface atoms influence, which contribute 
to the Raman spectra. Nanocrystalline tin dioxide 
RS with a crystallites size of ~25nm containing 
vibration modes Eg, A1g and B2g, were registered 
by [8] in nanorods and  are specific for rutile 
structure SnO2.

 

Fig. 2. Raman spectra of tin dioxide with dif-
ferent crystallites size [4].

It was established, that both in TiO2, and in 
SnO2 films with small nanocrystallites sizes the 
similar quantum size RS effect has place due to 
violations of phonon momentum conservation 
principle [9]. Manifestation of the essential role 
of boundary phonons which contribution increas-
es with nanocrystal size reduction is notable for 
the first-order Raman scattering due to the whole 
Brilloin zone phonons involvement in the scatter-
ing. Both the dispersion dependence of vibration 
modes frequencies and half-width intensities for 
the corresponding peaks in this case leads to a 
decrease in intensity, to the broadening and the 
Raman scattering bands shift. For nanocrystal-
line TiO2 samples depending on the size of nano-
crystallites, the position and the half-width of the 
Raman lines together with their intensity in the 
low- and the high-frequency parts of the spec-
trum seriously varies which is considered by the 
authors [10] as the spatial restriction of phonons’ 
confinement.

However, as the authors [5, 7, 11] show, the Ra-
man scattering is also influenced both by bound-
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ary phonons capture and by deviations from oxy-
gen stoichiometry. When the ratio of O/Ti<2, the 
short-wave shift of the peaks Eg, the significant 
broadening of the lines and their intensity change 
also have place.[9,12]. Moreover, it was found 
that the most noticeable changes in the Raman 
spectrum are observed at small deviations from 
stoichiometry.

The authors [13] also showed a simple link be-
tween particle size and the peculiarities of Raman 
spectra of TiO2 aerogels by analyzing the evolu-
tion of the peaks 142 and 630 cm-1, in dependence 
on the morphology. Since the regularities of the 
phonon dispersion for anatase are not known, the 
authors used a similar dispersion for rutile. At the 
same time it was shown that there is good agree-
ment between particle size estimated using their 
model and detected by the X-ray diffraction. 

METHODS FOR THE FILMS’ 
PREPARATION AND OF RESEARCH 

The films’ preparation methods are based on 
sol-gel technique modified by a polymer (poly-
vinyl acetate) application and is given in [14]. 
Bis(acetylacetonato)dichlorotin (BADCT) was 
used as a tin dioxide precursor [15]. The tin di-
oxide layers were formed after the 500 – 600 C 
annealing of the mixed solution of the polymer 
and precursor in acetone deposited on the glass 
substrate. 

The tin dioxide layer’s surface morphology 
was investigated by the industrial Atom Force 
microscope (AFM) NT-MDT-206. The measure-
ments were fulfilled by a siliceous probe with a 
nominal radius ~10 nm (the production firm NT-
MDT). 

The Raman spectra were excited by He-Ne la-
ser with 632 nm wavelength. Since the samples 
were thin films on glass substrates the authors 
enhanced the response by means of directing the 
laser beam on the film in a sliding mode. The 
monochromator MDR-23 (LOMO) output was 
registered by a PC method. 

RESULTS AND DISCUSSION

The Raman spectra were studied for the films, 
obtained from the solution of 5% precursor and 
0.1% polymer. Nanosized films structure is con-

firmed by the surface morphology studies. The 
AFM image of the sample surface morphology is 
given at Fig. 3. 

Fig. 3. AFM image of the surface morphology 
for tin dioxide investigated film.

The resulting RS spectra for the low-frequency 
region of the nanoscopic tin dioxide layers are not 
fully legible and asymmetrical. The peaks broad-
ening and their asymmetry may, similar to other 
researchers, also be the result of selection rules 
violations for nanocrystalline objects due to the 
considerable number of surface atoms contribu-
tion  to the Raman spectra. The surface morphol-
ogy studies showed the nanoclusters presence 
in the films. This also allows one to connect the 
asymmetry in the Raman spectra with size effects 
and to comment it in the frames of the spatial pho-
nons confinement. Figures 4(a) and 4(b) show the 
Raman scattering results in tin dioxide films ob-
tained using polymers.

In the range of up to 100 cm-1 at least one pho-
non was registered at 25 cm-1 (Stokes region), and 
in the anti-Stokes region - at 34.9 cm-1. The same 
peak was registered in [8] and it is connected with 
the normal vibrations of SnO2 nanorods. Conse-
quently, also in our case, this peak may contribute 
as a vibration of nanoparticle as a whole. Stokes 
peak has a value different from reported in the 
literature, as nanostructures of our samples dif-
fer from the samples of other researchers. The 
clusters in our films, according to the AFM image 
(Fig. 3), have a quasi spherical shape. 

The interval 100-200 cm-1 contains three types 
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Fig. 4 (a and b). Raman spectra in the tin 

dioxide films produced using the polymers: a) 

in the range of 0-100 cm-1; b) in the range of 

100-200 cm-1 in the anti-Stokes and Stokes 

regions. 
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of phonons scattering in the left (a) and in the 
right parts of the spectrum, and at the same time 
have the noticeable absence of symmetry in the 
bands’ positions: 97.78, 115.5, 166.7 cm-1 and in 
corresponding them 102.3, 112.39, 165.2 cm-1.

Anti-Stokes region      Stokes region
b

Fig. 4 (a and b). Raman spectra in the tin di-
oxide films produced using the polymers: a) in 
the range of 0-100 cm-1; b) in the range of 100-
200 cm-1 in the anti-Stokes and Stokes regions.

Two of the pointed bands are registered in [8]. 
The band 115,5 (112,39) cm-1, evidently corre-
sponds to the classical SnO2 B1g, mode and the 
band 166,7 (165,2) cm-1 is close to the circum-
nuclear mode 157,9 cm-1, which is also detected 
in [8]. Such type asymmetry was observed also in 
[8] where authors studied the Raman scattering in 
nanoscopic rods of tin dioxide. In the said work 

the asymmetry of the spectra was influenced by 
the dimensional limitations in two directions. 
Basing on the surface morphology investigations 
at the Fig.3 and in [14], where nanostructured 
clusters were registered in these films, the Ra-
man spectra asymmetry was also connected with 
size effects. As it is shown in [8] for nanorods of 
SnO2, this asymmetry can be explained by pho-
nons confinement.

However, the Raman shift of the peaks and 
their broadening in the investigated films can be 
attributed to another reason. This reason may be 
the stoichiometric deviation of the film composi-
tion, namely, the presence of oxygen vacancies. 
As it was shown in [11] for titanium dioxide films, 
the significant changes of this type spectra were 
observed at small deviations from stoichiometry. 
The majority researchers of nanostructured tin 
dioxide reported about oxygen vacancies as the 
basic defect in the material, defining their optical, 
electrical and adsorption properties.

CONCLUSION
The RS results presented in the work for the 

nanoscale tin dioxide showed the similar type of 
the Raman spectra deviations registered in nano-
sized material and in bulk crystalline tin dioxide 
for all studies. 

The principal deviations in RS spectra were: 
the peaks broadening, not full legibility of the 
spectra (the presence of the noticeable disper-
sion), and their short waves shift from the basic 
positions, and the appearance of the new bands 
which are not specific for the bulk tin dioxide.

One of the main reasons for the said deviations 
is the effect of the spatial phonons confinement. 
At the same time the oxygen vacancies essen-
tially influence the shape and intensity of the RS 
spectra in the investigated material.

The new bands presence in the low frequency 
part is considered to be due to the nanoparticles 
vibrations as a whole.
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PACS: 78.30.-j; 78.67.-n

V. S. Grinevich, L. M. Filevska

RAMAN SCATTERING IN NANOSCALE TIN DIOXIDE

Summary
The Raman scattering spectra peculiarities are analyzed for nanosized samples of tin dioxide 

using   the authors’ own research and the available literature. The presented results show the series 
of differences in RS spectra in the nanoobjects in comparison with  the bulk material. The principle 
peculiarities comprise: the broadening of peaks, the spectra ‘washing-out’ (the notable dispersion 
presence), the peaks shifting to the short waves part from the basic positions, the new lines appearance 
which are not specific for the bulk SnO2. The principle reason for the deviations is quantum-size 
effect of the spatial confinement for phonons. The oxygen vacancies notably influence the shape and 
intensity of RS spectra for studied materials. New bands in the low-frequency part of the spectrum are 
conditioned by the nanoparticles’ normal vibrations. 

Key words: Raman scattering, tin dioxide, nanoscale effect. 

PACS: 78.30.-j; 78.67.-n

В. С. Гріневич, Л. М. Філевська

КОМБІНАЦІЙНЕ РОЗСІЮВАННЯ В НАНОРОЗМІРНОМУ ДІОКСИДІ ОЛОВА

Резюме
На основі власних досліджень авторів і аналізу наявної літератури в роботі розглянуті 

особливості спектрів комбінаційного розсіювання в нанорозмірних зразках двоокису олова. 
Показаний ряд відмінностей спектрів КР нанооб’єктів від таких для об’ємних матеріалів. 
Принципові особливості включають розширення піків, зміщення їх від основних положень, 
розмиття спектрів (присутність помітної дисперсії), появу нових смуг, які нехарактерні для 
об’ємного SnO2. Основна причина відхилень - квантово- розмірний ефект просторового 
обмеження фононів. Суттєвим є вплив вакансій кисню на форму та інтенсивність спектрів 
комбінаційного розсіяння в досліджуваних матеріалах. Нові смуги в низькочастотній частині 
спектру обумовлені власними коливаннями наночастинок.

Ключові слова: комбінаційне розсіювання, діоксид олова, нанорозмірний ефект.
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В. С. Гриневич, Л. Н. Филевская

КОМБИНАЦИОННОЕ РАССЕЯНИЕ В НАНОРАЗМЕРНОМ ДИОКСИДЕ ОЛОВА

Резюме
На основании собственных исследований авторов и анализа имеющейся литературы в работе 

рассмотрены особенности спектров комбинационного рассеяния в наноразмерных образцах 
двуокиси олова. Показан ряд отличий спектров КР в нанообъектах от таковых в объемных 
материалах. Принципиальные особенности  включают в себя уширение пиков, смещение их от 
основных положений, размытие спектров (присутствие заметной дисперсии), появление новых 
полос, которые нехарактерны для объемного SnO2. Основная причина отклонений - квантово-
размерный эффект пространственного ограничения фононов. Существенно влияние вакансий 
кислорода на форму и интенсивность спектров КР в изучаемых материалах. Новые полосы в 
низкочастотной части спектра обусловлены собственными колебаниями наночастиц.

Ключевые слова: комбинационное рассеяние, диоксид олова, наноразмерный эффект.
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RELATIVISTIC AND NONRELATIVISTIC APPROACHES IN THEORY OF  
PERMITTED BETA-RANSITIONS: AN EFFECT OF ATOMIC FIELD ON 
FERMI AND INTEGRAL FERMI FUNCTIONS VALUES

Within a new optimized gauge-invariant Dirac-Fock approach it is considered a problem of  
computing the permitted beta transition probabilities and estimating a quality of computing the Fermi 
and integral Fermi functions in dependence upon the type of the atomic self-consistent field. It is 
shown that for small and middle values for the nuclear charge (Z <40) the difference between  data 
obtained from other methods is low (hundredths of %). At the large Z (till Z~ 95; for example the 
beta decay 241Pu-241Am) calculation in a case of the HFSrel field gives 0.5% lower value for F, and 
respectively in a case of the GIDF field - 0.8%, compared with the non-relativistic HFSnerel value. 
This difference is explained by an effect of  the squeezing for relativistic orbitals.

1. Introduction

In this paper we go on studying a contribu-
tion of different factors which make an influence 
on the permitted beta decay characteristics and 
consider a quality of computing the Fermi func-
tion and integral Fermi function in our consistent 
relativistic approach and alternative theoretical 
methods. Computing the b decay characteristics 
is traditionally of a great interest that is strength-
ened due to the new experimental studies of the 
b decay for a number of nuclei [1-10]. A number 
of experimental and theoretical papers appeared 
where the different aspects of the b decay theory 
and accounting for different factors are consid-
ered. Naturally the important topic is problem 
to get the renewed data about the neutrino mass 
from the beta decay spectra shape. An exact value 
of the half-decay period for the whole number of 
heavy radioactive nuclei is important for stand-
ardisation of data about their properties. 

Disagreement between different experimental 
data regarding the b-decay in heavy radioactive 
nuclei is provided by different chemical environ-
ment radioactive nucleus. For example, such dis-
agreement in data on the half-decay period for the 
241Pu (see, for example, ref. [1,5,8,9]) is explained 
in some papers by special beta decay channel. 
The beta particle in this channel does not tran-
sit into free state, but it occupies the external free 
atomic level. Above important questions of theort 
one could note the following effects too: a). an 
influence of choice of atomic field model on the 
numerical characteristics of the beta decay, espe-
cially, it concerned the permitted beta transitions; 
b). changing electron wave functions as solutions 
of the corresponding quantum mechanical equa-
tions because of the changing atomic electric field 
and a  difference in the valence shells occupation 
numbers in different chemical substances; c). A 
changing up limit of integration under calculating 
the Fermi integral function in different chemical 
substances [1,6]. 
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As a rule, special tables [9] for the Fermi func-
tion and integral Fermi function are  used for 
computing the beta spectrum shape. In ref. [9] 
calculation scheme is based on the non-relativ-
istic Hartree-Fock-Slater approach, but the finite 
size of nucleus is taken into account. In paper 
[4] the relativistic Dirac-Fock (DF) method was 
used. Note that the DF approach is the most wide 
spread method of calculation, but, as a rule, the 
corresponding orbitals basis’s are not optimized. 
Some problems are connected with correct defini-
tion of the nuclear size effects, QED corrections 
etc. We are applying below our gauge invariant 
DF (GIDF) type approach [11-17] for comput-
ing the permitted beta transition probabilities and 
estimating a quality of computing the Fermi and 
integral Fermi functions in dependence upon the 
type of the atomic self-consistent field.

2. Method

The details of our approach have been pre-
sented earlier (see, for example, [10,11,17,18]), 
here we are limited by the key ideas. As it is well 
known a distribution of the b particles on energy 
in the permitted transitions is as follows [9]:                                            
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Here G is the weak interaction constant; Е and 
р=(Е2-1)1/2 are an entire energy and pulse of beta 
particle; Е0=1+(Еbn /mec2) , Еbn is the boundary 
energy of β-spectrum; |M| is a matrix element, 
which is not dependent upon an energy in a case 
of the permitted β- transitions.  The key elements 
of the beta-decay theory for  computing  the b 
decay shape and decay half period are the Fermi 
function and integral Fermi function. The Fermi 
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Here f+1  and   g-1 are the relativistic electron ra-
dial functions; the indexes ±l=c, where  c=(l-j)/
(2j+1). 

Two schemes of calculation are usually used: 
i). the relativistic electron radial wave functions 
are calculated on the boundary of the spherical 
nucleus with radius R0 (it has done in ref. [4]); ii). 
the values of these functions in the zero are used 
(see ref.[9]). 

The normalisation of electron radial functions 
fi  and gi  provides the behaviour of these functions 
for large values of radial valuable as follows: 

       gi (r)→r -1[(E+1)/E]1/2 sin(pr +di),      (3а)
     
   fi (r)→r -1(i/|i|) [(E-1)/E]1/2 cos (pr+di)   (3b)

An effect of interaction in the final state be-
tween beta electron and atomic electrons with 
an accuracy to (aZ/v)2 is manifested and further 
accounted for in the first non-vanishing approxi-
mation [8].  This contribution changes the energy 
distribution of the beta electron on value and is 
derived in Ref. [1]. 

As method of calculation of the relativistic 
atomic fields and electron wave functions, we 
have used the GIDF approach [10,11]. The po-
tential of Dirac equation includes also the elec-
tric and polarization potentials of a nucleus (the 
gaussian form of charge distribution in the nu-
cleus was used). 

All correlation corrections of the PT second 
and high orders (electrons screening, particle-
hole interaction etc.) are accounted for [5]. The 
GIDF equations for N-electron system are written 
and contain the potential: 

V(r)=V(r|nlj)+Vex+V(r|R), 

which includes the electrical and polarization po-
tentials of the nucleus. The part exV accounts for 
exchange inter-electron interaction. The optimi-
zation of the orbital basis’s is realized by iteration 
algorithm within gauge invariant QED procedure 
(look its application in the beta-decay theory 
[5]).  Approach allows calculating the continuum 
wave functions, taking into account fully an ef-
fect of exchange of the continuum electron with 
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radial wave functions are calculated on the 
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radius R0 (it has done in ref. [4]); ii). the 
values of these functions in the zero are 
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with an accuracy to (Z/v)2 is manifested 

and further accounted for in the first non-
vanishing approximation [8].  This 
contribution changes the energy 
distribution of the beta electron on value 
and is derived in Ref. [1].  

As method of calculation of the 
relativistic atomic fields and electron wave 
functions, we have used the GIDF 
approach [10,11]. The potential of Dirac 
equation includes also the electric and 
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nucleus was used).  

All correlation corrections of the 
PT second and high orders (electrons 
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accounted for [5]. The GIDF equations for 
N-electron system are written and contain 
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the relativistic Dirac-Fock (DF) method 
was used. Note that the DF approach is the 
most wide spread method of calculation, 
but, as a rule, the corresponding orbitals 
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are connected with correct definition of the 
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electrons of the atom. Note that this is one of the 
original moments of the paper. Another original 
moment is connected with using the consistent 
QED gauge invariant procedure for optimization 
of the electron functions basis’s. Numerical cal-
culation and analysis shows that used methods 
allow getting the results, which are more precise 
in comparison with analogous data, obtained with 
using non-optimized basis’s. The details of the 
numerical procedure are presented in ref. [11-17]. 

3. Results and conclusions

The results of computing the atomic field ef-
fect of the Fermi function F values (HFSnonrel, 
GIDF) are listed in Table 1.As the test parameter 
it is used the parameter: 

Δ2 ={[ rel
DIDFF  (E, Z)/ nonrel

HFSF (E, Z)]-1}.100%,

де nonrel
HFSF  is calculated in the Hartree-FockSlater 

(HFS) model atomic field (Harston-Pyper,1986), 
rel

DIDFF  – GIDF (our data). It is very inmportant 
to note that difference between data obtained by 
relativistic methods: GIDF and relativistic HFS is 
not significant (fractions of present) for the little 
and middle values of the nuclear charge Z.

Table 1 
An influence of the atomic field model on the 

Fermi function F (E, Z)  values:  Δ2  (%)

Еkin, keV Z=20 Z=63 Z=95

10
50
100
500

-0,08
-0,06
+0,04
+0,13

-0,24
-0,23
-0,18
-0,14

-0,79
-0,77
-0,68
-0,61

Nevertheless, for larger Z (till Z =95) the HF-
Srel calculation gives the value F which is less on 
5% in comparison with the corresponding non-
relativistic HFSnonrel . For our approach this value 
is 0,8%. We suppose that this fact is connected 
with  the effect of relativistic squeeze of the orbit-

als. In this case, the wave function (continuum) 
is to a greater extent screened from the charge of 
the atomic nucleus by a relativistic field of atomic 
electrons than the corresponding non-relativistic 
one.  Further we present the results of comput-
ing function F for choosing different definitions 
of cited  function. In the first case, the calcula-
tion of the F function is carried out  using values 
electron wave functions on the boundary of the 
nucleus, in the second case - through the squares 
of the amplitudes of radial expansion of the wave 
functions f2

+1(0) +g2
-1(0) when r→0. Here the test 

parameter is as follows: 

Δ3  ={[ F (E, Z, R=0)) / 

/F (E, Z, R=R0 ]-1}. 100%,

where F (E, Z, R = R0) – the function Fermi cal-
culated the values of the wave functions on the 
boundary of the nucleus; F (E, Z, R = 0) - the Fer-
mi function values calculated through the squares 
of the amplitudes of radial expansion of the wave 
functions f2

+1(0) +g2
-1(0) when r→0. The corre-

sponding results are presented in  Table 2.

Table 2 
The difference Δ3 ( %) between values of the 

Fermi function F (E, Z) for different definitions 
F (E, Z): HFS – (Band et al, 1986,2006), GIDF – 

our data.

Ekin,
keV

Z=20 Z=63
GIDF

Z=95

HFS  GIDF HFS  GIDF

0,1
1,0
50
500

1,35  1,39
1,37  1,42
 1,38 1, 45
1,50  1,58

12,72
12,84
12,95
13,10

33,9     36,8
34,1     37,2
34,2     37,6

  35,5    39,88

With the growing difference in Z values of the 
F function significantly increase. Similarly, the 
same situation takes a place with changing the in-
tegral Fermi function. In the transition from the 
first f definition to the second definition of the f 
function increases for decays: 
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i). 33P-33S (Ebound=249keV),35S-35Cl (Ebound 
=167keV) на 2-4%, 

ii). 63Ni-63Cu (Ebound =65,8 keV)- на 5%, 
iii). 155Eu-155Gd (Ebound =140,7 keV)-12%, 
iv). 241Pu-241Am (Ebound =20,8 keV)-32%. 
In literature there are different points of view 

on the correctness of a determination of the F 
function . We confirm more consistent and cor-
rected definition of the F function through the 
squares of the amplitudes of radial expansion of 
the wave functions f2

+1(0) +g2
-1(0) when r→0. An 

important issue is concerned with an area  of the 
formation of f(Ebound,Z).

The standard test parameter is as follows:
 

y= ∫
x

0

F(E,Z) Ep (E0 – E)2 dE/ 

/ ∫
0

0

E

F(E,Z) Ep (E0- E)2 dE

Ine Table 3 we present our estimates of the  
forming area for the integral Fermi function f

Table 3 
The  forming area for the integral Fermi 

function f (our estimates): t=x/Ebound 

Ebound 
keV

β-decay y, %
t=0,3 0,5 0,7 0,9

20,8
39,4
65,8
140,7
167,4
249
257

241Pu→241Am 
106Ru→106Rh

63Ni→63Cu
155Eu→155Gd

35S→35Cl
33P→33S

45Ca→45Sc

67
66
65
63
58
53
52

89
88
87
84
81
78
77

99
98
97
96
95
93
91

100
100
100
100
100
100
100

Therefore, we have carried out the  detailed 
quantitative impact assessment of the Fermi func-
tion F (E, Z) for a number permitted by beta-de-
cays in dependence upon the choice of an atomic 
field in a few calculated methods such as HFS, 
HFS with taking into account the relativistic cor-
rections in the Breit-Pauli approximation and our 

relativistic optimized DF one. It is shown that for 
small and middle values for the nuclear charge (Z 
<40) the difference between  data obtained from 
other methods is low (hundredths of %). At the 
large Z (till Z~ 95; for example the beta decay 
241Pu-241Am) calculation in a case of the HFSrel 
field gives 0.5% lower value for F, and respec-
tively in a case of the GIDF field - 0.8%, com-
pared with the non-relativistic HFSnerel value. This 
difference is in our opinion, explained by an ef-
fect of  the squeezing for relativistic orbitals. In 
this case, the wave function (of continuum) is to 
a greater extent screened from the charge of the 
atomic nucleus by relativistic field of atomic elec-
trons than by corresponding not- relativistic field.
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проблема вычисления вероятности разрешенных бета переходов и оценки качества вычисле-
ния функции Ферми и интегральной функции Ферми в зависимости от типа атомной поля. 
Проведена детальная  количественная оценка влияния выбора атомного поля, генерируемого 
в методах Хартри-Фока-Слэтера, Хартри-Фока-Слэтера  с учетом релятивистских поправок в 
приближении Брейта-Паули (ХФСрел) и авторской версии оптимизированного метода Дирака-
Фока (ОДФ) на функцию Ферми F (E, Z) для ряда разрешенных бета распадов. Показано, что 
для малых и средних значений заряда ядра (Z <40) разница данных, полученных на основе всех 
методов является незначительной (сотые доли %). При больших Z (двигаясь к  Z = 95; 241Pu-
241Am) расчет в поле ХФСрел дает на 0,5% меньшую величину для F, а в поле ОДФ на 0.8%, по 
сравнению с нерелятивистским значением ХФСнерел, что связано с эффектом релятивистского 
сжатия орбиталей.

Ключевые слова: вероятность бета распада, функция Ферми, модель атомного поля.
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Ю. В. Дубровська, О. Ю. Хецеліус, Г. В. Ігнатенко,  Д. Є. Сухарев

РЕЛЯТИВІСТСЬКИЙ І НЕРЕЛЯТІВІСТСКИЙ ПІДХОДИ В ТЕОРІЇ ДОЗВОЛЕНИХ 
БЕТА- ПЕРЕХОДІВ: ВПЛИВ ВИДУ АТОМНОГО ПОЛЯ НА ЗНАЧЕННЯ ФУНКЦІЇ 
ФЕРМІ І ІНТЕГРАЛЬНОЇ ФУНКЦІЇ ФЕРМІ

Резюме.
У новій оптимізованої калібрувально-інваріантній теорії Дірака-Фоку розглянута проблема 

обчислення ймовірності дозволених бета переходів, оцінки якості обчислення функції Фермі і 
інтегральної функції  Фермі в залежності від типу атомної поля. Проведена докладна кількісна 
оцінка впливу вибору  атомного поля, генеруємого у методах Хартрі-Фока-Слетеру, Хартрі-
Фока-Слетеру з врахуванням релятивістських поправок у наближенні Брейта-Паулі (ХФСрел) 
і авторської версії оптимізованого методу Дірака-Фоку (ОДФ) на функцію Фермі F(E,Z) для 
ряду дозволених бета розпадів. Показано, що для малих і середніх значень заряду ядра (Z<40) 
різниця даних, отриманих  на основі всіх методів є  незначною (соті долі %). При більших Z ( 
рухуючись до Z =95; 241Pu-241Am)  розрахунок у полі ХФСрел дає на 0,5% меншу величину для 
F, а в полі ОДФ на 0.8%, у порівнянні  з нерелятивістським значенням ХФСнерел, що пов’язано з 
ефектом релятивістського стиснення орбіталей. 

Ключові слова:  імовірність бета розпаду, функція Фермі, модель атомного поля
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HYPERFINE STRUCTURE PARAMETERS OF THE MERCURY Hg ISOTOPES: 
CONSISTENT NUCLEAR-QED THEORY

It is presented the consistent theoretical nuclear-QED approach to estimating parameters of the 
hyperfine structure and electric quadrupole moment of the mercury isotope 201Hg. Analysis of the 
data shows that an account of the interelectron correlation effects is crucial in the calculation of the 
hyperfine structure parameters and therefore the conventional methods such as the method of Dirac-
Fock ( single configuration approximation) as well as their generalized versions  with the limited 
accounting the exchange-correlation effects do not give a sufficiently high accuracy.

1. Introduction

Development of a new effective nuclear 
schemes and technologies for sensing differ-
ent nuclear properties, studying the properties 
of heavy isotopes is of a great importance in the 
modern atomic, nuclear physics and technologies 
[1-3]. Among the most important problems one 
could mention the studying of nuclei, which are 
available in the little quantities (for example, the 
lanthanides isotopes,  radioactive nuclei far of 
the stability boundary), search of the super dense 
nuclei and its sensing, laser governing by param-
eters of the proton and other beams and sensing 
their characteristics etc [1-17]. Such possibilities 
are provided by the modern laser methods and 
technologies (see, for example, [1,2]).  

A high sensibility and resolution ability of la-
ser spectroscopy methods allows investigating 
the characteristics of nuclei available in the lit-
tle quantities, heavy isotopes. As an example (see 
ref. [1-6]) one can mention the CERN technical 
device for studying the short-lived nuclei which 
are obtained on the mass-separator in the line 
with synchrocyclotrone on 600 MeV (ISOLDE 
apparatus [1]). The shocking results have been 
obtained in studying of the odd neutron-deficit 

non-stable isotopes of 182-190Hg. The intensity of 
the ion beams of these isotopes with life time 
1-60 min was 107-109 ions/s. Under excitation 
of fluorescence by dye pulsed laser radiation the 
second harmonics of radiation was tuning to re-
gion of 2537A and the measurement of the hy-
perfine structure for this line of Hg was carried 
out during 1-2 min disposing about 108 of the 
mercury isotope atoms. During transition from 
nucleus 186Hg to nucleus 185Hg it has been discov-
ered the sharp changing of the middle square of 
the nuclear radius which is interpreted as sharp 
changing of the nuclear form (increasing of non-
soherity and electric quadrupole moment) during 
decreasing the neutrons number. In refs. [17-25] 
(see also [4,5]) we have developed new effective 
theoretical atomic method with possibility of ad-
vancing corresponding nuclear technology for 
sensing different parameters, including the hy-
perfine structure ones, for heavy isotopes and ele-
ments available in the little quantities. It is based 
on experimental receiving the isotope beams on 
the CERN ISOLDE type apparatus (see detailed 
description in [1,3,4]) and the précised theoretical 
and laser spectroscopy empirical estimating the 
hyperfine structure parameters, nuclear magnetic 
and electric moments of isotopes. We carried out 
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sensing and estimating the hyperfine structure 
(HFS) parameters, magnetic and electric mo-
ments of a nucleus for 235U, and others. The HFS 
calculation theory is based on developed earlier 
gauge-invariant QED PT formalism with an pre-
cise account for exchange-correlation (inter elec-
tron interaction corrections), nuclear and QED 
effects and nuclear relativistic mean field (RMF) 
theory. New theory has been called as the nucle-
ar-QED PT [26]. Here we present the results of 
advanced studying the hyperfine structure param-
eters and electric quadrupole moment a nucleus 
for the mercury isotopes, namely 201Hg.   

Following, [24,25], let us also remind that the 
accurate measurements  of the hyperfine structure 
parameters for a whole number of heavy isotopes 
(e.g. [1,6,16]) not only provide the possibility for 
testing the quantum electrodynamics (QED) in 
strong fields, but also sensing the hyperfine struc-
ture parameters of spectra for heavy atomic sys-
tems,  electric charge and magnetic moment dis-
tributions inside the nucleus [5-10]. Theoretical 
calculations fulfilled during the last several years 
apart from the basis Fermi-Breit relativistic con-
tributions also include the magnetic dipole mo-
ment distribution inside the nucleus (Bohr-Weis-
skopf effect) and radiative QED corrections (e.g. 
[1-6]). In calculations of the heavy ions the well 
known multi-configuration (MC) Dirac-Fock 
(DF) approach is widely used (e.g.[14-20]). 

2. Theoretical approach to calculating 
hyperfine structure parameters

  Let us describe the key moments of the 
theoretical scheme. Full details of the whole 
method of calculating the hyperfine structure 
constants can be found in [4,5,17-24].  The wave 
electron functions zeroth basis is found from the 
Dirac equation solution with potential, which in-
cludes the core ab initio potential, electric, po-
larization potentials of nucleus. All correlation 
corrections of the second and high orders of PT 
(electrons screening, particle-hole interaction 
etc.) are accounted for [17]. The concrete nuclear 
model is used as described below. A quantitative 
estimate of the nuclear moments demands real-
istic proton single-particle wave functions which 

one could obtain by employing the RMF model 
of a nucleus. Though we have no guaranty that 
these wave-functions yield a close approxima-
tion to nature, the success of the RMF approach 
supports our choice (e.g.[26]). These wave func-
tions do not suffer from known deficiencies of 
other approaches, e.g., the wrong asymptotics 
of wave functions obtained in a harmonic oscil-
lator potential. The RMF model has historically 
been designed as a renormalizable meson-field 
theory for nuclear matter and finite nuclei. The 
realization of nonlinear self-interactions of the 
scalar meson led to a quantitative description of 
nuclear ground states. As a self-consistent mean-
field model (for a comprehensive review see Ref. 
[25]), its ansatz is a Lagrangian or Hamiltonian 
that incorporates the effective, in-medium nucle-
on-nucleon interaction. Recently self-consistent 
models have undergone a reinterpretation which 
explains their quantitative success in view of the 
facts that nucleons are composite objects and that 
the mesons employed in RMF have only a loose 
correspondence to the physical meson spectrum 
[25-28]. RMF models are effective field theories 
for nuclei below an energy scale of 1GeV, sepa-
rating the long- and intermediate-range nuclear 
physics from short-distance physics, involving, 
i.e., short-range correlations, nucleon form fac-
tors, vacuum polarization etc, which is absorbed 
into the various terms and coupling constants. 

As it is indicated in refs.[27] the strong attrac-
tive scalar (S: -400 MeV) and repulsive vector 
(V: +350 MeV) fields provide both the binding 
mechanism (S + V: -50 MeV) and the strong spin-
orbit force (S – V: -750 MeV) of both right sign 
and magnitude. In our calculation we have used 
so called NL3 (c.f.[25]), which is among the most 
successful parametrizations available.

 The scheme of accounting for the finite 
size effect is in details described in ref. [17]. Here 
we only note that if the point-like nucleus pos-
sesses by some central potential W(R) then transi-
tion to potential of the finite nucleus is realized by 
substitution W(r) on 
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Further the standard Dirac-Fock -like 
equations for a multi-electron system {core-
nlj} are solved. Formally they fall into one-
electron Dirac equations for the orbitals nlj 
with potential:  
 
V(r)=2V(r|SCF)+V(r|nlj)+Vex+V(r|R).  
 
It includes the electrical and polarization 
potentials of a nucleus with a finite size. The 
part exV accounts for exchange inter-electron 
interaction. The exchange effects are 
accounted for in the first two PT orders by 
the total inter-electron interaction [17]. The 
core electron density is defined by iteration 
algorithm within QED procedure [4]. The 
radiative QED (the self-energy part of the 
Lamb shift and the vacuum polarization 
contribution) are accounted for within the 
QED formalism [4,25]. The hyperfine 
structure  constants are defined by the radial 
integrals of the known type (e.g. [29,17]):  
 

A={[(4,32587)10-4Z2gI]/(42-
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

0
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Here I is a spin of nucleus, gI is the Lande 
factor, Q is a quadruple momentum of 
nucleus; radial integrals are calculated in the 
Coulomb units (=3,57 1020Z2m-2; = 6,174 
1030Z3m-3). Radial parts F and G of two 
components of the Dirac function for 
electron, which moves in the potential are 
defined by solution of the Dirac equations 

(PT zeroth order). The other details can be 
found in refs. [17-25]. 
 

3. Estimating the hyperfine structure 
parameters and conclusions 

 
 Earlier we have studied the hyperfine 
structure of spectra for the elements Be, C, 
Al, U, which have above cited rare, cosmic 
isotopes. Here we present advanced data  (the 
Superatom package [4,5] is used) on the HFS 
parameters and quadrupole electric moment 
for the 201Hg.  

In Table 1 there are listed the 
experimental and calculated values of the 
nuclear electric quadrupole moment Q (mb) 
for 201Hg (from [5,6,23,26]. The calculations 
were performed on the basis of the non-
correlated DF, in the many approximation of 
DF (MCDF), taking into account the Breit 
and QED corrections, as well as on the basis 
of our method (the RMF model for the 
charge distribution in a nucleus).  

 
Table 1. The values of the nuclear electric 
quadrupole moment Q (mb) for mercury   
Q (мб) Method Reference Год 
383,1 
380,5 

387 (6) 
347 (43) 
385 (40) 
485 (68) 
386 (49) 
267 (37) 
390 (20) 
455 (40) 

420 
500 (50) 

600 
500 

At-Nucl 
Atomic 
Atomic 
Nuclear 
Atomic 
Muonic 
Muonic 
Muonic 
Solid 

Atomic 
Atomic 
Atomic 
Solid 

Atomic 

Our work 
Glushkov et al 
Pyykko et al 
Fornal et al 
Ulm et al 

Gunther et al 
Hahn et al 
Hahn et al 

Edelstein-Pound 
McDermott etal 

Murakawa 
Blaise-Chantrel 
Dehmelt et al 

Schuler-Schmidt 

2013 
2006 
2005 
2001 
1988 
1983 
1979 
1979 
1975 
1960 
1959 
1957 
1954 
1935 

 
As can be seen, the value of the 

moment of Q, obtained by us, in  the best 
agreement with the data obtained by a group 
of Ulm. Comparison of the results of 
calculations in the framework of our method 
and the DF (the single-and many-
approximation based on the Breit and QED 
corrections) shows that our values of the 
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Further the standard Dirac-Fock -like equa-
tions for a multi-electron system {core-nlj} are 
solved. Formally they fall into one-electron Dirac 
equations for the orbitals nlj with potential: 

V(r)=2V(r|SCF)+V(r|nlj)+Vex+V(r|R). 

It includes the electrical and polarization po-
tentials of a nucleus with a finite size. The part 

exV accounts for exchange inter-electron interac-
tion. The exchange effects are accounted for in 
the first two PT orders by the total inter-electron 
interaction [17]. The core electron density is de-
fined by iteration algorithm within QED proce-
dure [4]. The radiative QED (the self-energy part 
of the Lamb shift and the vacuum polarization 
contribution) are accounted for within the QED 
formalism [4,25]. The hyperfine structure  con-
stants are defined by the radial integrals of the 
known type (e.g. [29,17]): 
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Here I is a spin of nucleus, gI is the Lande fac-
tor, Q is a quadruple momentum of nucleus; ra-
dial integrals are calculated in the Coulomb units 
(=3,57 1020Z2m-2; = 6,174 1030Z3m-3). Radial parts 
F and G of two components of the Dirac func-
tion for electron, which moves in the potential are 
defined by solution of the Dirac equations (PT ze-
roth order). The other details can be found in refs. 
[17-25].

3. Estimating the hyperfine structure 
parameters and conclusions

Earlier we have studied the hyperfine structure 
of spectra for the elements Be, C, Al, U, which 
have above cited rare, cosmic isotopes. Here we 
present advanced data  (the Superatom package 
[4,5] is used) on the HFS parameters and quadru-
pole electric moment for the 201Hg. 

In Table 1 there are listed the experimental and 
calculated values   of the nuclear electric quadru-
pole moment Q (mb) for 201Hg (from [5,6,23,26]. 
The calculations were performed on the basis of 
the non-correlated DF, in the many approxima-
tion of DF (MCDF), taking into account the Breit 
and QED corrections, as well as on the basis of 
our method (the RMF model for the charge distri-
bution in a nucleus). 

Table 1 
The values   of the nuclear electric quadru-

pole moment Q (mb) for mercury  

Q (мб) Method Reference Год

383,1
380,5

387 (6)
347 
(43)
385 
(40)
485 
(68)
386 
(49)
267 
(37)
390 
(20)
455 
(40)
420
500 
(50)
600
500

At-Nucl
Atomic
Atomic
Nuclear
Atomic
Muonic
Muonic
Muonic
Solid

Atomic
Atomic
Atomic
Solid

Atomic

Our work
Glushkov et al
Pyykko et al
Fornal et al
Ulm et al

Gunther et al
Hahn et al
Hahn et al
Edelstein-

Pound
McDermott 

etal
Murakawa

Blaise-
Chantrel

Dehmelt et al
Schuler-
Schmidt

2013
2006
2005
2001
1988
1983
1979
1979
1975
1960
1959
1957
1954
1935

         RrrWrdrRrrdrrWRrW
r

r
 

 2

0

2

. 
In our case the Coulomb potential for 
spherically symmetric density  Rr  is: 
 

     




 









r

r
nucl RrrdrRrrdrrRrV '''

0

'2''1

 
Further the standard Dirac-Fock -like 
equations for a multi-electron system {core-
nlj} are solved. Formally they fall into one-
electron Dirac equations for the orbitals nlj 
with potential:  
 
V(r)=2V(r|SCF)+V(r|nlj)+Vex+V(r|R).  
 
It includes the electrical and polarization 
potentials of a nucleus with a finite size. The 
part exV accounts for exchange inter-electron 
interaction. The exchange effects are 
accounted for in the first two PT orders by 
the total inter-electron interaction [17]. The 
core electron density is defined by iteration 
algorithm within QED procedure [4]. The 
radiative QED (the self-energy part of the 
Lamb shift and the vacuum polarization 
contribution) are accounted for within the 
QED formalism [4,25]. The hyperfine 
structure  constants are defined by the radial 
integrals of the known type (e.g. [29,17]):  
 

A={[(4,32587)10-4Z2gI]/(42-
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Here I is a spin of nucleus, gI is the Lande 
factor, Q is a quadruple momentum of 
nucleus; radial integrals are calculated in the 
Coulomb units (=3,57 1020Z2m-2; = 6,174 
1030Z3m-3). Radial parts F and G of two 
components of the Dirac function for 
electron, which moves in the potential are 
defined by solution of the Dirac equations 

(PT zeroth order). The other details can be 
found in refs. [17-25]. 
 

3. Estimating the hyperfine structure 
parameters and conclusions 

 
 Earlier we have studied the hyperfine 
structure of spectra for the elements Be, C, 
Al, U, which have above cited rare, cosmic 
isotopes. Here we present advanced data  (the 
Superatom package [4,5] is used) on the HFS 
parameters and quadrupole electric moment 
for the 201Hg.  

In Table 1 there are listed the 
experimental and calculated values of the 
nuclear electric quadrupole moment Q (mb) 
for 201Hg (from [5,6,23,26]. The calculations 
were performed on the basis of the non-
correlated DF, in the many approximation of 
DF (MCDF), taking into account the Breit 
and QED corrections, as well as on the basis 
of our method (the RMF model for the 
charge distribution in a nucleus).  

 
Table 1. The values of the nuclear electric 
quadrupole moment Q (mb) for mercury   
Q (мб) Method Reference Год 
383,1 
380,5 

387 (6) 
347 (43) 
385 (40) 
485 (68) 
386 (49) 
267 (37) 
390 (20) 
455 (40) 

420 
500 (50) 

600 
500 

At-Nucl 
Atomic 
Atomic 
Nuclear 
Atomic 
Muonic 
Muonic 
Muonic 
Solid 

Atomic 
Atomic 
Atomic 
Solid 

Atomic 

Our work 
Glushkov et al 
Pyykko et al 
Fornal et al 
Ulm et al 

Gunther et al 
Hahn et al 
Hahn et al 

Edelstein-Pound 
McDermott etal 

Murakawa 
Blaise-Chantrel 
Dehmelt et al 

Schuler-Schmidt 

2013 
2006 
2005 
2001 
1988 
1983 
1979 
1979 
1975 
1960 
1959 
1957 
1954 
1935 

 
As can be seen, the value of the 

moment of Q, obtained by us, in  the best 
agreement with the data obtained by a group 
of Ulm. Comparison of the results of 
calculations in the framework of our method 
and the DF (the single-and many-
approximation based on the Breit and QED 
corrections) shows that our values of the 
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As can be seen, the value of the moment of Q, 
obtained by us, in  the best agreement with the 
data obtained by a group of Ulm. Comparison of 
the results of calculations in the framework of our 
method and the DF (the single-and many-approx-
imation based on the Breit and QED corrections) 
shows that our values   of the constants A are in 
better agreement with experiment than the DF.

In Table 2 there are listed the experimental 
and calculated values   of the hyperfine constants 
(in MHz) for the 3P1 state of the neutral mercury 
atom [5,6,23,26]. Analysis of the data shows that 
an account of the interelectron correlation effects 
is crucial in the calculation of the hyperfine struc-
ture parameters and therefore the conventional 
methods such as the method of DF (of single ap-
proximation) as well as the method with the lim-
ited accounting the exchange-correlation effects 
do not give a sufficiently high accuracy.

Table 2 
Experimental and Calculations meaning 

of the nuclear electric quadrupole moment Q 
(mb) for 201Hg and the HFS constants (MHz) 
for the 3P1 state of the neutral atom of mercury 
201Hg

Method Q (mb) A (MHz) B (MHz)

DF 478,13 -4368,266 ---

MCDF 
(Breit+QED)

386,626 -5470,810 ---

RMBT 380, 518 -5460, 324 -286,512

This work: 
EXC

-92,980 -1161,242 -58,478

This work: 
Breit-QED

-2,582 -20,384 -1,002

This work 
Total.

380, 518 -5458,420 -283,313

Experiment Table 1 -5454,569 
(0,003)

-280,107 
(0,005)

Note: EXC- exchange-correlation contribution; 

Analysis shows that a precise agreement be-
tween theory and experiment can be reached by 
means accounting for not only the relativistic and 

exchange-correlation effects, but the radiative 
QED corrections, the nuclear effects of Bohr-
Weisskopf, Breit-Rosenthal-Crawford-Schawlow 
etc too. 
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HYPERFINE STRUCTURE PARAMETERS OF THE HEAVY ISOTOPES: CONSISTENT 
NUCLEAR-QED THEORY

Abstract. 
It is presented the consistent theoretical nuclear-QED approach to estimating parameters of the 

hyperfine structure and electric quadrupole moment of the mercury isotope 201Hg. Analysis of the 
data shows that an account of the interelectron correlation effects is crucial in the calculation of the 
hyperfine structure parameters and therefore the conventional methods such as the method of Dirac-
Fock ( single configuration approximation) as well as their generalized versions  with the limited 
accounting the exchange-correlation effects do not give a sufficiently high accuracy.
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ПАРАМЕТРЫ СВЕРХТОНКОЙ СТРУКТУРЫ ІЗОТОПОВ Hg В РАМКАХ  
ПОСЛЕДОВАТЕЛЬНОЙ ЯДЕРНО-КЭД ТЕОРИИ  

Резюме. 
Рассмотрен последовательный  теоретический ядерно-КЭД подход к оценке параметров 

сверхтонкой структуры и электрического квадрупольного момента ядра изотопа  201Hg. Анализ 
данных показывает, что учет межэлектронных корреляционных эффектов имеет критически 
важное значение при расчете параметров сверхтонкой структуры и, следовательно, применение 
к задаче традиционных методов типа метода Дирака-Фока (в одно- конфигурации приближении), 
а также его обобщенных версий с ограниченным учетом обменного корреляционных эффектов 
не дает возможности достичь достаточно высокой точности описания искомых свойств.  

Ключевые слова:  сверхтонкая структура, тяжелые изотопы, ядерно-КЭД теория 
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ПАРАМЕТРИ НАДТОНКОЇ СТРУКТУРИ ІЗОТОПІВ Hg В РАМКАХ ПОСЛІДОВНОЇ 
ЯДЕРНО-КЕД ТЕОРІЇ  

Резюме. 
Розглянуто послідовний теоретичний ядерно-КЕД підхід до оцінки параметрів надтонкої 

структури та електричного квадрупольного моменту ядра ізотопу 201Hg. Аналіз даних 
показує, що урахування  між електронних кореляційних ефектів має вирішальне значення при 
розрахунку параметрів надтонкої структури і, отже, застосування до задачі традиційних методів  
типу методу Дірака-Фока  (в одно-конфігураційному наближенні), а також його узагальнених 
версій з обмеженим урахуванням  обмінно-кореляційних ефектів не дає можливості досягнути 
достатньо високої точності опису шуканих властивостей. .

Ключові слова: надтонка структура,  важкі ізотопи, ядерно-КЕД теорія
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INVESTIGATION OF CHEMICAL AND PHASE  COMPOSITION OF CdS-Cu2S SENSORIC 
LAYERS 

A set of studies aimed at clarifying the deviation from the stoichiometry of CuxS compound during the 
formation and followed over time to establish the characteristics of changes in the chemical composition of the 
heterojunction components were carried out. The question of relationship between optoelectrical properties of 
heterostructures and distribution of stoichiometry in the layer of copper sulfide is open, informative and very 
important for the practical implementation of the developed sensor. Electrochemical analysis and study by 
X-ray diffraction for large samples set were conducted 

Key words: nonideal heterojunction, image sensor, phase composition, XRD

Introduction

Development of technologies for the synthe-
sis of thin film semiconductor materials led to a 
wide range of application of opto-mechanical and 
electrical properties of the instrument in the field 
of electronics, such as further study actively used 
in the technological aspect Semiconductor is im-
portant. In particular among these compounds are 
attracted interest for modeling the properties and 
development of various applications applied het-
erostructures on the cadmium sulfide (CdS) and 
copper sulfide (Cu2S), which can serve as the core 
material photodetectors for use in optical commu-
nication devices, particularly in the infrared re-
gion spectrum. 

In addition, some marked prospects of these 
nonideal heterostructures in devices fixation ray 
images [1]. Another area of application material 
CdS-Cu2S moving towards the development of 
new gas-chemical sensors [2]. It describes the 
main advantages of these prototypes sensors: se-
lective gas detection sensitivity and modes of op-
eration at low temperatures.

Thus one of the characteristics of photosensi-
tive heterostructures on the CdS-Cu2S is the in-

stability of photovoltaic parameters during opera-
tion. Eventually decrease circuit voltage and short 
circuit current, ie the sensor signal with the same 
levels of photoexcitation decreases in service. 
Consequently, there is a degradation over time as 
heterojunction photovoltaic, which can be associ-
ated with changes in both the structure element 
and component properties of films of transition. It 
is this negative phenomenon becomes an obstacle 
and a problem with the possible use of these heter-
ostructures for practical applications in sensorics. 
However, none of the technologies used, does not 
get photocells released (without the involvement 
of special protection) from degradation.

It was discovered experimentally [3-5] that 
chemical methods of sulfide copper-based substi-
tution reaction on the surface of cadmium sulfide 
lead to the formation of nonstoichiometric com-
pounds CuxS. Depending on the reaction condi-
tions the value of x can vary from 1 to 2. It is 
known that at room temperature phase are more 
stable sulfide copper halkotsyt - Cu2S; dyurlit - 
Cu1.96S; dihenyt - Cu1.8S; anilit - Cu1.75S; kovelit 
- CuS. Typically, between different phases form a 
solid solution. Each phase can be deviations from 
stoichiometry, which causes changes in physical 
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properties such as crystal lattice parameters, opti-
cal and electrical steel. [4] These property chang-
es can be used for determination of bulk samples, 
and for variations in the properties of sensors 
based heterostructures CdS-CuS [6]. In the case 
of thin films and small amount of test material the 
use of direct techniques of chemical analysis is 
very complicated.

X-ray diffractometry analysis

Using electrochemical analysis to clarify the 
mechanisms change with time stoichiometry lay-
er CuS actually proved inconclusive due to the 
presence of layers simultaneously studied a num-
ber of phases with different concentrations of Cu. 
So for samples that have undergone degradation 
caused by changing the chemical composition of 
copper sulfide layer in the electrochemical reduc-
tion reaction involved once all steps to separate 
phases and potential recovery due to varying 
phase, almost impossible, because they are im-
posed on the initial section of the recovery.

So for more information on changing the stoi-
chiometry and phase composition distribution 
layer CuxS studied sensory structures under its 
degradation over time used the method of phase 
diffraction analysis [8]. It was involved X-ray 
diffractometer D8 Advance (Bruker AXS) with 
emission lines Cu K (wavelength 1.54183 Å, the 
working potential of the cathode Ua 40 kV, Ia ca-
thodic current 40 mA).

We used scanning modes geometrically sym-
metric and scanning with a sliding beam falling 
(GIXRD). In the latter case the angle recorded at 
the value 0.5, diffraction pattern measured in the 
range of 20 to 80 mode step scanning step size 
0.04, while fixing signal for 5 seconds. Process-
ing and analysis of diffraction spectra was carried 
out using software Bruker-AXS EVA (11.0.0.3), 
for modeling spectrograms and further define the 
parameters studied layers used program Bruker-
AXS TOPAS 3.0. Features component compo-
sition were studied using pattern database Joint 
Committee on Powder Diffraction Standards 
(JCPDS) [8].

For separation of the diffraction peaks due to 
the different layers of compounds present in the 

sample, ie contact layer SnO2, base area and up-
per CdS films CuxS, and in some cases - the up-
per contact layer Cu or Au, diffraction scans were 
conducted separately for samples with only a 
layer of cadmium sulfide, for samples with pre-
deposited on the substrate layer and SnO2 sample 
formed with a layer of copper sulfide.

Results and discussion

Radiometric research base layer samples of 
CdS on a glass substrate with pre-deposited layer 
of tin oxide allowed to identify distinct diffrac-
tion peaks corresponding to these compounds. 
For spectrum in CdS was the most appropriate 
JCPDS-41-1049 file corresponding hexagonal 
lattice of CdS and the constant = 4.14092 Ǻ, p 
= 6.7198 Ǻ (Fig. 1). According to the compara-
tive pattern JCPDS 41-1049, clear peaks were ob-
served reflections for the crystallographic planes 
of the following indexes: (100) (002) (101) (102) 
(110) (103) (112) (004) (203) (114) (105).

During the analysis for each of the superim-
posed diffraction patterns obtained from the data-
base directory JCPDS, corresponding to potential-
ly available connections and fixed convergence in 
positions of diffraction peaks experimental data 
directory [8]. Used comparatives files related to 
sulfur, copper, oxygen, chlorine (could partly be 
in bed with incomplete substitution reaction), ox-
ygen (possible oxidation of copper sulfide oxygen 
atmosphere): JCPDS 33-490 (Cu2S), JCPDS 29-
0578 (Cu1.96S), JCPDS 34-0660 (Cu31S16), JCPDS 
30-0502 (Cu1.92S), JCPDS 41-0959 (Cu1.81S), 
JCPDS 23-0958 (Cu7S4), JCPDS 06-0464 (CuS), 
JCPDS 44 -4750 (CuCl), JCPDS 36-5511 (Cu2O). 
An example of a typical type of distribution rela-
tive intensities of the diffraction peaks of the dif-
fraction angle obtained during scanning newly 
made and old samples CdS-CuxS, presented at 
ryc. 3, which also marked the position of peaks 
for compounds of hexagonal CdS and various 
phases of CuxS. Thus was the comparative analy-
sis of the diffraction pattern in terms of identify-
ing compounds present in the samples of all ages. 
The new samples were detected the possible pres-
ence of these copper sulfide phases: Cu2S, Cu1.96S, 
Cu1.92S, Cu7S4.
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Fig. 1. Diffraction peaks for CdS layer on a 
glass substrate obtained by sputtering elek-
trohidrodynamichnoho. Marked provisions 
peaks for hexagonal CdS and the correspond-
ing crystallographic indexes according to 
Comparative File JCPDS 41-1049.

For older specimens observed a wide range of 
diffraction peaks that meet the following phases: 
Cu2S, Cu1.96S, , CuS. Peaks corresponding to the 
compounds CuCl and Cu2O, were not found.

After counting all the relevant peak was 
obtained comparative table, which indicated the 
number of peaks of each phase CuxS for a new 
sample and the sample aged 3 years. Evident 
differences in the composition of new and old 
sensory elements. This indicates the presence 
of the process of gradual change in the phase 
composition of copper sulfide layer, and thus 
likely outflow of copper from the compound 
CuxS over time. This process may be responsible 
for changing the stoichiometric Cu2S layer 
heterojunction CdS-Cu2S.

It is known [9] that copper atoms in the 
crystal lattice have the ability to form CdS 
acceptor centers that may compensate donor 
impurities initially present in the base layer. 
Also listed copper diffusion process along the 
borders of microcrystalline grains can cause 
the base effect bypass area. Note that in the 
investigated heterostructures reliably observed 
change stoichiometric copper sulfide layer 
svitlopohlynayuchoho emergence of a number 
of phases CuhS. Available for the process paths 
are: oxidation Cu2S to Cu2O by oxygen, electric 
Cu2S decomposition with the release of free 
copper atoms and diffusion of copper into the 

crystal lattice Cu2S CdS lattice as free atoms and 
formation of complexes.

Conclusion

Used diffractometry research methodology 
significantly helped to establish the existence of a 
number of phases in the non-stoichiometric copper 
sulfide layer and to make a comparative analysis 
of the phase distribution for samples of different 
ages and varying degrees of degradation. It was 
demonstrated that used in this paper methods 
of analysis phase composition of copper sulfide 
layers give unambiguous characterization of the 
degree of degradation with time sensor samples 
due to diffusion of copper atoms from the layer to 
the base layer CuxS-CdS.
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Summary. A set of studies aimed at clarifying the deviation from the stoichiometry of CuxS 
compound during the formation and followed over time to establish the characteristics of changes 
in the chemical composition of the heterojunction components were carried out. The question of 
relationship between optoelectrical properties of heterostructures and distribution of stoichiometry in 
the layer of copper sulfide is open, informative and very important for the practical implementation 
of the developed sensor. Electrochemical analysis and study by X-ray diffraction for large samples set 
were conducted.
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практичного впровадження розробленого сенсору, для великої вибірки зразків були проведені 
електрохімічний аналіз та дослідження методом рентгенівської дифрактометрії.

Ключові слова: неідеальний гетероперехід, сенсор зображень, фазовий склад, рентгено-
структурний аналіз
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МОДЕЛИРОВАНИЕ БЫСТРОЙ ФАЗЫ СПАДА СИГНАЛА ОПТИЧЕСКОГО 
СЕНСОРА НА ОСНОВЕ ГЕТЕРОСТРУКТУРЫ CdS-Cu2S 

Аннотация
Работа посвящена комплексу исследований, направленных на выяснение отклонений от 

стехиометрии соединения CuxS при формировании и с последующим течением времени для 
установления особенностей изменения химического состава компонентов гетероперехода. 
Учитывая, что вопрос о связи степени и распределения стехиометрии в слое сульфида меди 
с оптоелектрическими свойствами гетероструктуры является открытым, информативным 
и чрезвычайно важным для практического внедрения разработанного сенсора, для большой 
выборки образцов были проведены электрохимический анализ и исследования методом рент-
геновской дифрактометрии.

Ключевые слова: неидеальный гетеропереход, сенсор зображений, фазовый состав, рент-
геноструктурный анализ
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1.  Introduction

As it is well known in the modern electron-
ics, photoelectronics etc there are many physical 
systems (the backward-wave tubes, multielement 
semiconductors and gas lasers, different radio-
technical devices etc), which can manifest the el-
ements of chaos and hyperchaos in their dynam-
ics (c.f.[1-32]). The key aspect of studying the 
dynamics of these systems is analysis of the dy-
namical characteristics. Chaos theory establish-
es that apparently complex irregular behaviour 
could be the outcome of a simple deterministic 
system with a few dominant nonlinear interde-
pendent variables. The past decade has witnessed 
a large number of studies employing the ideas 
gained from the science of chaos to character-
ize, model, and predict the dynamics of various 
systems phenomena (c.f.[1-16]). The outcomes 
of such studies are very encouraging, as they not 
only revealed that the dynamics of the apparently 
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tube (RBWT) with accounting relativistic effects (γ0= 1.5-6.0), dissipation (factor D), a presence of space 
charge etc. There are computed the temporal dependences of the normalized field amplitudes (power) in a wide 
range of variation of the controlling parameters which are characteristic for distributed relativistic electron-
waved self-vibrational systems: electric length of an interaction space N, bifurcation parameter proportional 
to (~current I) Pirse one J and relativistic factor γ0. The computed temporal dependence of the field amplitude 
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entropy. There are  constructed the bifurcation diagrams  with definition of the dynamics self-modulation/
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irregular phenomena could be understood from a 
chaotic deterministic point of view but also re-
ported very good predictions using such an ap-
proach for different systems. 

The backward-wave tube is an electronic de-
vice for generating electromagnetic vibrations 
of the superhigh frequencies range. In refs.[3-
16] there have been presented the temporal de-
pendences of the output signal amplitude, phase 
portraits, statistical quantifiers for a weak chaos 
arising via period-doubling cascade of self-mod-
ulation and for developed chaos at large values of 
the dimensionless length parameter. The authors 
of [3-16] solved the different versions of system 
of equations of nonstationary nonlinear theory for 
the O type backward-wave tubes with and with-
out account of the spatial charge, without energy 
losses etc. It has been shown that the finite-di-
mension strange attractor is responsible for cha-
otic regimes in the backward-wave tube.  
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In our work it has been performed quantitative 
modelling, analysis, forecasting dynamics relativ-
istic backward-wave tube (RBWT) with account-
ing relativistic effects (g0= 1.5-6.0), dissipation, a 
presence of space charge etc. There are computed 
the temporal dependences of the normalized field 
amplitudes (power) in a wide range of variation of 
the controlling parameters which are characteris-
tic for distributed relativistic electron-waved self-
vibrational systems: electric length of an interac-
tion space N, bifurcation parameter proportional 
to (~current I) Pirse one and relativistic factor g0. 
There is computed a temporal dependence of the 
field amplitude (power) Fmax in a good agreement 
with theoretical estimates and experimental data 
by Ginzburg etal (IAP, Nizhny Novgorod) with 
using the pulsed accelerator “Saturn”. 

2.  Method

As the key ideas of our technique for nonlinear 
analysis of chaotic systems have been in details 
presented in refs. [17-32], here we are limited 
only by brief representation. The first important 
step is a choice of the model of the RBWT dy-
namics. We use the standard non-stationary the-
ory [3-6], however, despite the cited papers we 
take into account a numver of effects, namely, 
influence of space charge,  dissipation, the waves 
reflections at the ends of the system and others 
[12,13]. Usually relativistic dynamics is described 
system of equations for unidimensional relativis-
tic electron phase ( )0è æ,ô,è  (which moves in the 
interaction space with phase q0 (q0Î[0; 2p]) and 
has a coordinate z at time moment t) and field   
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Since processes resulting in the chaotic behav-

iour are fundamentally multivariate, it is neces-
sary to reconstruct phase space using as well as 
possible information contained in the dynami-
cal parameter s(n), where n the number of the 
measurements. Such a reconstruction results in a 
certain set of d-dimensional vectors y(n) replac-
ing the scalar measurements. Packard et al. [19] 
introduced the method of using time-delay coor-
dinates to reconstruct the phase space of an ob-
served dynamical system. The direct use of the 
lagged variables s(n + t), where t is some integer 
to be determined, results in a coordinate system in 
which the structure of orbits in phase space can be 
captured. Then using a collection of time lags to 
create a vector in d dimensions,

      y(n) = [s(n), s(n + t), s(n + 2t), …, 
                        s(n + (d-1)t)],                       (1)

the required coordinates are provided. In a non-
linear system, the s(n + jt) are some unknown 
nonlinear combination of the actual physical vari-
ables that comprise the source of the measure-
ments. The dimension d is called the embedding 
dimension, dE. According to Mañé and Takens 
[24,25],  any time lag will be acceptable is not ter-
ribly useful for extracting physics from data. If t 
is chosen too small, then the coordinates s(n + jt) 
and s(n + (j + 1)t) are so close to each other in 
numerical value that they cannot be distinguished 
from each other. Similarly, if t is too large, then 
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pendent of each other in a statistical sense. Also, 
if t is too small or too large, then the correlation 
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dimension of attractor can be under- or overesti-
mated respectively. The autocorrelation function 
and average mutual information can be applied 
here. The first approach is to compute the linear 
autocorrelation function:
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and to look for that time lag where CL(d) first pass-
es through zero (see [18]). This gives a good hint 
of choice for t at that s(n + jt) and s(n + (j + 1)t) 
are linearly independent. a time series under con-
sideration have an n-dimensional Gaussian distri-
bution, these statistics are theoretically equivalent 
as it is shown by Paluš (see [15]). The general 
redundancies detect all dependences in the time 
series, while the linear redundancies are sensitive 
only to linear structures. Further, a possible non-
linear nature of process resulting in the vibrations 
amplitude level variations can be concluded.

The goal of the embedding dimension determi-
nation is to reconstruct a Euclidean space Rd large 
enough so that the set of points dA can be unfolded 
without ambiguity. In accordance with the em-
bedding theorem, the embedding dimension, dE, 
must be greater, or at least equal, than a dimen-
sion of attractor, dA, i.e. dE > dA. In other words, 
we can choose a fortiori large dimension dE, e.g. 
10 or 15, since the previous analysis provides us 
prospects that the dynamics of our system is prob-
ably chaotic. However, two problems arise with 
working in dimensions larger than really required 
by the data and time-delay embedding [5,6,18]. 
First, many of computations for extracting inter-
esting properties from the data require searches 
and other operations in Rd whose computational 
cost rises exponentially with d. Second, but more 
significant from the physical point of view, in the 
presence of noise or other high dimensional con-
tamination of the observations, the extra dimen-
sions are not populated by dynamics, already cap-
tured by a smaller dimension, but entirely by the 
contaminating signal. In too large an embedding 
space one is unnecessarily spending time work-
ing around aspects of a bad representation of the 

observations which are solely filled with noise. It 
is therefore necessary to determine the dimension 
dA.

There are several standard approaches to re-
construct the attractor dimension (see, e.g., [3-
6,15]). The correlation integral analysis is one 
of the widely used techniques to investigate the 
signatures of chaos in a time series. The analy-
sis uses the correlation integral, C(r), to distin-
guish between chaotic and stochastic systems. To 
compute the correlation integral, the algorithm of 
Grassberger and Procaccia [10] is the most com-
monly used approach. If the time series is char-
acterized by an attractor, then the integral C(r) is 
related to the radius r given by
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where d is correlation exponent that can be de-
termined as the slop of line in the coordinates 
log C(r) versus log r by a least-squares fit of a 
straight line over a certain range of r, called the 
scaling region. If the correlation exponent attains 
saturation with an increase in the embedding di-
mension, the system is generally considered to 
exhibit chaotic dynamics. The saturation value of 
correlation exponent is defined as the correlation 
dimension (d2) of attractor. 

The Lyapunov exponents are the dynamical 
invariants of the nonlinear system. In a general 
case, the orbits of chaotic attractors are unpre-
dictable, but there is the limited predictability of 
chaotic physical system, which is defined by the 
global and local Lyapunov exponents. 

A negative exponent indicates a local average 
rate of contraction while a positive value indi-
cates a local average rate of expansion. In the cha-
os theory, the spectrum of Lyapunov exponents is 
considered a measure of the effect of perturbing 
the initial conditions of a dynamical system. Since 
the Lyapunov exponents are defined as asymp-
totic average rates, they are independent of the 
initial conditions, and therefore they do comprise 
an invariant measure of attractor. In fact, if one 
manages to derive the whole spectrum of Lyapu-
nov exponents, other invariants of the system, i.e. 
Kolmogorov entropy and attractor’s dimension 
can be found. The Kolmogorov entropy, K, meas-
ures the average rate at which information about 
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the state is lost with time. An estimate of this 
measure is the sum of the positive Lyapunov ex-
ponents. The inverse of the Kolmogorov entropy 
is equal to the average predictability.  There are 
several approaches to computing the Lyapunov 
exponents (see, e.g., [5,6,18]). One of them [18] 
is in computing the whole spectrum and based on 
the Jacobin matrix of the system function [14]. 

3.  Results

As input, the following parameters were taken: 
the energy of electrons - 150keV, starting current 
of 7A composed impedance connection 0,5W , 
length of interaction space - 0,623m, the average 
radius waveguides - 1,38sm period corrugating - 
1,73sm radius of the electron beam - 0,67sm. The 
dynamic model (2.6) has been implemented in 
two ways considering the effects of space charge 
and without and with (unlike in [5]) the effect 
of slowing the loss of energy in the system (at 
the ends of reflection and some other factors dis-
cussed more etc.). As bifurcation parameter ac-
tually is )2/(|| 22

0 mcZeIJ b= , where Z - resis-
tance connection, I - beam current, cv /00 =b , 0v  
- the initial velocity of the electrons, the param-
eter space charge )/( 2bmcIegQ ω= , transverse 

wave number )/( 00gbω cg = , k-harmonic and 

space charge density ∫ -=
p

θ θp
2

0
0)/1( deq k

k , coeffi-

cient of reduction space charge fk = 0.55. To factor 
in the expression for the normalized dissipation 
parameter has been fixed D = 8Db. In figure 1 we 
list the relevant theoretical simulation test results 
in non-stationary processes RBWT at injection 
currents: (a) - 55A, (b) - 90A, (c) - 120A.

At current 7A it is set stationary mode  that 
with increasing value of current strength transited 
to the periodic automodulation (I = 30A, on our 
data, the period of Ta = 7,3ns; experimental value 
[14b]: 8ns), and then when I = 55A it is realized 
the chaotic auto-modulation mode (fig 1a). By 
increasing the amount of current to 75A there is 
the quasi-periodical auto-modulation (period 13.8 
ns) and, finally, when the current value is more 
than 100A it’s realized essentially chaotic regime. 
Note that reset of the quasi-periodic auto-modula-
tion mode can be explained by an  effect of space 
charge. 

 

Figure 1. Theoretical results for the temporal 
dependence of power of the RBWT at the in-
jection currents: (a)-55A, (b)-90A, (c) - 120A.

The similar theoretical estimates (however 
without the dissipation effect) and experiment re-
sults data have been obtained by Ginsburg et al. 
[5b]. Let us note that all results are in a physically 
reasonable agreement with each other.

Fig. 2 (a) shows the results of our computing 
the autocorrelation function, and Fig. 2b) - the av-
erage mutual information. 

In fig.3 there is listed the relationship between 
the correlation exponent and embedding dimen-
sion of the temporal series  (line 1), the mean 
values of variables replacement (line 2) and the 
implementation of one replacement (line 3). Col-
umns errors indicate minimum values exponen-
tial correlation among all variables substituted. In 
Fig. 4 we presents data of estimating the embed-
ding dimension based on the algorithm of false 
nearest neighbours for points of the original data 
series (line 1), the mean values of surrogate data 
(2), and one surrogate realization  (3). 
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At current 7A it is set stationary mode  
that with increasing value of current strength 
transited to the periodic automodulation (I = 
30A, on our data, the period of Ta = 7,3ns; 
experimental value [14b]: 8ns), and then 
when I = 55A it is realized the chaotic auto-
modulation mode (fig 1a). By increasing the 
amount of current to 75A there is the quasi-
periodical auto-modulation (period 13.8 ns) 
and, finally, when the current value is more 
than 100A it’s realized essentially chaotic 
regime. Note that reset of the quasi-periodic 
auto-modulation mode can be explained by 
an  effect of space charge.  
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Figure 2. The autocorrelation function, (a) and 
the average mutual information (b).

Figure 3. The relationship between the correlation 
exponent and embedding dimension of the tem-
poral series  (line 1), the mean values of variables 
replacement (line 2) and the implementation of 
one replacement (line 3).

Fig. 4 we presents data of estimating the embed-
ding dimension based on the algorithm of false 
nearest neighbours for points of the original 
data series (line 1), the mean values of surrogate 
data (2), and one surrogate realization  (3).

Next in the table 1 we list our data on . the cor-
relation dimension d2, embedding dimension, de-
termined on the basis of false nearest neighbours 
algorithm (dN) with percentage of false neigh-
bours (%).  calculated for different values of lag  
t according to the analysis of two series  fig1a (I 
- chaos) and fig.1c (II - hyperchaos).

Table 1
Correlation dimension d2, embedding di-
mension, determined on the basis of false 

nearest neighbours algorithm (dN) with per-
centage of false neighbours (%) calculated for 

different values of lag  t

Chaos  (I) Hyperchaos (II)

t d2 (dN) t d2 (dN)

60 3.6 5 
(5.5)

67 7.2 10 
(12)

6 3.1 4 
(1.1)

10 6.3 8 (2.1)

8 3.1 4 
(1.1)

12 6.3 8 (2.1)

The similar theoretical estimates 
(however without the dissipation effect) and 
experiment results data have been obtained 
by Ginsburg et al. [5b]. Let us note that all 
results are in a physically reasonable 
agreement with each other. 

Fig. 2 (a) shows the results of our 
computing the autocorrelation function, and 
Fig. 2b) - the average mutual information.  
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In Table 2 we list our computing data on the  
Lyapunov exponents (LE), the dimension of the 
Kaplan-York attractor, the Kolmogorov entropy 
Kentr. For studied series there are the positive and 
negative LE values. he resulting dimension Ka-
plan York in both cases are very similar to the cor-
relation dimension (calculated by the algorithm 
by Grassberger-Procachia).

Table 1 
The  Lyapunov exponents (LE), the 

dimension of the Kaplan-York attractor, the 
Kolmogorov entropy Kentr. (our data)

Chaos l1 l2 l3 l4 K

(І) 0.261 0.0001 -0.0004 -0.528 0.26

(ІІ) 0.514 0.228 0.0000 -0.0002 0.74

Further, in Fig.5 we present the firstly obtained 
original (continuous line) and predicted (dotted 
line) dependences of power in the chaos mode 
(I): (a) - without energy loss effect, (b) - taking 
into account the effect of loss. order to estimate  
reliability (success) of prediction model [13-15] 
we have computed the correlation coefficient (r) 
between actual and 

                         (а)                              (b)

Figure 5. Original (continuous line) and pre-
dicted (dotted line) dependences of power in 
the chaos mode (I): (a) - without energy loss 
effect, (b) - taking into account the effect of loss

prognostic rows ranked to a number of the  neigh-
bours (NN). In this case, the mean forecast error 
was (σ = 1.9) for time series (chaos mode). In 
addition, usually to account for a forecast error 
one should take into account the noise level in the 
studied time series. For this purpose the method-
ology by Hu et al (see [13] was used. 

Importantly, the above-described physical 
mechanism of changing different modes in the 
RBWT dynamics due an increasing a current val-
ue and the bifurcation parameter J corresponds to 
certain value relativistic factor, namely γ0= 1,3.

More important is the analysis of the RBWT 
nonlinear dynamics in the plane «relativistic 
factor – bifurcation parameter.» Actually in this 
context a three-parametric relativistic nonlinear 
dynamics is fundamentally different from pro-
cesses in non-relativistic BWT dynamics. In fig.6 
we list a chart that shows the quantitative limits 
of auto-modulation  (line I) in the plane of pa-
rameters: bifuracation parameter J  - relativistic 
factor γ0. Note that the second line (line II) limits 
the area where there is a twist particles and used 
theoretical model works. A characteristic feature 
of the chart is the presence of so-called effect of 
«beak», which is based on relativistic factor goes 
far deeper automodulation area. Firstly this effect 
was predicted in [3-6]. In essentially relativistic 
limit (see. Fig. 7) the frequency of auto-modula-
tion falls by about half. Obviously, that all of the 
above characteristics is much more complicated 
compared to the dynamics of non-relativistic dy-
namics. 

Figure 6. The limits of automodulation  (line I) 
on the plane of parameters: “bifurcation pa-
rameter - relativistic factor”

So, we believe that a  chaos in the RBWT dy-
namics should be called by relativistic chaos phe-
nomenon. 
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Figure 7. The dependence of the frequency of 
auto-modulation upon relativistic factor

Conclusions

In this  work we have performed quantitative 
modelling, analysis, forecasting dynamics relativ-
istic backward-wave tube (RBWT) with account-
ing relativistic effects (γ0= 1.5-6.0), dissipation, a 
presence of space charge, reflection of waves at 
the end of deceleration system etc. There are com-
puted the temporal dependences of the normal-
ized field amplitudes (power) in a wide range of 
variation of the controlling parameters which are 
characteristic for distributed relativistic electron-
waved self-vibrational systems: electric length 
of an interaction space N, bifurcation parameter 
proportional to (~current I) Pirse one L(J): 2.7-3.9 
and relativistic factor g0=1.5-6.0). There are com-
puted the dynamic and topological invariants of 
the RBWT dynamics in auto-modulation/chaotic 
regimes, correlation dimensions values   (3.1; 6.4), 
embedding, Kaplan-York dimensions, Lyapu-
nov’s exponents (LE:+,+) Kolmogorov entropy. 
There are firstly constructed the bifurcation dia-
grams  with definition of the dynamics self-mod-
ulation/chaotic areas in planes: «J-γ0», «D-J». It 
is shown that for moderately small γ0 ~ 1.3 transi-
tion to chaos is realized through a sequence of the 
period doubling bifurcations, but with the growth 
of the g0 dynamics significantly complicates with 
interchange of quasi-harmonical/ chaotic regimes 
(incl. discovery of a “beak” effect on the chart, 
sharp fall of automodulation period at  γ0~4), 

emergence of highly-d chaotic attractor, which 
evolves at a much complicated scenario. Firstly 
on basis of chaos-cybernetic approach with a new 
wavelet-expansion predicted paths algorithm it 
is realized forecasting the temporal evolution of 
chaotic dynamics for RBWT at different values   of 
J, g0 taking into account the effects of relativity, 
influence of space charge, dissipation and shown 
that in a case of low-attractor dynamics (chaotic 
auto-modulation) the predicted series well re-
built the empirical data (correlation coefficient 
between predicted and real rows ranked among 
the neighbours number ~ 0.97), which is the first 
indication of the possibility of a new quantitative 
evolution prediction direction in studying relativ-
istic microwave electronics devices.
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A. V. Glushkov, V. B. Ternovsky, S. V. Brusentseva, A. V. Duborez, Ya. I. Lepich

NON-LINEAR DYNAMICS OF RELATIVISTIC BACKWARD-WAVE TUBE 
IN SELF-MODULATION AND CHAOTIC REGIME

Abstract. 
It has been performed quantitative modelling, analysis, forecasting dynamics relativistic backward-

wave tube (RBWT) with accounting relativistic effects (g0= 1.5-6.0), dissipation (factor D), a presence 
of space charge etc. There are computed the temporal dependences of the normalized field amplitudes 
(power) in a wide range of variation of the controlling parameters which are characteristic for dis-
tributed relativistic electron-waved self-vibrational systems: electric length of an interaction space N, 
bifurcation parameter proportional to (~current I) Pirse one J and relativistic factor g0. The computed 
temporal dependence of the field amplitude (power) Fmax in a good agreement with theoretical estimates 
and experimental data by Ginzburg etal (IAP, Nizhny Novgorod) with using the pulsed accelerator 
“Saturn”. The analysis techniques including multi-fractal approach, methods of correlation integral, 
false nearest neighbour, Lyapunov exponent’s, surrogate data, is applied analysis of numerical param-
eters of chaotic dynamics of RBWT. There are computed the dynamic and topological invariants of 
the RBWT dynamics in auto-modulation(AUM)/chaotic regimes, correlation dimensions values   (3.1; 
6.4), embedding, Kaplan-York dimensions, Lyapunov’s exponents (+,+) Kolmogorov entropy. There 
are  constructed the bifurcation diagrams  with definition of the dynamics self-modulation/chaotic 
areas in planes, namely, “J-g0», «D-J».

Key words: relativistic backward-wave tube, chaos, non-linear methods
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А. В. Глушков, В. Б. Терновский, С. В. Брусенцева, А. В. Дуборез, Я. И. Лепих

НЕЛИНЕЙНАЯ ДИНАМИКА РЕЛЯТИВИСТСКОЙ ЛАМПЫ ОБРАТНОЙ ВОЛНЫ В 
АВТОМОДУЛЯЦИОННОМ И ХАОТИЧЕСКОМ РЕЖИМАХ 

Резюме. 
Приведены результаты  моделирования, анализа и прогноза динамики процессов в реля-

тивистской лампе обратной волны (РЛОВ) с учета релятивистских эффектов (g0= 1,5-6,0), 
диссипации  (фактор D), наличия пространственного заряда и т.д. Вычислены  временные 
зависимости нормированной амплитуды поля (мощности) в широком диапазоне изменения 
управляющих параметров, которые характерны для распределенных релятивистских электрон-
но-волновых автоколебательных систем: электрическая длина пространства взаимодействия 
N, бифуркационный параметр, пропорциональный  силе тока, J и релятивистский фактор g0. 
Вычисленная зависимость амплитуды поля (мощности) Fmax находится в хорошем согласии с 
теоретическими оценками и данными эксперимента Гинзбурга и др. (ИПФ, Нижний Новгород) 
с использованием импульсного ускорителя «Сатурн». Техника нелинейного анализа, которая 
включает мультифрактальний подход, методы корреляционных интегралов, ложных ближай-
ших соседей, экспонент Ляпунова, суррогатных данных, использованная для анализа числен-
ных параметров хаотических автоколебательных режимов в РЛОВ. Рассчитаны  динамические 
и топологические инварианты динамики РЛОВ в автомодуляционном и хаотическом  режимах,  
корреляционная размерность, размерности вложения (3.1; 6.4), Каплан-Йорка, показатели Ля-
пунова (+, +), энтропия Колмогорова и построены бифуркационные диаграммы с определени-
ем областей автомодуляции и хаоса , в частности,  «J-g0», «D-J». 

Ключевые слова: релятивистская лампы обратной волны, хаос, нелинейные методы
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О. В. Глушков, В. Б. Терновський, С. В. Брусенцева, А. В. Дуборез, Я. І. Лепіх

НЕЛІНІЙНА ДИНАМІКА РЕЛЯТИВІСТСЬКОЇ ЛАМПИ ЗВЕРНЕНОЇ ХВИЛІ  В 
АВТОМОДУЛЯЦІЙНОМУ ТА ХАОТИЧНОМУ РЕЖИМАХ

Резюме. 
Наведеныірезультати моделювання, аналізу і прогнозу динаміки процесів в релятивістської 

лампі зворотної хвилі (РЛЗХ) з урахуванням релятивістських ефектів (g0= 1,5-6,0), дисипації 
(фактор D), наявності просторового заряду і т.і. Обчислені часові залежності нормованої амп-
літуди поля (потужності) в широкому діапазоні зміни керуючих параметрів, які характерні для 
розподілених релятивістських електронно-хвильових автоколивальних систем: електрична 
довжина простору взаємодії N, біфуркаційний параметр, пропорційний силі струму, J і реля-
тивістський фактор g0. Обчислена залежність амплітуди поля (потужності) Fmax знаходиться 
в хорошому злагоді з теоретичними оцінками і даними експерименту Гінзбурга та ін. (ІПФ, 
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Нижній Новгород) з використанням імпульсного прискорювача «Сатурн». Техніка нелінійного 
аналізу, яка включає мультіфрактальний підхід, методи кореляційних інтегралів, хибних най-
ближчих сусідів, експонент Ляпунова, сурогатних даних, використана для аналізу чисельних 
параметрів хаотичних автоколивальних режимів у РЛЗХ. Розраховані динамічні та топологіч-
ні інваріанти динаміки РЛОВ в автомодуляціонном і хаотичному режимах, кореляційна роз-
мірність, розмірності вкладення (3.1; 6.4), Каплан-Йорка, показники Ляпунова (+, +), ентропія 
Колмогорова і побудовані біфуркаційні діаграми з визначенням областей автомодуляціі і хаосу,  
зокрема, «J-g0», «D-J».

Ключові слова: релятивістська лампи зворотної хвилі, хаос, нелінійні методи
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QUANTUM DEFECT APPROXIMATION IN THEORY OF RADIATIVE TRANSITIONS IN 
SPECTRUM OF Li-like CALCIUM 

The combined relativistic quantum defect approximation and relativistic many-body perturbation theory 
with the zeroth order optimized  approximation are applied to studying  the Li-like calcium oscillator strengths 
of radiative transitions from ground state to the Rydberg states. New element in our scheme is an implementation 
of optimized relativistic quantum defect approximation to an energy approach frames. Comparison of calculated 
oscillator strengths with available theoretical and experimental (compillated) data is performed and a number of 
oscillator strengths are presented firstly.

1.  Introduction

This paper goes on our work on studying ra-
diative transitions characteristics in the multich-
arged ions on the basis of the combined relativis-
tic quantum defect approximation [1,2] and rela-
tivistic many-body perturbation theory with the 
zeroth order optimized  approximation [3]. 

Let us remind (look, for example, [1,2]) that 
the spectral data for  highly ionized atoms has a 
fundamental importance in many fields of atom-
ic physics (spectroscopy, spectral lines theory), 
plasma physics and chemistry, laser physics and 
quantum electronics, astrophysics and laboratory, 
thermonuclear plasma diagnostics and in fusion 
research. 

There have been sufficiently many reports of 
calculations and compilation of energies and os-
cillator strengths for the Li-like ions and other 
alkali-like ions (see, for example, [1–23]). Par-
ticularly, Martin and Wiese have undertaken a 
critical evaluation and compilation of the spectral 
parameters for Li-like ions (Z=3-28) [4,5]. The 
results of the high-precision non-relativistic cal-
culations of the energies and oscillator strengths 
of 1s22s¡1s22p for Li-like systems up to Z = 50 
are presented in Refs. [12-20]. The Hylleraas-type 

variational method and the 1/Z expansion meth-
od have been used. Chen Chao and Wang Zhi-
Wen [15] listed the nonrelativistic dipole-length, 
-velocity, -acceleration oscillator strengths for 
1s22s–1s22p transitions of LiI isoelectronic se-
quence calculated  within a full core plus correla-
tion method with using multiconfiguration inter-
action wave functions. Fully variational nonrela-
tivistic Hartree-Fock wave functions were used 
by Bièmont in calculating 1s2n2L (n<8=s,p,d,f; 
3<Z<22) Li-like states [18]. 

In many papers the Dirac-Fock (DF) method, 
model potential, quantum defect approximation 
in the different realizations have been used for 
calculating  the energies and oscillator strengths 
of the Li-like and similar ions (see Refs.[4-9,19-
30]). The consistent QED calculations of the 
energies, ionization potentials, hyperfine struc-
ture constants for the Li-like ions are performed 
in Refs. [18,19]. However, for Li-like ions with 
higher Z, particularly, for their high-excited (Ry-
dberg) states, there are not enough precise data 
available in literatures. 

In this paper the combined relativistic quantum 
defect approximation (QDA) and relativistic ma-
ny-body perturbation theory with the zeroth order 
optimized  approximation are applied to studying  



89

the Li-like calcium oscillator strengths of radia-
tive transitions from ground state to the Rydberg 
states. New element in our scheme is an imple-
mentation of optimized relativistic quantum de-
fect approximation to an energy approach frames. 
Comparison of calculated oscillator strengths 
with available theoretical and experimental (com-
pillated) data is performed and a number of oscil-
lator strengths are presented firstly.

2.  Relativistic energy approach to atom in a 
strong laser field: Multiphoton resonances

As the detailed presentation of our version 
of the relativistic quantum defect approximation 
is in , for example, Ref. [1,2], here we present 
only the key elements. The   relativistic energy 
approach in gauge-invariant form is presented in 
many books, articles (look [5-7,3]).  Within an 
energy approach the imaginary part of electron 
energy shift of an atom is  directly connected with 
the radiation transition  probability. The total en-
ergy shift of the state is usually presented as (see, 
for example, [5,6] and also [3]):

                        DE = ReDE + i G/2             (1)

where G is interpreted as the level width and de-
cay possibility P = G. The imaginary part of elec-
tron energy of the system, which is defined in the 
lowest PT order as [3]: 
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where ji is the total single electron momentum, mi 

– the projections; QulQl  is the Coulomb part of in-

teraction, BrQl - the Breit part. The Coulomb part 
QulQl  is expressed in terms of radial integrals Rl , 

angular coefficients Sl .  The Breit interaction part 
is defined by similar way (see [3]). The relativis-
tic wave functions are calculated by solution of 
the Dirac equation with the potential, which in-
cludes the “outer electron- ionic core” potential 
and polarization potential [3]. The calibration of 
the single model potential parameter has been per-
formed on the basis of the special ab initio proce-
dure within relativistic energy approach  (see also 
[5-7]). In Ref.[6] the lowest order multielectron 
effects, in  particular,  the gauge dependent radia-
tive contribution Im dEninv for the certain class of 
the photon propagator calibration is treated. This 
value is considered to be the typical representative 
of the electron correlation effects, whose minimi-
zation is a reasonable criterion in the searching 
for the optimal one-electron basis of the  relativ-
istic many-body PT. The minimization of func-
tional Im dEninv leads to integral-differential equa-
tion that can be solved using one of the standard 
codes. Therefore, it provides the construction of 
the optimized 1-particle representation and thus 
optimized relativistic model potential ORMP 
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where ji is the total single electron 
momentum, mi – the projections; QulQ  is the 
Coulomb part of interaction, BrQ - the Breit 
part. The Coulomb part QulQ  is expressed in 
terms of radial integrals R , angular 
coefficients S .  The Breit interaction part is 
defined by similar way (see [3]). The 
relativistic wave functions are calculated by 
solution of the Dirac equation with the 
potential, which includes the “outer electron- 
ionic core” potential and polarization 
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model potential parameter has been 
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scheme [6]. The same procedure is used in 
generalization of the relativistic QDA. 
Usually, the most exact version of the QDA 
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where ji is the total single electron 
momentum, mi – the projections; QulQ  is the 
Coulomb part of interaction, BrQ - the Breit 
part. The Coulomb part QulQ  is expressed in 
terms of radial integrals R , angular 
coefficients S .  The Breit interaction part is 
defined by similar way (see [3]). The 
relativistic wave functions are calculated by 
solution of the Dirac equation with the 
potential, which includes the “outer electron- 
ionic core” potential and polarization 
potential [3]. The calibration of the single 
model potential parameter has been 
performed on the basis of the special ab initio 
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multielectron effects, in  particular,  the 
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where ji is the total single electron 
momentum, mi – the projections; QulQ  is the 
Coulomb part of interaction, BrQ - the Breit 
part. The Coulomb part QulQ  is expressed in 
terms of radial integrals R , angular 
coefficients S .  The Breit interaction part is 
defined by similar way (see [3]). The 
relativistic wave functions are calculated by 
solution of the Dirac equation with the 
potential, which includes the “outer electron- 
ionic core” potential and polarization 
potential [3]. The calibration of the single 
model potential parameter has been 
performed on the basis of the special ab initio 
procedure within relativistic energy approach  
(see also [5-7]). In Ref.[6] the lowest order 
multielectron effects, in  particular,  the 
gauge dependent radiative contribution Im 
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solved using one of the standard codes. 
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where ji is the total single electron 
momentum, mi – the projections; QulQ  is the 
Coulomb part of interaction, BrQ - the Breit 
part. The Coulomb part QulQ  is expressed in 
terms of radial integrals R , angular 
coefficients S .  The Breit interaction part is 
defined by similar way (see [3]). The 
relativistic wave functions are calculated by 
solution of the Dirac equation with the 
potential, which includes the “outer electron- 
ionic core” potential and polarization 
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model potential parameter has been 
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The corresponding oscillator strength: 
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angstrems (Ǻ). Under calculating the matrix 
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symmetry of the task and write the expansion 
for potential sinr12/r12 on spherical 
functions and  this expansion corresponds to 
usual multipole one for radiative probability. 
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where ji is the total single electron 
momentum, mi – the projections; QulQ  is the 
Coulomb part of interaction, BrQ - the Breit 
part. The Coulomb part QulQ  is expressed in 
terms of radial integrals R , angular 
coefficients S .  The Breit interaction part is 
defined by similar way (see [3]). The 
relativistic wave functions are calculated by 
solution of the Dirac equation with the 
potential, which includes the “outer electron- 
ionic core” potential and polarization 
potential [3]. The calibration of the single 
model potential parameter has been 
performed on the basis of the special ab initio 
procedure within relativistic energy approach  
(see also [5-7]). In Ref.[6] the lowest order 
multielectron effects, in  particular,  the 
gauge dependent radiative contribution Im 
Eninv for the certain class of the photon 
propagator calibration is treated. This value 
is considered to be the typical representative 
of the electron correlation effects, whose 
minimization is a reasonable criterion in the 
searching for the optimal one-electron basis 
of the  relativistic many-body PT. The 
minimization of functional Im Eninv leads to 
integral-differential equation that can be 
solved using one of the standard codes. 
Therefore, it provides the construction of the 
optimized 1-particle representation and thus 
optimized relativistic model potential ORMP 
scheme [6]. The same procedure is used in 
generalization of the relativistic QDA. 
Usually, the most exact version of the QDA 
is provided by using the empirical data in 
order to determine the quantum defect values 
for different state.  

2.  Relativistic energy approach to atom in 
a strong laser field: Multiphoton 

resonances 
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version of the relativistic quantum defect 
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relativistic energy approach in gauge-
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where ji is the total single electron 
momentum, mi – the projections; QulQ  is the 
Coulomb part of interaction, BrQ - the Breit 
part. The Coulomb part QulQ  is expressed in 
terms of radial integrals R , angular 
coefficients S .  The Breit interaction part is 
defined by similar way (see [3]). The 
relativistic wave functions are calculated by 
solution of the Dirac equation with the 
potential, which includes the “outer electron- 
ionic core” potential and polarization 
potential [3]. The calibration of the single 
model potential parameter has been 
performed on the basis of the special ab initio 
procedure within relativistic energy approach  
(see also [5-7]). In Ref.[6] the lowest order 
multielectron effects, in  particular,  the 
gauge dependent radiative contribution Im 
Eninv for the certain class of the photon 
propagator calibration is treated. This value 
is considered to be the typical representative 
of the electron correlation effects, whose 
minimization is a reasonable criterion in the 
searching for the optimal one-electron basis 
of the  relativistic many-body PT. The 
minimization of functional Im Eninv leads to 
integral-differential equation that can be 
solved using one of the standard codes. 
Therefore, it provides the construction of the 
optimized 1-particle representation and thus 
optimized relativistic model potential ORMP 
scheme [6]. The same procedure is used in 
generalization of the relativistic QDA. 
Usually, the most exact version of the QDA 
is provided by using the empirical data in 
order to determine the quantum defect values 
for different state.  
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scheme [6]. The same procedure is used in gen-
eralization of the relativistic QDA. Usually, the 
most exact version of the QDA is provided by us-
ing the empirical data in order to determine the 
quantum defect values for different state. 

The above described approach allows to gen-
eralize the QDA and get a new ab initio optimized 
QDA scheme, satisfying a principle of minimiza-
tion for the gauge dependent radiative contribu-
tions to Im dEninv for the certain class of the pho-
ton propagator calibration. A relativistic quantum 
defect is usually defined as (see, for example, [3]:

         ,)( χgνµχ -+-= nn nE                  (6) 

where χ is he Dirac quantum number, and 
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In the non-relativistic limit (i.e. the fine struc-

ture constant α→0) expression (7) transfers to the 
well known non-relativistic expression for quan-
tum defect: 
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where n is the principal quantum number, n* is an 
effective quantum number, Еn is an electron en-
ergy and z is a charge of a core (ion).  

3.  Results and conclusions

We applied the above described approach to 
calculating the energies and oscillator strengths 
of transitions in spectra of the Li-like calcium 
(Z=12). All calculation is  performed on the basis 
of the numeral code Superatom. There are con-
sidered the radiative transitions from ground state 
to the Rydberg states, particularly, 2s1/2 – np1/2,3/2  
(n=3-12). ASome preliminary data were listed 
in [1]. As usually, to test the obtained results, we 
compare our data on the oscillator strengths val-

ues for some Li-like ions with the known theoreti-
cal and compillated data [8-18]. In table 1 we pre-
sent the our oscillator strengths values (OQDA) 
for the 2s1/2 – npj  (n=3-12, j=1/2,3/2) transitions 
in spectrum of the Li-like Ca17+.  

Table 1 
Oscillator strengths values (OQDA) for the 
2s1/2 – npj  (n=3-12, j=1/2,3/2) transitions in 

spectrum of the Li-like Ca17+

 

Transition Exp QDA DF

2s1/2–3p1/2 0.123 – –

2s1/2–3p3/2 0.241 – –

2s1/2–4p1/2 – – –

2s1/2–8p1/2 – 2.54a 2.53a

2s1/2–9p1/2 – 1.74a 1.73a

2s1/2–10p1/2 – 1.24a 1.24a

2s1/2–11p1/2 – 0.919a 0.916a

2s1/2–12p1/2 – 0.70a 0.698a

2s1/2–13p1/2 – 0.546a 0.54a

Transition MBP Our1 Our2

2s1/2–3p1/2 0.126 0.120 0.121

2s1/2–3p3/2 0.246 0.237 0.238

2s1/2–4p1/2 – 0.028 0.029

2s1/2–8p1/2 – 2.52 2.52

2s1/2–9p1/2 – 1.75 1.75

2s1/2–10p1/2 – 1.24 1.24

2s1/2–11p1/2 – 0.91 0.91

2s1/2–12p1/2 – 0.70 0.70

2s1/2–13p1/2 – 0.55 0.55

In Table 1 we list also the corresponding re-
sults on oscillator strengths obtained by comput-
ing within the standard QDA, Dirac-Fock (DF) 
by Zilitis and some experimental data by Mar-
tin-Weiss [1,4,8]. The QDA oscillator strengths 
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data become more exact with the growth of the 
principal quantum number. At the same time the 
accuracy of the DF data may be decreased. The 
agreement between the Martin-Weiss data and 
our results (our 1 and Our 2 are corresponding 
to two different gauges of a photon propagator or 
at usual amplitude approach language length and 
velocity forms of transition operator) is physical-
ly reasonable. The closeness of oscillator strength 
values proves a gauge invariance principle  con-
servation in the radiative transition probabilities 
scheme.  
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QUANTUM DEFECT APPROXIMATION IN THEORY OF RADIATIVE TRANSITIONS IN 
SPECTRUM OF Li-like CALCIUM 

Abstract.
The combined relativistic quantum defect approximation and relativistic many-body perturbation 

theory with the zeroth order optimized  approximation are applied to studying  the Li-like calcium 
oscillator strengths of radiative transitions from ground state to the Rydberg states. New element in 
our scheme is an implementation of optimized relativistic quantum defect approximation to an energy 
approach frames. Comparison of calculated oscillator strengths with available theoretical and experi-
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ПРИБЛИЖЕНИЕ  КВАНТОВОГО ДЕФЕКТА В ТЕОРИИ РАДИАЦИОННЫХ 
ПЕРЕХОДОВ В СПЕКТРЕ Li-ПОДОБНОГО КАЛЬЦИЯ

Резюме. 
Комбинированный релятивистский метод модельного потенциала и метод теории возмуще-

ний с оптимизированным 1-частичным нулевым приближением использованы для вычисления 
энергий и сил осцилляторов радиационных переходов из основного состояния в низколежащие 
и ридберговские состояния в спектрах  Li-подобных ионов. Основная особенность нового под-
хода заключается в имплементации оптимизированного релятивистского приближения модель-
ного потенциала (квантового дефекта) в рамки энергетического подхода. Выполнен анализ и 
сравнение полученных данных  для сил осцилляторов с имеющимися теоретическими и экс-
периментальными данными.  

Ключевые слова: квантового дефекта приближение, силы осцилляторов, радиационные 
переходы, Li-подобный кальций

УДК 539.84

Т. Б. Ткач

НАБЛИЖЕННЯ КВАНТОВОГО ДЕФЕКТУ В ТЕОРІЇ РАДІАЦІЙНИХ ПЕРЕХОДІВ  
У СПЕКТРІ Li-ПОДІБНОГО КАЛЬЦІЮ

Резюме. 
Комбінований релятивістське наближення квантового дефекту  і релятивістська теорія збу-

рень з оптимізованим одночастинковим нульовим наближенням використані для вивчення 
сил осциляторів радіаційних переходів з основного стану у  рідбергівські стани у спектрі  Li-
подібного кальцію. Основна особливість нового підходу пов’язана з імплементацією оптимі-
зованого релятивістського наближення квантового дефекту у межи енергетичного підходу. Ви-
конано аналіз та порівняння отриманих результатів по силам осциляторів з наявними теоретич-
ними та експериментальними даними і ряд значень сил осциляторів представлені, по-перше.

Ключові слова: квантового дефекту наближення, сили осциляторів, радіаційні переходи, 
Li-подібний кальцій
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SPECTROSCOPY OF THE COMPLEX AUTOIONIZATION RESONANCES IN 
SPECTRUM OF HELIUM: TEST AND NEW SPECTRAL DATA 

We applied a generalized energy approach (Gell-Mann and Low S-matrix formalism) combined with the 
relativistic multi-quasiparticle (QP) perturbation theory (PT) with the Dirac-Kohn-Sham zeroth approximation 
and accounting for the exchange-correlation, relativistic corrections to studying  autoionization resonances 
in the helium spectrum, in particular, we predicted the energies and widths of the number of the Rydberg 
resonances. There are presented the results of comparison of our theory data for the autoionization resonance 
3s3p 1Р0 with the available experimental data and those results of other theories, including, method of complex 
rotation by Ho, algebraic approach by Wakid-Callaway, diagonalization method by Senashenko-Wague etc.

1. Introduction

Here we continue our investigations of study-
ing the autoionization state and AR in spectra of 
many electron complex atoms and ions. Let us 
note [1] that theoretical methods of calculation 
of the spectroscopic characteristics for heavy at-
oms and ions are usually divided into a few main 
groups [1-21]. At first, one should mention the 
well known, classical multi-configuration Har-
tree-Fock method (as a rule, the relativistic effects 
are taken into account in the Pauli approximation 
or Breit hamiltonian etc.) allowed to get a great 
number of the useful spectral information about 
light and not heavy atomic systems, but in fact 
it provides only qualitative description of spec-
tra of the heavy atoms and ions. Another more 
consistent method  is given by the known multi-
configuration Dirac-Fock (MCDF) approach. In 
the MCDF calculations the one- and two-particle 
relativistic effects and important exchange-corre-
lation corrections are usually taken into account 
practically, however the total accounting is not 
possible. In this essence it should be given spe-
cial attention to very complex correlation effects, 

such as a continuum pressure and energy depen-
dence of the inter electron interaction.  

In this paper we applied a new relativistic ap-
proach [11-15] to relativistic studying the auto-
ionization characteristics of the helium  atom. 
The new elements of the approach include  the 
combined the generalized energy approach and 
the gauge-invariant QED many-QP PT with the 
Dirac-Kohn-Sham (DKS) “0” approximation 
(optimized 1QP  representation) and an accurate 
accounting for relativistic, correlation and others  
effects. The generalized gauge-invariant version 
of the energy approach has been further devel-
oped in Refs. [12,13]. Below we present new data 
on the energies and widths of the 2s,p, 3s,p 1Р, 
double excited AR for configurations ns2 , np2 , 
3d2 1G, 4d2 1G, 5d2 1G, 4f2 1I , N snp 1,3Lπ and 3lnl΄ 
1,3 Lπ  . 

2. Relativistic approach in autoionization 
spectroscopy of heavy atoms

In refs. [11-15, 17-20] it has been in details 
presented, so here we give only the fundamen-
tal aspects.  In relativistic case the Gell-Mann 
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and Low formula expressed an energy shift DE 
through the QED scattering matrix including the 
interaction with as the photon vacuum field as 
the laser field. The first case is corresponding to 
definition of the traditional radiative and autoion-
ization characteristics of multielectron atom. The 
wave function zeroth basis is found from the Di-
rac-Kohn-Sham equation with a potential, which 
includes the ab initio (the optimized model poten-
tial or DF potentials, electric and polarization po-
tentials of a nucleus; the Gaussian or Fermi forms 
of the charge distribution in a nucleus are usu-
ally used) [5]. Generally speaking, the majority of 
complex atomic systems possess a dense energy 
spectrum of interacting states with essentially 
relativistic properties. Further one should realize 
a field procedure for calculating the energy shifts 
DE of degenerate states, which is connected with 
the secular matrix M diagonalization [8-12]. The 
secular matrix elements are already complex in 
the second order of the PT. Their imaginary parts 
are connected with a decay possibility. A total en-
ergy shift of the state is presented in the standard 
form:

Re Im Im 2E i E EDΕ= D + D D =-G , (1)

where G is interpreted as the level width, and the 
decay possibility Ρ = G . The whole calculation 
of the energies and decay probabilities of a non-
degenerate excited state is reduced to the calcula-
tion and diagonalization of the M. The jj-coupling 
scheme is usually used. The complex  secular ma-
trix M is represented in the form [9,10]:  

      
( ) ( ) ( ) ( )0 1 2 3 .M M M M M= + + +              (2)

where ( )0M  is the contribution of the vacuum dia-
grams of all order of PT, and ( )1M , ( )2M , ( )3M  
those of the one-, two- and three-QP diagrams 
respectively. ( )0M  is a real matrix, proportional 
to the unit matrix. It determines only the general 
level shift. We have assumed ( )0 0.M =  The di-
agonal matrix ( )1M  can be presented as a sum of 
the independent 1QP contributions. For simple 
systems (such as alkali atoms and ions) the 1QP 
energies can be taken from the experiment. Sub-

stituting these quantities into (2) one could have 
summarized  all the contributions of the 1QP di-
agrams of all orders of the formally exact QED 
PT. The optimized 1-QP representation is the best 
one to determine the zeroth approximation. In 
the second order, there is important kind of dia-
grams: the ladder ones. These contributions have 
been summarized by a modification of the central 
potential, which must now include the screening 
(anti-screening) effect  of each particle by two 
others. The additional potential modifies the 1QP 
orbitals and energies. Let us remind that in the 
QED theory, the photon propagator D(12) plays 
the role of this interaction. Naturally, an analyti-
cal form of D depends on the gauge, in which the 
electrodynamic potentials are written. In general, 
the results of all approximate calculations de-
pended on the gauge. Naturally the correct result 
must be gauge invariant. The gauge dependence 
of the amplitudes of the photoprocesses in the ap-
proximate calculations is a well known fact and 
is in details investigated by Grant, Armstrong, 
Aymar-Luc-Koenig, Glushkov-Ivanov [1,2,5,9]. 
Grant has investigated the gauge connection with 
the limiting non-relativistic form of the transition 
operator and has formulated the conditions for 
approximate functions of the states, in which the 
amplitudes are gauge invariant (so called Grant’s 
theorem). These results remain true in an energy 
approach as the final formulae for the probabili-
ties coincide in both approaches. In ref. [16] it has 
been developed a new version of the approach to 
conserve gauge invariance. Here we applied it to 
get the gauge-invariant procedure for generating 
the relativistic DKS orbital bases (abbreviator of 
our method: GIRPT). 

A width of  a state associated with the decay of 
the AR is determined by square of the matrix ele-
ment of the interparticle interaction Г ∞ |V ( b1b2 , 
b3k ) | 2 . The total width is given by the expres-
sion: 

 

(3)

a field procedure for calculating the energy 
shifts E of degenerate states, which is 
connected with the secular matrix M 
diagonalization [8-12]. The secular matrix 
elements are already complex in the second 
order of the PT. Their imaginary parts are 
connected with a decay possibility. A total 
energy shift of the state is presented in the 
standard form: 

                                           
Re Im Im 2E i E E      , 

                                                                     (1) 

where  is interpreted as the level width, and 
the decay possibility    . The whole 
calculation of the energies and decay 
probabilities of a non-degenerate excited state is 
reduced to the calculation and diagonalization 
of the M. The jj-coupling scheme is usually 
used. The complex  secular matrix M is 
represented in the form [9,10]:   
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where  0M  is the contribution of the vacuum 
diagrams of all order of PT, and  1M , 

 2M ,  3M  those of the one-, two- and three-QP 
diagrams respectively.  0M  is a real matrix, 
proportional to the unit matrix. It determines 
only the general level shift. We have assumed 

 0 0.M   The diagonal matrix  1M  can be 
presented as a sum of the independent 1QP 
contributions. For simple systems (such as 
alkali atoms and ions) the 1QP energies can be 
taken from the experiment. Substituting these 
quantities into (2) one could have summarized  
all the contributions of the 1QP diagrams of all 
orders of the formally exact QED PT. The 
optimized 1-QP representation is the best one to 
determine the zeroth approximation. In the 
second order, there is important kind of 
diagrams: the ladder ones. These contributions 
have been summarized by a modification of the 
central potential, which must now include the 
screening (anti-screening) effect  of each 
particle by two others. The additional potential 
modifies the 1QP orbitals and energies. Let us 
remind that in the QED theory, the photon 
propagator D(12) plays the role of this 
interaction. Naturally, an analytical form of D 
depends on the gauge, in which the 
electrodynamic potentials are written. In 

general, the results of all approximate 
calculations depended on the gauge. Naturally 
the correct result must be gauge invariant. The 
gauge dependence of the amplitudes of the 
photoprocesses in the approximate calculations 
is a well known fact and is in details 
investigated by Grant, Armstrong, Aymar-Luc-
Koenig, Glushkov-Ivanov [1,2,5,9]. Grant has 
investigated the gauge connection with the 
limiting non-relativistic form of the transition 
operator and has formulated the conditions for 
approximate functions of the states, in which the 
amplitudes are gauge invariant (so called 
Grant’s theorem). These results remain true in 
an energy approach as the final formulae for the 
probabilities coincide in both approaches. In ref. 
[16] it has been developed a new version of the 
approach to conserve gauge invariance. Here we 
applied it to get the gauge-invariant procedure 
for generating the relativistic DKS orbital bases 
(abbreviator of our method: GIRPT).  

A width of  a state associated with the 
decay of the AR is determined by square of the 
matrix element of the interparticle interaction 
Г V ( 1 2 ,  3 k )  2 . The total width is given 
by the expression:  
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where the coefficients C can be determined bas 
follows:                    

                                                                   (4a)

                                                                   (4b)
        

(4c)

                                                                             

 
                                                                  (4d)

The matrix element of the relativistic inter-
particle interaction 

                                                                      (5)

(here αI –the Dirac matrices) in (3) is determined 
as follows: 

     

                                                                      (6)

                         aQ = Qul
aQ + Br

aQ .               (7)

Here Qul
aQ and Br

aQ is corresponding to the 
Coulomb and Breit parts of the interlparticle in-
teraction (5). It is worth to remind that the  real 
part of the interaction matrix element can be ex-
panded in terms of Bessel functions [5,8]:
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ωlpω
rJ

rrr
r

( ) ( )21
2

1 cos rrll
ω PrJ >--

×
(8)

The Coulomb part Qul
lQ  is expressed in the ra-

dial integrals Rl , angular coefficients Sl  as fol-
lows:

( ) ( ){ +12431243Re~Re Qul
ll SRQ l

( ) ( )++ 3~241~3~241~ ll SR

( ) ( )++ 34~2~134~2~1 ll SR

( ) ( )}3~4~2~1~3~4~2~1~ ll SR+
(9)

where, for example,  ReQl(1243) is as follows:  

(10)

Here  f is the large component of radial part of 
the 1QP state Dirac function and function Z is :                                                            

(11)

The angular coefficient is defined by standard 
way as above [3]. The calculation of radial inte-
grals ReRl(1243) is reduced to the solution of a 
system of  differential equations:  

                                              (12)

In addition,  у3(∞)=ReRl(1243), у1(∞)=Xl(13). 
The system of differential equations includes also 

equations for functions f/r|æ|-1, g/r|æ|-1, ( )1
lZ , ( )2

lZ . 
The formulas for the autoionization (Auger) decay 
probability include the radial integrals Ra(akgb), 
where one of the functions describes electron in 
the continuum state. When calculating this inte-

a field procedure for calculating the energy 
shifts E of degenerate states, which is 
connected with the secular matrix M 
diagonalization [8-12]. The secular matrix 
elements are already complex in the second 
order of the PT. Their imaginary parts are 
connected with a decay possibility. A total 
energy shift of the state is presented in the 
standard form: 

                                           
Re Im Im 2E i E E      , 

                                                                     (1) 

where  is interpreted as the level width, and 
the decay possibility    . The whole 
calculation of the energies and decay 
probabilities of a non-degenerate excited state is 
reduced to the calculation and diagonalization 
of the M. The jj-coupling scheme is usually 
used. The complex  secular matrix M is 
represented in the form [9,10]:   
 

       0 1 2 3 .M M M M M     
                                                                      (2) 
where  0M  is the contribution of the vacuum 
diagrams of all order of PT, and  1M , 

 2M ,  3M  those of the one-, two- and three-QP 
diagrams respectively.  0M  is a real matrix, 
proportional to the unit matrix. It determines 
only the general level shift. We have assumed 

 0 0.M   The diagonal matrix  1M  can be 
presented as a sum of the independent 1QP 
contributions. For simple systems (such as 
alkali atoms and ions) the 1QP energies can be 
taken from the experiment. Substituting these 
quantities into (2) one could have summarized  
all the contributions of the 1QP diagrams of all 
orders of the formally exact QED PT. The 
optimized 1-QP representation is the best one to 
determine the zeroth approximation. In the 
second order, there is important kind of 
diagrams: the ladder ones. These contributions 
have been summarized by a modification of the 
central potential, which must now include the 
screening (anti-screening) effect  of each 
particle by two others. The additional potential 
modifies the 1QP orbitals and energies. Let us 
remind that in the QED theory, the photon 
propagator D(12) plays the role of this 
interaction. Naturally, an analytical form of D 
depends on the gauge, in which the 
electrodynamic potentials are written. In 

general, the results of all approximate 
calculations depended on the gauge. Naturally 
the correct result must be gauge invariant. The 
gauge dependence of the amplitudes of the 
photoprocesses in the approximate calculations 
is a well known fact and is in details 
investigated by Grant, Armstrong, Aymar-Luc-
Koenig, Glushkov-Ivanov [1,2,5,9]. Grant has 
investigated the gauge connection with the 
limiting non-relativistic form of the transition 
operator and has formulated the conditions for 
approximate functions of the states, in which the 
amplitudes are gauge invariant (so called 
Grant’s theorem). These results remain true in 
an energy approach as the final formulae for the 
probabilities coincide in both approaches. In ref. 
[16] it has been developed a new version of the 
approach to conserve gauge invariance. Here we 
applied it to get the gauge-invariant procedure 
for generating the relativistic DKS orbital bases 
(abbreviator of our method: GIRPT).  

A width of  a state associated with the 
decay of the AR is determined by square of the 
matrix element of the interparticle interaction 
Г V ( 1 2 ,  3 k )  2 . The total width is given 
by the expression:  
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where the coefficients C can be determined bas 
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a field procedure for calculating the energy 
shifts E of degenerate states, which is 
connected with the secular matrix M 
diagonalization [8-12]. The secular matrix 
elements are already complex in the second 
order of the PT. Their imaginary parts are 
connected with a decay possibility. A total 
energy shift of the state is presented in the 
standard form: 

                                           
Re Im Im 2E i E E      , 

                                                                     (1) 

where  is interpreted as the level width, and 
the decay possibility    . The whole 
calculation of the energies and decay 
probabilities of a non-degenerate excited state is 
reduced to the calculation and diagonalization 
of the M. The jj-coupling scheme is usually 
used. The complex  secular matrix M is 
represented in the form [9,10]:   
 

       0 1 2 3 .M M M M M     
                                                                      (2) 
where  0M  is the contribution of the vacuum 
diagrams of all order of PT, and  1M , 

 2M ,  3M  those of the one-, two- and three-QP 
diagrams respectively.  0M  is a real matrix, 
proportional to the unit matrix. It determines 
only the general level shift. We have assumed 

 0 0.M   The diagonal matrix  1M  can be 
presented as a sum of the independent 1QP 
contributions. For simple systems (such as 
alkali atoms and ions) the 1QP energies can be 
taken from the experiment. Substituting these 
quantities into (2) one could have summarized  
all the contributions of the 1QP diagrams of all 
orders of the formally exact QED PT. The 
optimized 1-QP representation is the best one to 
determine the zeroth approximation. In the 
second order, there is important kind of 
diagrams: the ladder ones. These contributions 
have been summarized by a modification of the 
central potential, which must now include the 
screening (anti-screening) effect  of each 
particle by two others. The additional potential 
modifies the 1QP orbitals and energies. Let us 
remind that in the QED theory, the photon 
propagator D(12) plays the role of this 
interaction. Naturally, an analytical form of D 
depends on the gauge, in which the 
electrodynamic potentials are written. In 

general, the results of all approximate 
calculations depended on the gauge. Naturally 
the correct result must be gauge invariant. The 
gauge dependence of the amplitudes of the 
photoprocesses in the approximate calculations 
is a well known fact and is in details 
investigated by Grant, Armstrong, Aymar-Luc-
Koenig, Glushkov-Ivanov [1,2,5,9]. Grant has 
investigated the gauge connection with the 
limiting non-relativistic form of the transition 
operator and has formulated the conditions for 
approximate functions of the states, in which the 
amplitudes are gauge invariant (so called 
Grant’s theorem). These results remain true in 
an energy approach as the final formulae for the 
probabilities coincide in both approaches. In ref. 
[16] it has been developed a new version of the 
approach to conserve gauge invariance. Here we 
applied it to get the gauge-invariant procedure 
for generating the relativistic DKS orbital bases 
(abbreviator of our method: GIRPT).  

A width of  a state associated with the 
decay of the AR is determined by square of the 
matrix element of the interparticle interaction 
Г V ( 1 2 ,  3 k )  2 . The total width is given 
by the expression:  
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where the coefficients C can be determined bas 
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a field procedure for calculating the energy 
shifts E of degenerate states, which is 
connected with the secular matrix M 
diagonalization [8-12]. The secular matrix 
elements are already complex in the second 
order of the PT. Their imaginary parts are 
connected with a decay possibility. A total 
energy shift of the state is presented in the 
standard form: 

                                           
Re Im Im 2E i E E      , 

                                                                     (1) 

where  is interpreted as the level width, and 
the decay possibility    . The whole 
calculation of the energies and decay 
probabilities of a non-degenerate excited state is 
reduced to the calculation and diagonalization 
of the M. The jj-coupling scheme is usually 
used. The complex  secular matrix M is 
represented in the form [9,10]:   
 

       0 1 2 3 .M M M M M     
                                                                      (2) 
where  0M  is the contribution of the vacuum 
diagrams of all order of PT, and  1M , 

 2M ,  3M  those of the one-, two- and three-QP 
diagrams respectively.  0M  is a real matrix, 
proportional to the unit matrix. It determines 
only the general level shift. We have assumed 

 0 0.M   The diagonal matrix  1M  can be 
presented as a sum of the independent 1QP 
contributions. For simple systems (such as 
alkali atoms and ions) the 1QP energies can be 
taken from the experiment. Substituting these 
quantities into (2) one could have summarized  
all the contributions of the 1QP diagrams of all 
orders of the formally exact QED PT. The 
optimized 1-QP representation is the best one to 
determine the zeroth approximation. In the 
second order, there is important kind of 
diagrams: the ladder ones. These contributions 
have been summarized by a modification of the 
central potential, which must now include the 
screening (anti-screening) effect  of each 
particle by two others. The additional potential 
modifies the 1QP orbitals and energies. Let us 
remind that in the QED theory, the photon 
propagator D(12) plays the role of this 
interaction. Naturally, an analytical form of D 
depends on the gauge, in which the 
electrodynamic potentials are written. In 

general, the results of all approximate 
calculations depended on the gauge. Naturally 
the correct result must be gauge invariant. The 
gauge dependence of the amplitudes of the 
photoprocesses in the approximate calculations 
is a well known fact and is in details 
investigated by Grant, Armstrong, Aymar-Luc-
Koenig, Glushkov-Ivanov [1,2,5,9]. Grant has 
investigated the gauge connection with the 
limiting non-relativistic form of the transition 
operator and has formulated the conditions for 
approximate functions of the states, in which the 
amplitudes are gauge invariant (so called 
Grant’s theorem). These results remain true in 
an energy approach as the final formulae for the 
probabilities coincide in both approaches. In ref. 
[16] it has been developed a new version of the 
approach to conserve gauge invariance. Here we 
applied it to get the gauge-invariant procedure 
for generating the relativistic DKS orbital bases 
(abbreviator of our method: GIRPT).  

A width of  a state associated with the 
decay of the AR is determined by square of the 
matrix element of the interparticle interaction 
Г V ( 1 2 ,  3 k )  2 . The total width is given 
by the expression:  
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where the coefficients C can be determined bas 
follows:                     
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                                                               (4d) 
The matrix element of the relativistic inter-
particle interaction  
 
        ijiijijji rαα1riωexprrV /)(                                   
                                                                    (5) 
(here I –the Dirac matrices) in (3) is 
determined as follows:  
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              aQ = Qul

aQ + Br
aQ .             (7) 

 
Here Qul

aQ and Br
aQ is corresponding to the 

Coulomb and Breit parts of the interlparticle 
interaction (5). It is worth to remind that the  
real part of the interaction matrix element can 
be expanded in terms of Bessel functions [5,8]: 
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(8) 
The Coulomb part Qul

Q  is expressed in the 
radial integrals R , angular coefficients S  as 
follows: 
 

    12431243Re~Re Qul
 SRQ l  

 
    3~241~3~241~  SR  

 
    34~2~134~2~1  SR  

 
   3~4~2~1~3~4~2~1~  SR  

(9) 
where, for example,  ReQ(1243) is as follows:   
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(10) 
Here  f is the large component of radial part of 
the 1QP state Dirac function and function Z is :                                                             
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                                                                    (11) 
The angular coefficient is defined by standard 
way as above [3]. The calculation of radial 
integrals ReR(1243) is reduced to the solution 
of a system of  differential equations:   
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The angular coefficient is defined by standard 
way as above [3]. The calculation of radial 
integrals ReR(1243) is reduced to the solution 
of a system of  differential equations:   
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In addition,  у3()=ReR(1243), у1()=X(13). 
The system of differential equations includes 
also equations for functions f/ræ-1, g/ræ-
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Z ,  2
Z . The formulas for the autoionization 

(Auger) decay probability include the radial 
integrals R(k), where one of the functions 
describes electron in the continuum state. When 
calculating this integral, the correct 
normalization of the function k is a problem. 
The correctly normalized function should have 
the following asymptotic at  r0: 
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When integrating the master system, the 
function is calculated simultaneously:       
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gral, the correct normalization of the function ψk 
is a problem. The correctly normalized function 
should have the following asymptotic at  r→0:

                                                   
                                                                   (13)

When integrating the master system, the func-
tion is calculated simultaneously:      

                                              
                                                                    (14)

It can be shown that at r→∞, N(r)→Nk, where 
Nk is the normalization of functions  fk, gk of con-
tinuous spectrum satisfying the condition (9). 
Other details can be found in refs.[10-13,16-20] 
as well as description of the  “Superatom” and 
Cowan PC codes, used in all computing.

3. Results and conclusions

In figure 1 there are presented the  fragments of 
the He photoionization spectrum plus absorption 
(due to the data by  NIST [22]). Spectral range 
includes the ARs, which are on average 35-40 eV 
above the first  ionization potential (24.58eV). 

Figure 1. The fragment of the experimental He 
photoionization spectrum (210-180A)

One of the first members of the AR series is 
associated with the transition to double the per-
mitted level excited 2s2p 1P1

0.  Generally there 
are identified two series of the resonances namely 
2snp, 2pns, and both have a first member 2s2p 
and converge to 189.6A). In Table 1 we list the 
experimental data on energy and width (NBS, 
National Bureau of Standards) 1Р0, lying below 
the ionization threshold n=2, and theoretical re-
sults - one of the most accurate theory type Fano 
(Bhatia-Temkin: Th1) and our theory (Th2)[1,3], 

which shows the comparison is quite acceptable 
accuracy of our theory. Another important test of 
any theory - calculation parameters AS 3s3p 1Р0.

Table 1 
The energy and width of the AR He 1Р0 (see 

text)

Th.1 Th.2
(our data)

Exp.
(NBS, NIST)

Е 60.1444 60.1392 60.133±0.015
60.151±0.0103

Г 0.0369 0.0374 0.038±0.004
0.038±0.002

In the Tables 2 and 3 we present the comparison 
of our data for the AR 3s3p 1Р0 with those of other 
theories, including, method of complex rotation 
by Ho, algebraic approach by Wakid-Callaway, 
diagonalization method by Senashenko-Wague, 
relativistic Hartree-Fock (RHF) methid by Nico-
laides-Komninos, R-matrix method by Hayes-
Scott, method of the adiabatic potential curves by 
Koyoma-Takafuji-Matsuzawa and Sadeghpour, 
L2 technique with the Sturm decomposition by 
Broad- Gershacher and Moccia-Spizzo, the Fesh-
bach method by  Wu-Xi) and data measurements 
in laboratories: NIST (NBS; 2SO-MeV electron 
synchrotron storage ring (SURF-II )), Wisconsin 
Laboratory (Wisconsin Tantalus storage ring), 
Stanford Synchrotron Radiation Laboratory 
(SSRL), Berlin electron storage ring (BESSY), 
Daresbury Synchrotron Radiation Source (DSRS) 
[1,3,5,22-24].  

On the one hand, there is sufficiently good 
accuracy of our theory, the secondly (bearing in 
mind that most of the listed methods are devel-
oped specifically for the study helium and can 
not be easily generalized to the case of the heavy 
multi-electron atoms) the definite advantage of 
the presented approach. Note that during transla-
tion for the units “Ry-eV” there was used the He 
ground-state energy value: E=- 5.80744875 Ry 
and the reduced  Rydberg constant 1Ry = 13.603 
876 eV.
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                                                               (4d) 
The matrix element of the relativistic inter-
particle interaction  
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(here I –the Dirac matrices) in (3) is 
determined as follows:  
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              aQ = Qul

aQ + Br
aQ .             (7) 

 
Here Qul

aQ and Br
aQ is corresponding to the 

Coulomb and Breit parts of the interlparticle 
interaction (5). It is worth to remind that the  
real part of the interaction matrix element can 
be expanded in terms of Bessel functions [5,8]: 
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The Coulomb part Qul

Q  is expressed in the 
radial integrals R , angular coefficients S  as 
follows: 
 

    12431243Re~Re Qul
 SRQ l  
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   3~4~2~1~3~4~2~1~  SR  

(9) 
where, for example,  ReQ(1243) is as follows:   
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(10) 
Here  f is the large component of radial part of 
the 1QP state Dirac function and function Z is :                                                             
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The angular coefficient is defined by standard 
way as above [3]. The calculation of radial 
integrals ReR(1243) is reduced to the solution 
of a system of  differential equations:   
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(12) 
In addition,  у3()=ReR(1243), у1()=X(13). 
The system of differential equations includes 
also equations for functions f/ræ-1, g/ræ-
1,  1

Z ,  2
Z . The formulas for the autoionization 

(Auger) decay probability include the radial 
integrals R(k), where one of the functions 
describes electron in the continuum state. When 
calculating this integral, the correct 
normalization of the function k is a problem. 
The correctly normalized function should have 
the following asymptotic at  r0: 
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When integrating the master system, the 
function is calculated simultaneously:       
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1
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                                                                    (14) 
It can be shown that at r, N(r)Nk, where 
Nk is the normalization of functions  fk, gk of 
continuous spectrum satisfying the condition 
(9). Other details can be found in refs.[10-
13,16-20] as well as description of the  
“Superatom” and Cowan PC codes, used in all 
computing. 

 
3. Results and conclusions 

In figure 1 there are presented the  fragments of 
the He photoionization spectrum plus 
absorption (due to the data by  NIST [22]). 
Spectral range includes the ARs, which are on 
average 35-40 eV above the first  ionization 
potential (24.58eV).  
 

 
Figure 1. The fragment of the experimental He 

photoionization spectrum (210-180A) 
 
 
One of the first members of the AR series is 
associated with the transition to double the 
permitted level excited 2s2p 1P1

0.  Generally 
there are identified two series of the resonances 
namely 2snp, 2pns, and both have a first 
member 2s2p and converge to 189.6A). In Table 
1 we list the experimental data on energy and 
width (NBS, National Bureau of Standards) 1Р0, 
lying below the ionization threshold n=2, and 
theoretical results - one of the most accurate 
theory type Fano (Bhatia-Temkin: Th1) and our 
theory (Th2)[1,3], which shows the comparison 
is quite acceptable accuracy of our theory. 
Another important test of any theory - 
calculation parameters AS 3s3p 1Р0. 

 
Table 1. The energy and width of the AR He 
1Р0  

(see text) 
 Th.1 

 
Th.2 

(our data) 
Exp. 

(NBS, NIST) 
Е 60.1444 60.1392 60.1330.015 

60.1510.0103 
Г 0.0369 0.0374 0.0380.004 

0.0380.002 
 

In the Tables 2 and 3 we present the comparison 
of our data for the AR 3s3p 1Р0 with those of 
other theories, including, method of complex 
rotation by Ho, algebraic approach by Wakid-
Callaway, diagonalization method by 
Senashenko-Wague, relativistic Hartree-Fock 
(RHF) methid by Nicolaides-Komninos, R-
matrix method by Hayes-Scott, method of the 
adiabatic potential curves by Koyoma-Takafuji-
Matsuzawa and Sadeghpour, L2 technique with 
the Sturm decomposition by Broad- Gershacher 
and Moccia-Spizzo, the Feshbach method by  
Wu-Xi) and data measurements in laboratories: 
NIST (NBS; 2SO-MeV electron synchrotron 
storage ring (SURF-II )), Wisconsin Laboratory 
(Wisconsin Tantalus storage ring), Stanford 
Synchrotron Radiation Laboratory (SSRL), 
Berlin electron storage ring (BESSY), 
Daresbury Synchrotron Radiation Source 
(DSRS) [1,3,5,22-24].   
 
Table 2a. Theoretical data for energy of the AR 
3s3p 1Р0 (our data with those of other theories) 

Method Authors Er (Ry) 
PT-REA 
Complex-rotation   
Algebraic close 
coupling  
Diagonalization 
method 
RHF  
 
R-matrix calculation 
Adiabatic potential 
curves  
Adiabatic potential 
L2 tech.+Sturm 
 
Feshbach method 
K-matrix L2 basis-set  

Our theory  
Ho  
Wakid-
Callaway  
Senashenko-
Wague 
Nicolaides-
Komninos 
Hayes-Scott 
Koyoma etal 
 
Sadeghpour 
Broad- 
Gershacher 
Wu-Xi 
Moccia-
Spizzo 

-0.668802 
-0.671252 

-0.670 
 

-0.6685 
- 

0.671388 
 

-0.6707 
-0.6758 

 
-0.67558 
-0.67114 

 
-0.669 27 

 
-0.670 766 

 
On the one hand, there is sufficiently good 
accuracy of our theory, the secondly (bearing in 
mind that most of the listed methods are 
developed specifically for the study helium and 
can not be easily generalized to the case of the 
heavy multi-electron atoms) the definite 
advantage of the presented approach. Note that 
during translation for the units “Ry-eV” there 
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Table 2a 
Theoretical data for energy of the AR 3s3p 1Р0 

(our data with those of other theories)

Method Authors Er (Ry)

PT-REA
Complex-rotation  
Algebraic close 
coupling 
Diagonalization 
method
RHF 

R-matrix calculation
Adiabatic potential 
curves 
Adiabatic potential
L2 tech.+Sturm

Feshbach method
K-matrix L2 basis-set 

Our theory 
Ho 
Wakid-
Callaway 
Senashenko-
Wague
Nicolaides-
Komninos
Hayes-Scott
Koyoma etal

Sadeghpour
Broad- 
Gershacher
Wu-Xi
Moccia-
Spizzo

-0.668802
-0.671252

-0.670

-0.6685
-

0.671388

-0.6707
-0.6758

-0.67558
-0.67114

-0.669 27

-0.670 
766

Table 2b
Theoretical data for width of the AR 3s3p 1Р0 

(our data with with those of other theories)

Method Authors Г/2 (Ry)

PT-REA
Complex-rotation  
Algebraic close 
coupling 
Diagonalization 
method
RHF 

R-matrix calculation
Adiabatic curves 
Adiabatic potential
L2 tech.+Sturm

Feshbach method
K-matrix L2 basis-set 

Our theory 
Ho 
Wakid-
Callaway 
Senashenko-
Wague
Nicolaides-
Komninos
Hayes-Scott
Koyoma etal
Sadeghpour
Broad- 
Gershacher
Wu-Xi
Moccia-
Spizzo

0.006814
0.007024
0.00695

0.00548

     -

0.00660
     -
     -
0.00704

0.00420

0.00676

An interesting and valuable renewed data on 
Rydberg AR energies (in atomic units) of the dou-
ble excited states ns2 1S are listed in Table 4. 

In whole an detailed analysis shows quite 
physically reasonable agreement between the pre-
sented theoretical and experimental results. But 
some difference, in our opinion, can be explained 

by different accuracy of estimates of the radial 
integrals, using the different type basis’s (gauge 
invariance conservation or a degree of accounting 
for the exchange-correlation effects) and some 
other additional computing approximations.

Table 3
Theoretical and experimental data for energy 

and width of the AR 3s3p 1Р0 (our data with 
those of other best theories)

Method Er (eV) Г/2 (eV)

Theories
Our data 
Complex-
rotation  
MCHF
R-matrix 

Exp.
NBS-I (1973)
Wisconsin(1982)
SSRL (1987)
BESSY (1988) 
 DSRS (2009)

69.9055
69.8722
69.8703
69.8797

69.919±0.007
69.917±0.012
69.917±0.012
69.914±0.015
69.880±0.022

0.1854
0.1911

-
0.1796

0.132±0.014
0.178±0.012
0.178±0.012
0.200±0.020
0.180±0.015

Note: the He ground-state energy value: E=- 
5.80744875 Ry and the reduced  Rydberg con-
stant 1Ry = 13.603 876 eV.

Table 4 
Predicted data for Rydberg AR energies (in 

atomic units) of the He double excited states 
ns2 1S (our theory)

State Energy State Energy
6s2 0.08697 10s2 0.03002
7s2 0.06288 11s2 0.02468
8s2 0.04467 12s2 0.01998
9s2 0.03697 13s2 0.01923
14s2 0.01596 18s2 0.00928
15s2 0.01370 19s2 0.00832
16s2 0.01198 20s2 0.00746
17s2 0.01042 21s2 0.00507
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In our theory there are used gauge-optimized 
basis’s of the relativistic and such basis has ad-
vantage in comparison with the standard DF type 
basis’s. 

In conclusion let us remind that in ref. [14] 
(see also [5,12]) it had been predicted a new op-
tics and spectroscopy  effect of the giant chang-
ing of the AS width in a sufficiently weak electric 
field (for two pairs of the Tm, Gd AR). Naturally  
any two states of different parity can be mixed 
by the external electric field. The mixing leads to 
redistribution of the autoionization widths. In a 
case of the heavy elements such as lanthanide and 
actinide atoms the respective redistribution has a 
giant effect. In the case of degenerate or near-de-
generate resonances this effect becomes observ-
able even at a moderately weak field. 

We have tried to discover the same new spec-
tral effect in a case of the He Rydberg autoioniza-
tion  states spectrum using the simplified version 
of the known strong-field operator PT formalism 
[5,14]. However, the preliminary estimates have 
indicated on the absence of the width giant broad-
ening effect for the helium case, except for minor 
changes of the corresponding widths, which are 
well known in the standard atomic spectroscopy. 
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SPECTROSCOPY OF THE COMPLEX AUTOIONIZATION RESONANCES IN 
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Abstract. 
We applied a generalized energy approach (Gell-Mann and Low S-matrix formalism) combined 

with the relativistic multi-quasiparticle (QP) perturbation theory (PT) with the Dirac-Kohn-Sham ze-
roth approximation and accounting for the exchange-correlation, relativistic corrections to studying  
autoionization resonances in the helium spectrum, in particular, we predicted the energies and widths 
of the number of the Rydberg resonances. There are presented the results of comparison of our theory 
data for the autoionization resonance 3s3p 1Р0 with the available experimental data and those results of 
other theories, including, method of complex rotation by Ho, algebraic approach by Wakid-Callaway, 
diagonalization method by Senashenko-Wague etc.
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А. В. Глушков, А. А.Свинаренко, В. Б. Терновский, А. В. Смирнов, П. А. Заичко 

СПЕКТРОСКОПИЯ СЛОЖНЫХ АВТОИОНИЗАЦИОННЫХ РЕЗОНАНСОВ В 
СПЕКТРЕ ГЕЛИЯ: ТЕСТ И НОВЫЕ СПЕКТРАЛЬНЫЕ ДАННЫЕ

Резюме. 
Обобщенный энергетический подход (S-матричный формализм Гелл-Мана и Лоу) и реляти-

вистская теория возмущений с дирак-кон-шэмовским нулевым приближением и учетом обмен-
но-корреляционных и релятивистских поправок применены к изучению автоионизационных 
резонансов в атоме гелия, в частности, предсказаны энергии и ширины ряда ридберговых ре-
зонансов.  Представлены результаты сравнения данных нашей теории, в частности, для автои-
онизацийного резонанса 3s3p 1Р0 с имеющимися экспериментальными данными и результата-
ми других теорий, в том числе, методом комплексного вращения Хо алгебраического подхода 
Wakid-Callaway, метода диагонализации Senashenko-Wague и т.д. 

Ключевые слова: спектроскопия автоионизационных резонансов, релятивистский энерге-
тический подход, гелий
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СПЕКТРОСКОПІЯ СКЛАДНИХ АВТОІОНІЗАЦІЙНИХ РЕЗОНАНСІВ В СПЕКТРІ 
ГЕЛІЮ: ТЕСТ І НОВІ СПЕКТРАЛЬНІ ДАНІ 

Резюме.  
Узагальнений енергетичний підхід (S-матричний формалізм Гелл-Мана та Лоу) и реляти-

вістська теорія збурень з дірак-кон-шемівським нульовим наближенням та урахуванням   об-
мінно-кореляційних і релятивістських поправок застосований  до вивчення автоіонізаційних 
резонансів у атомі гелію, зокрема, передбачені енергії та ширини ряду рідбергових резонансів.  
Представлені результати порівняння даних нашої теорії, зокрема, для автоіонізаційного резо-
нансу 3s3p 1Р0 з наявними експериментальними даними і результатами інших теорій, у тому 
числі, методом комплексного обертання Хо, алгебраїчного підходу Wakid-Callaway, методу діа-
гоналізації Senashenko-Wague  і т.д. 

Ключові слова: спектроскопія автоіонізаційних резонансів, релятивістський енергетичний 
підхід, гелій
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The mechanisms leading to the intersection of the dark and light current-voltage characteristics and related 
phenomena has been considered. The possibility of participation in it as non-equilibrium carriers in the case of 
solar cells, and the contribution of the equilibrium charge when the temperature impact on the reference diode 
has been shown. A model explaining the observed features has been built

The intersection of the current-voltage charac-
teristics (CVC) in the study of electrical charac-
teristics of p-n-junctions suggests that in addition 
to the standard mechanisms of the CVC forma-
tion are present or additional process, depending 
on the applied voltage, or the formation of the 
diffusion and drift current differs from the “clas-
sic” model, or additional external exposure to ra-
diation or temperature takes place. These reasons 
make the actual identification of additional mech-
anisms influencing the CVC formation.

1.  The intersection of solar cells light and 
dark current-voltage characteristics  

In the study of the solar cells based on CdS-
Cu2S heterojunctions [1] the crossing of the dark 
and light current-voltage characteristics under 
forward bias applied to the element (Fig.1) was 
observed. Similar was the appearance of the con-
trol volt-ampere characteristic of silicon solar 
cells FD6K of industrial manufacturing.

Crossing of the dark and light current-voltage 
characteristic of the photodiode seems quite para-
doxical. It turns out that there is a bias voltage, 
where via structure  the same current flows re-
gardless of influence on it light or it is in the dark-
ness. While it is known that irradiation creates 
new non-equilibrium carriers. Moreover, since 
for creation of the photodiodes are selected espe-

cially photosensitive materials, the concentration 
of nonequilibrium carriers Δn is much larger than 
the equilibrium concentration of carriers n0, lo-
cated in the semiconductor in the initial state be-
fore irradiation. At the same voltage light current 
must be much greater than the dark. Moreover, 
equilibrium carriers in the semiconductor before 
the lighting under the action of applied voltage 
are also involved in charge transfer and, accord-
ingly, shall contribute to the light flowing current 
amount.

Fig. 1. Typical current-voltage characteristic 
in the dark (1) and under illumination (2) of 
investigated  photodiode.
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It should be noted that the effect of the current-
voltage characteristic was observed only in the 
presence of a sufficiently large contact potential 
difference. The barrier height for the studied struc-
tures, defined as by the standard method from the 
capacitance-voltage characteristics [2], and by the 
cutoff of the straight section of direct branches 
of  current-voltage characteristic at high voltages 
[3,4], was 0.6 eV for heterostructures and 0.4 eV 
in the case of silicon diodes. On the contrary, in 
the control experiments for germanium photocells 
FD-3 of the  industrial manufacturing with a barrier 
height of  0.11 to 0.14 eV was not able to produce 
the intersection of light and dark current-voltage 
characteristics in the workspace of direct biases.

Thus, the model to explain the anomalous form 
of the CVC should be based on high altitude equi-
librium barrier p-n junction. 

At application of the reverse bias barrier height 
increases (Fig. 2, cipher 2) and current, as in the 
dark and at the light is formed by the drift of mi-
nority carriers, remaining essentially the same 
throughout the region of negative biases (left semi-
axis, Fig.1). The effect of the light is reduced to 
the arise of additional nonequilibrium charge and a 
corresponding increase in the light-generated cur-
rent. At the same time due to the spatially separated 
non-equilibrium carriers generates the additional 
internal field directed in accordance with the prin-
ciple of Le Chatelier-Braun against the field barri-
er. As a result, the barrier height decreases slightly. 
In figure 2 this is shown by the dotted line. In order 
not to overload the zone diagram there shows only 
the changes of the bottom of the conduction band. 
Since the barrier height is significant, its small re-
duction has virtually no effect on the amount of the 
drift current.

If no other processes have not occurred, as the 
result of lighting the entire dark current-voltage 
characteristic must shift down the same distance at 
all points, and no intersection of the graphs could 
not happen. However, for direct branch (right semi-
axis, Fig.1) it is not so.

Fig. 2. The change of the barrier profile from 
the initial state (1) at the reverse (2) and direct 
(3) biases

At forward bias occurs two processes. First, 
the external voltage is now directed against the 
field barrier and, consequently, lowers its (in Fig. 
2,  cipher  3). Secondly  the current transport 
mechanism changes. Now the current is formed 
due to diffusion of majority carriers from right to 
left, as shown in figure 2.

For a much lower barrier additional its reduc-
ing at light exposure is much more sensitive. 
Moreover, note that into the transfer process in-
volves electrons with lower, much more popu-
lated levels. 

At the same time due to the barrier height de-
crease the field electric intensity in junction de-
creases and competing drift current occurs less. 
These reasons lead to an additional increase in 
current at the light, and as a result, its value is 
more than dark one. Light current-voltage char-
acteristic at the  curtain biases lies above the dark.

At the same time at small direct biases, as seen 
in Fig. 1, at voltages that are lower than open-
circuit voltage, the current remains negative. This 
is transfer region when the barrier is not enough 
strong lowered and current formation is carried 
predominantly by the same mechanisms as for 
backward branch. Plot of the light current-volt-
age characteristic lies below the plot of the dark 
current-voltage characteristic.       

If at the beginning of the straight branch of the 
light current-voltage characteristic curve is below 
the dark current-voltage characteristic curve, and 
at the end of the straight branch the light current-
voltage characteristic curve lies above the curve 
of the dark current-voltage characteristic, in ac-
cordance with the theorem of Bolzano-Cauchy 
necessarily exist a point of their intersection. 
From the above it is also clear that this can occur 
only for positive currents, that is, when voltages 
are greater than the open-circuit voltage.

Thus, the proposed model is based on the re-
ducing of the barrier height at light and a corre-
sponding diffusion current increase in the formed 
gap. This helps to explain the currents balance at 
the bifurcation point. Under illumination field pat-
terns of the barrier, now at this point unchanged, 
the spatial parts of the nonequilibrium carriers. 
Drift current occurs(figure 2) from left to right. 
But this process includes feedback – at the ex-
pense of the field of free carriers, the barrier is re-
duced and the additional diffusion currier stream 
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forms – (figure 2) from right to left. At some for-
ward bias, so the original height of the barrier in 
the dark, these two additional competing flux at 
light compensate each other. So for this voltage at 
the point of current-voltage characteristic intersec-
tion total current across the junction when the light 
is on not changed.

It becomes also clear why for photodiodes with 
a small initial barrier it is difficult to achieve the 
current-voltage characteristic crossing. Diffusion 
current even before lighting is too large. So the 
lightning may not considerably change its value.

The proposed model allows us to explain the bi-
furcation point coordinate dependence on the light 
intensity. If the luminous flux increases, a number 
of carriers separated by a barrier grow. It requires 
larger forward bias, the barrier height occurs less 
and its sagging at the light effect were more effi-
ciently. Indeed, such behaviour has been identified 
for the CdS-Cu2S heterostructure (Fig.3).

On the plot, are clearly seen two regions. So, the 
view according to Fig. 3 indicates the existence of 
two mechanisms of the volt-luxury characteristic 
formation at high and low light intensities.

It should be noted that the point of intersec-
tion always observed on the transitional region of 
schedule current-voltage characteristic between 
the exponential part, when works normal diode 
mechanisms and a linear ohmic region for large 
direct biases when the barrier is already compen-
sated by the external field and the current is limited 
only by the diode base series resistance. This re-
quires additional considerations.

Fig. 3. The dependence of the coordinates of 
the current-voltage characteristics crossing 
point on light intensity.

If the diode series resistance in the dark and 
at the light has not changed, the ends of current-
voltage characteristic plots would be parallel. 
However, the photocells consciously made of 
very sensitive materials. At lightning, the series 
resistance decreases. The slope of the linear part 
of the plot at limiting direct biases at the light in-
creases. The curves intersect.

Most likely, both considered mechanism – the 
light barrier height reducing and series resistance 
decrease is carried out at the same time, ensuring 
by their mutual action the occurrence of the plot 
current-voltage characteristic intersection effect.

However, for the volt-luminous characteristic 
(Fig. 3) two presented mechanisms are competi-
tors. As shown above, the barrier height reduction 
at lightening should lead to an increase the volt-
age in the point of branching. Bifurcation coordi-
nate needs to shift to the right. If the slope of the 
linear part of the current-voltage characteristic 
with the light intensity increases, the bifurcation 
point should to shift to the left (Fig. 1), towards 
the smaller voltage values. The presence of such 
competition creates rather complicated, nonlinear 
type of plot (Fig. 3). At low light intensities the 
first mechanism prevails. Coordinate of the bifur-
cation point increases relatively quickly. At high 
light intensities contribution of the second, com-
peting, mechanism increases. The voltage at the 
point of branching is increased more flat.

2. The intersection of the dark current-
voltage characteristics

For standard reference diode D814G of indus-
trial manufacturing in the area of stabilization, 
we observed the intersection of current-voltage 
characteristics measured at different temperatures 
(Fig. 4). Further raising the temperature above 60 
0C led to the current-voltage characteristic forma-
tion mechanism change as far as in this tempera-
ture region in Germanium already is noticeable 
number of area-zone and above-barrier transi-
tions carriers.

The intersection of the current-voltage char-
acteristics creates a paradoxical situation. Before 
the diode bifurcation point   the reverse current 
increases with temperature due to the saturation 
current Is increase  (in the figure arrow “down” ).
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In the case of stabilitrons, one of this condi-
tion is in principle enough in order to from geo-
metrical considerations formed the intersection 
point. If the basic proportions of the current-volt-
age characteristic plot are stored, including the 
section of stabilization, when the current graph 
grows downwards at an angle, a simple it lower-
ing with temperature must inevitably create the 
intersection. This requires that for high tempera-
tures the transition on the section of stabilization 
was carried out at higher voltages, i.e., the stan-
dard horizontal “shelf” on the reverse branches of 
current-voltage characteristic was delayed.

Fig. 4. Reverse current-voltage characteristics 
of the stabilitron, measured at different tem-
peratures:  (1) – 17 0C, (2) – 56 0C.

From a physical point of view it requires the 
construction of an adequate model, as the current 
formed after the bifurcation point in the diode at 
the same voltage decreases sharply. Moreover, 
this decrease was several times greater than the 
increase in the current at voltages before the bifur-
cation. This unusual manifestation is even more 
paradoxical if take into account that the processes 
leading to an increase in current Is with tempera-
ture, of course, continue to be performed for the 
entire region of the applied voltage change.

 Thus, it is necessary to fined the mechanism 
that is more powerful than the exponential in-
crease with temperature in the carrier number 
and is able to imbibe this process. In addition, 
this model would explain the observed bifurca-
tion point removal, during heating to the left in 
the region of higher biases. Or, what is the same, 
why with the temperature increasing increases the 
length of horizontal section of the current-voltage 
characteristic before the breakdown region.

To clarify this processes peculiarity lets con-
sider influence of the temperature on the diode 
material crystal lattice. The usual carrier concen-
tration in a semiconductor is of the order of 1016 
– 1017 cm-3, whereas the density of lattice sites ~ 
1021 cm-3. I.e. cell crystal lattice density is about 
1020 cm-3. This means that during the current for-
mation carriers are not the total substance. Each 
one is in its crystalline cell and from each other 
they are separated by several orders of cells. The 
lattice points are charged relative to the elec-
tron by equal in magnitude but opposite in sign 
charge. Such points are much closer to each car-
rier. In other words, the current formation in the 
crystal structure mainly influences the individual 
interaction of the electron with the lattice points.

In the case of the reference diodes this mecha-
nism is enhanced. One of the main processes of 
stabilization section formation, when the diode 
current is rising rapidly and the voltage remains 
practically unchanged, is the formation of carrier 
number avalanche multiplication. At the same 
time on one or more of the free path lengths, the 
carrier must pick up the energy in an external field 
equal or greater than the width of the forbidden 
zone. This allows it in the impact with another 
lattice point to knock out an additional electron. 
Therefore, the semiconductor material for the sta-
bilitrone manufacture is chosen in such way as 
to ensure sufficient free carriers and the crystal 
structure points interaction - grid transition must 
be relatively small, and the capture cross section 
high [5].

With temperature increasing diode reverse cur-
rent and the breakdown voltage increases. This is 
connected with the fact that the thermal scattering 
increases, the carrier free path reduces and to p-n-
junction need to put more voltage for the charge 
carriers on a smaller path (equal to the length of 
free path) pick up kinetic energy sufficient for 
ionization [6]. Thus, with increasing temperature 
the length of the stationary section of the current-
voltage characteristic (“shelves” on the current-
voltage dependence) increases.

Simultaneously there is another process. With 
the temperature increasing the   crystal lattice 
vibrations increases. As a result, their capture 
cross-sections increase. In conventional diodes it 
does not lead to any noticeable changes in cur-
rent. However, in the reference diodes it is not so, 
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because the semiconductor material is chosen so 
that the magnitude of the capture cross section is 
comparable with the distance between the lattice 
points. In these conditions, even small changes 
in the capture cross-section diameters can sig-
nificantly narrow “corridor” for flying carries 
(see inset in fig. 4). The frequency of interactions 
with the lattice points is greatly increased. This 
leads to a strong additional scattering of picked 
up in a field the carrier energy. The formation of 
avalanches becomes more difficult, the current 
on the stabilization section decreases (see Fig. 4). 
Moreover, because the interaction with the lattice 
for each carrier is individually, the total increase 
in the equilibrium charge concentration with 
temperatures increasing influence on this effect 
slightly. If the capture cross-section will increase 
so that will be closed down, avalanche genera-
tion, and hence the stabilization section will be 
impossible for any charge amount.

Thus, all the observed features of the refer-
ence diodes current-voltage characteristic due to 
the specific character of the material used have 
the same nature, determined by the increase lat-
tice points fluctuatings with the temperature, and 
consequently increase in currier scattering.
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RELATIVISTIC THEORY OF SPECTRA OF PIONIC ATOMS WITH 
ACCOUNT OF  STRONG PION-NUCLEAR INTERACTION EFFECTS

It is presented a consistent  relativistic theory of spectra of the pionic atoms on the basis of the Klein-Gordon-
Fock with a generalized radiation and strong pion-nuclear potentials. There are presented data of calculation of the 
energy and spectral parameters for pioninc neon, cesium, holmium, thulium, ytterbium, lutetium, thallium, lead, 
and others, including the calculation of energy shifts, the widths of the levels due to the strong interaction with 
accounting for the the radiation (vacuum polarization), nuclear (finite size of a nucleus ) and other corrections. 

1.  Introduction

In previous papers [1-3] we have developed 
a new relativistic method of the Klein-Gordon-
Fock equation with the simplified pion-nuclear 
potential to determine transition energies in spec-
troscopy of light, middle and heavy pionic atoms 
with accounting for the strong interaction effects. 

Here we generalize this  theory in order to de-
scribe pion-nuclear interaction more consistently 
using generalized radiation and strong pion-nu-
clear potentials. As illustration there are present-
ed data of calculation of the energy and spectral 
parameters for pioninc neon, cesium, holmium, 
thulium, ytterbium, lutetium, thallium, lead, and 
others, including the calculation of energy shifts, 
the widths of the levels due to the strong interac-
tion with accounting for the the radiation (vacu-
um polarization), nuclear (finite size of a nucleus 
) and other corrections. 

Following [1-3], let us remind that  spectros-
copy of hadron atoms has been used as a tool for 
the study of particles and fundamental properties 
for a long time. Exotic atoms are also interesting 
objects as they enable to probe aspects of atomic 
and nuclear structure that are quantitatively dif-
ferent from what can be studied in electronic or 
“normal” atoms. At present time one of the most 

sensitive tests for the chiral symmetry breaking 
scenario in the modern hadron’s physics is pro-
vided by studying the exotic hadron-atomic sys-
tems. Nowadays the transition energies in pionic 
atoms are measured with an unprecedented pre-
cision and from studying spectra of the hadronic 
atoms it is possible to investigate the strong inter-
action at low energies measuring the energy and 
natural width of the ground level with a precision 
of few meV [1-13].  The strong interaction is the 
reason for a shift in the energies of the low-lying 
levels from the purely electromagnetic values and 
the finite lifetime of the state corresponds to an 
increase in the observed level width. The most 
known theoretical models to treating the hadronic 
(pionic, kaonic, muonic, antiprotonic etc.) atomic 
systems are presented in refs. [1-5,7,8]. The most 
difficult aspects of the theoretical modelling are 
reduced to the correct description of pion-nuclear 
strong interaction [1-3] as the electromagnetic 
part of the problem is reasonably accounted for. 

2.  Total relativistic theory of spectra of 
pionic atoms

As the basis’s of a new method has been pub-
lished, here we present only the key topics of an 
approach [1-3]. All available theoretical models 
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to treating the hadronic (kaonic, pionic) atoms are 
naturally based on the using the Klein-Gordon-
Fock equation [2,5], which can be written as fol-
lows : 

(1)

where c is a speed of the light, h is the Planck con-
stant, and Ψ0(x) is the scalar wave function of the 
space-temporal coordinates. Usually one consid-
ers the central potential [V0(r), 0] approximation 
with the stationary solution:

              )(	)/=Ψ xt ϕexp(-iE  (x) ,              (2)

where )(xϕ is the solution of the stationary equa-
tion:

                             (3)

Here E is the total energy of the system (sum 
of the mass energy mc2 and binding energy e0). 
In principle, the central potential V0 naturally in-
cludes the central Coulomb potential, the vacu-
um-polarization potential, the strong interaction 
potential. 

The most direct approach to treating the strong  
interaction is provided by the well known optical 
potential model (c.g. [2]). Practically in all papers 
the central potential V0  is the sum of the following 
potentials. The nuclear potential for the spherical-

ly symmetric density ( )Rrρ  is [6,13]:
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The most popular Fermi-model approxima-

tion the charge distribution in the nucleus ( )rρ  
(c.f.[11]) is as follows:  

     )]}/)exp[(1/{)( 0 acrñrñ -+= ,           (5)

where the parameter a=0.523 fm, the parameter с 
is chosen by such a way that it is true the follow-
ing condition for average-squared radius: 

<r2>1/2=(0.836×A1/3+0.5700)fm.

The effective algorithm for its definition is 
used in refs. [12] and reduced to solution of the 
following system of the differential equations: 
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with the corresponding boundary conditions.  An-
other, probably, more consistent approach is in 
using the relativistic mean-field (RMF) model, 
which been designed as a renormalizable meson-
field theory for nuclear matter and finite nuclei 
[13].To take into account the radiation correc-
tions, namely, the effect of the vacuum polariza-
tion we have used the generalized  Ueling-Serber 
potential with modification to take into account 
the high-order radiative corrections [5,12]. 

The most difficult aspect is an adequate ac-
count for the strong interaction. On order to de-
scribe the strong p-N interaction we have used the 
optical potential model in which the generalized 
Ericson-Ericson potential is as follows:
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Here ( )rnp,ρ  – distribution of a density of the 

protons and neutrons, respectively, ξ – parameter 
( 0=ξ  corresponds to case of “no correlation”, 

1=ξ , if anticorrelations between nucleons);  re-
spectively isoscalar and isovector parameters b0, 
c0 , B0, b1,c1 , C0  B1, C1 –are corresponding to the 
s-wave and p-wave (repulsive and attracting po-
tential member) scattering length in the combined 
spin-isospin space with taking into account the 

 
 
 
 
 
 
[2,5], which can be written as follows :                                         
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where c is a speed of the light, h is the Planck 
constant, and Ψ0(x) is the scalar wave 
function of the space-temporal coordinates. 
Usually one considers the central potential 
[V0(r), 0] approximation with the stationary 
solution: 
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where x is the solution of the stationary 
equation: 
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where the parameter a=0.523 fm, the 
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with the corresponding boundary conditions.  
Another, probably, more consistent approach 
is in using the relativistic mean-field (RMF) 
model, which been designed as a 
renormalizable meson-field theory for 
nuclear matter and finite nuclei [13].To take 
into account the radiation corrections, 
namely, the effect of the vacuum polarization 
we have used the generalized  Ueling-Serber 
potential with modification to take into 
account the high-order radiative corrections 
[5,12].  
The most difficult aspect is an adequate 
account for the strong interaction. On order 
to describe the strong -N interaction we 
have used the optical potential model in 
which the generalized Ericson-Ericson 
potential is as follows: 

                       

     
  











 r
rrq

m
rVV optN 


 3/412

4

(9)                                                       

         







 rrbrb

m
m

rq pn
N


101  

           ,
2

1 1
2

0 rrBrB
m
m

N

 







   (10) 

 
 
 
 
 
 
[2,5], which can be written as follows :                                         

)(})]([1{)( 222
02

22 xreVi
c

xcm t                                                                        

                                                      (1) 
 
where c is a speed of the light, h is the Planck 
constant, and Ψ0(x) is the scalar wave 
function of the space-temporal coordinates. 
Usually one considers the central potential 
[V0(r), 0] approximation with the stationary 
solution: 
                                                        
              xt exp(-iE  (x) ,              (2) 
 
where x is the solution of the stationary 
equation: 
  

                                              

0)(})]([1{ 22222
02  xcmreVE

c
                              

(3) 
 
Here E is the total energy of the system (sum 
of the mass energy mc2 and binding energy 
0). In principle, the central potential V0 
naturally includes the central Coulomb 
potential, the vacuum-polarization potential, 
the strong interaction potential.  

The most direct approach to treating 
the strong  interaction is provided by the well 
known optical potential model (c.g. [2]). 
Practically in all papers the central potential 
V0  is the sum of the following potentials. The 
nuclear potential for the spherically 
symmetric density  Rr  is [6,13]: 

                                            

     




 









r

r
nucl RrrdrRrrdrrRrV '''

0

'2''1                      

(4) 
The most popular Fermi-model 

approximation the charge distribution in the 
nucleus  r  (c.f.[11]) is as follows:   

 
)]}/)exp[(1/{)( 0 acrρrρ  ,                                            

                                                                   (5) 
 

where the parameter a=0.523 fm, the 
parameter с is chosen by such a way that it is 
true the following condition for average-
squared radius:  
 

<r2>1/2=(0.836A1/3+0.5700)fm. 
 
The effective algorithm for its 

definition is used in refs. [12] and reduced to 
solution of the following system of the 
differential equations:  

                                    

         RryrRrrdrrRrnuclV
r

,1,1, 2

0

'2''2'  

,                         (6) 
   RrrRry ,,' 2 ,                                                    

                                                                    (7) 
                                  

2
0 )]}/)exp[(1]{/)exp[()/()(' acracraρrρ                            

(8) 
with the corresponding boundary conditions.  
Another, probably, more consistent approach 
is in using the relativistic mean-field (RMF) 
model, which been designed as a 
renormalizable meson-field theory for 
nuclear matter and finite nuclei [13].To take 
into account the radiation corrections, 
namely, the effect of the vacuum polarization 
we have used the generalized  Ueling-Serber 
potential with modification to take into 
account the high-order radiative corrections 
[5,12].  
The most difficult aspect is an adequate 
account for the strong interaction. On order 
to describe the strong -N interaction we 
have used the optical potential model in 
which the generalized Ericson-Ericson 
potential is as follows: 

                       

     
  











 r
rrq

m
rVV optN 


 3/412

4

(9)                                                       

         







 rrbrb

m
m

rq pn
N


101  

           ,
2

1 1
2

0 rrBrB
m
m

N

 







   (10) 



111

absorption of pions (with different channels at p-p 

pair ( )ppB0  and  p-n  pair  ( )pnB0 ),  and isospin and  
spin dependence of an amplitude  p-N scattering  

( ( ) ( ) ( ) ( ){ }rrbrbrb np ρρρρ -+→ 100 ,

the Lorentz-Lorentz effect in the p-wave interac-
tion. For the pionic atom with remained  electron 
shells the total wave-function is a product of the 
product Slater determinant of the electrons sub-
system (Dirac equation) and the pionic wave 
function. In whole the energy of the hadronic 
atom is represented as the sum:   

          ;KG FS VP NE E E E E≈ + + +               (12)

Here KGE -is the energy of a pion in a nucle-

us ( ),Z A  with the point-like charge (dominative 

contribution in (12)), FSE  is the contribution due 

to the nucleus finite size effect,  VPE is the radia-
tion correction due to the vacuum-polarization 

effect, NE  is the energy shift due to the strong 

interaction NV .
The strong pion-nucleus interaction contribu-

tion can be found from the solution of the Klein-
Gordon equation with the corresponding pion-
nucleon potential.

3.  Results and conclusions

In table 1 we present theoretical and experi-
mental data for shift and widths (keV) provided 
by the strong pion-nuclear interaction for a num-
ber of pionic atoms. The shortened designation of 
the parameter sets for the strong p-N interaction 
potential:  Tauscher -Tau1; Tauscher, -Tau2; Batty 
etal-Bat; Seki etal- Sek; de Laat-Konijin et al - 
Laat, this work -Sha. In our parameterization of 
the strong p-N interaction potential the most reli-
ably defined (B0,с0,с1,С0) parameters are remained 
unchanged, and the parameters whose values   dif-
fer greatly in different sets, in particular, b1 (b1 = 
-0.094) plus still not included ones  ImB1, ImC1 
have been optimized by calculating dependencies 
strong shifts for p--20Ne, 24Mg, 93Nb, 133Cs,175Lu, 

181Ta, 197Au, 208Pb and further check   that satisfies 
the smallest standard deviation of reliable experi-
mental values.

Table 1 
Theoretical and experimental data for shift 

and widths (keV) provided by the strong pion-
nuclear interaction for a number of pionic 

atoms (see text)

e4f ,G4f Exp
H-like
Func.

Tau1 Tau2

165Ho: e 0.29±0.01 0.21 0.25
0.27

0.24
0.26

169Tm: 
e - - - -

173Yb: e - - - -

175Lu: e 0.51±0.04 0.36 0.43 0.42

181Ta: e 0.56±0.04 0.47 0.57 0.54

197Au: e 1.25±0.07 - 1.21 1.14

208Pb: e 1.68±0.04 - 1.76 1.62

209Bi: e 1.78±0.06 - 1.94 1.80

165Ho: Г 0.21±0.02 0.08 0.13 0.12

169Tm: 
Г - - - -

173Yb: Г - - - -

175Lu: Г 0.27±0.07 0.14 0.23 0.22

181Ta: Г 0.31±0.05 0.16 0.31 0.30

197Au: Г 0.77±0.04 - 0.73 0.68

208Pb: Г 0.98±0.05 - 1.18 1.04

209Bi: Г 1.24±0.09 - 1.35 1.18
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Table 1 (continuation)
Theoretical and experimental data for shift 
and widths (keV) provided by the strong pion-
nuclear interaction for a number of pionic 
atoms (see text)

e4f ,G4f

Bat Sek Laat Sha 

165Ho: e 0.24 0.21 0.26 0.29
169Tm: e - - - 0.38
173Yb: e - - - 0.44
175Lu: e 0.41 0.36 0.46 0.50
181Ta: e 0.53 0.47 0.60 0.55
197Au: e 1.12 0.98 1.25 1.24
208Pb: e 1.58 1.39 1.68 1.65
209Bi: e 1.78 1.57 1.83 1.77

165Ho: Г 0.13 0.11 0.13 0.20
169Tm: Г - - - 0.23
173Yb: Г - - - 0.26
175Lu: Г 0.24 0.20 0.24 0.28
181Ta: Г 0.31 0.27 0.31 0.30
197Au: Г 0.69 0.58 0.67 0.75
208Pb: Г 1.03 0.86 0.98 0.97
209Bi: Г 1.17 0.99 1.10 1.22

Analysis shows that the data from Table 1 of 
all alternative theories (except the  column «H-
like Func», containing data calculation within 
variation theory with  relativistic H-like func-
tions; here there is very unsatisfactorily agree-
ment with experimental data) are obtained on the 
basis of the Klein-Gordon-Fock equation with 
nuclear potential VpN  by Erickson-Erickson with 
different parametrization [2]. More precise cal-
culation data are based on the theory of Klein-
Gordon-Fock equation with nuclear potential VpN  
with parameters Tau1, Tau2, Laat, Sha (see table 
1). Our theory shows that more optimal param-
eterization VpN can significantly improve a qual-
ity of determining characteristics  of the pionic 
atoms, which are provided by the strong pion-nu-

clear interaction. This conclusion is confirmed by 
the data of computing quadrupole shift  of the 4f 
level in spectra of some p-А, in particular,165Ho, 
169Tm, 173Yb,175Lu,209Bі [2-7, 13], provided by the 
strong pion-nuclear interaction. 
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Abstract. 
It is presented a consistent  relativistic theory of spectra of the pionic atoms on the basis of the 

Klein-Gordon-Fock with a generalized radiation and strong pion-nuclear potentials. There are pre-
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РЕЛЯТИВИСТСКАЯ ТЕОРИЯ СПЕКТРОВ ПИОННЫХ АТОМОВ С УЧЕТОМ ЭФ-
ФЕКТОВ СИЛЬНОГО ПИОН-ЯДЕРНОГО ВЗАИМОДЕЙСТВИЯ 

Резюме.
Представлена последовательная релятивистская теория спектров пионных атомов на основе 

уравнения Клейна-Гордона-Фока с обобщенными радиационным и сильным  пион-ядерным 
потенциалом.  Выполнен расчет энергетических и спектральных параметров для пионных ато-
мов неона, цезия, гольмия, тулия, иттербия, лютеция, таллия, свинца и других, включая расчет 
энергетических сдвигов, ширин уровней вследствие сильного взаимодействия с учетом радиа-
ционных (поляризация вакуума), ядерных (конечный размер ядра ) и других поправок.    

Ключевые слова: сильное взаимодействие, пионный атом, релятивистская теория
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ЕФЕКТІВ СИЛЬНОЇ ПІОН-ЯДЕРНОЇ ВЗАЄМОДІЇ

Резюме. 
Представлена послідовна релятивістська теорія спектрів півоній атомів на основі рівняння 

Клейна-Гордона-Фока з узагальненими радіаційним і сильним півонія-ядерним потенціалом. 
Виконано розрахунок енергетичних і спектральних параметрів для піоних атомів неону, цезію, 
гольмію, тулія, ітербію, лютецію, талію, свинцю та інших, включаючи розрахунок енергетич-
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ON DETERMINATION OF RADIATIVE TRANSITIONS PROBABILITIES IN RELATIVISTIC 
THEORY OF DIATOMIC MOLECULES: NEW SCHEME 

On the basis of new gauge-invariant  scheme in the relativistic energy approach combined with the multi-
body perturbation theory for diatomic molecules it is formulated a new theoretical scheme for calculating the 
probabilities of radiative transitions of molecules. It is analysed the possible way to take into account for the 
inter-electron correlation and correspondingly the non-gauge-invariant contributions in relativistic molecular 
theory.

1. The experimental and theoretical study-
ing of the radiation transition characteristics of a 
whole number of many-electron systems such as 
atoms and diatomic molecules is of a great im-
portance and interest from the point of view of as 
the quantum electronics and atomic physics as at-
mosphere, plasma physics and plasma diagnostics 
science [1-33]). The traditional problem of any 
theory of the multielectron systems is determina-
tion of the radiation transition probabilities (os-
cillator strengths). Naturally to present time there 
are many well developed methods in a relativistic 
theory of atoms and ions and non-relativistic the-
ory of molecular systems [1-16]. The well known 
multi-configuration Hartree-Fock method (the 
relativistic effects are often taken into account 
in the Pauli approximation or Breit Hamiltonian 
etc) allowed to obtain the useful spectral data on 
light and not heavy systems. The multi-configura-
tion  Dirac-Fock (DF) method is the most reliable 
version of calculation for systems with a large 
number of electrons. In these calculations the ef-
fects are taken into account practically precisely 
[1-18]. The calculation program of Desclaux (the 
Desclaux program, Dirac package) is compiled 
with proper account of the one- and two-particle 
relativistic, a finiteness of the nucleus size etc. It 
should be given special attention to two very gen-

eral and important computer systems for relativ-
istic calculations of atomic and molecular prop-
erties developed in the Oxford group and known 
as GRASP (“GRASP”, “Dirac”; “BERTHA”, 
“QED”, “Dirac”) (see [1-5] and references there). 
Besides, the well known density functional theory 
(DFT), relativistic coupled-cluster approach and 
model potential approaches in heavy atoms and 
ions should be mentioned too [1-15]. 

Nevertheless, as a rule, detailed description of 
the method for studying role of the relativistic, 
gauge-invariant contributions, for molecular sys-
tems is lacking. Serious problems are connected 
with correct definition of the high-order correla-
tion corrections etc. The further improvement of 
this method is connected with using the gauge 
invariant procedures of generating the electron 
orbitals basis’s and more correct treating the cor-
relation effects [1-5,16-21]. 

In refs. [5,17-22] it has been performed an 
analysis of approaches to description of the rela-
tivistic many-electron systems with accurate con-
sistent treating the relativistic, exchange-correla-
tion and other, based on the relativistic perturba-
tion theory (PT) formalism. 

In the relativistic theory of heavy diatomic 
molecules a main problem of using the Dirac 
equation as a zero approximation in molecular 
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calculations associated with the non-ability to 
divide the variables in difference of the standard 
non-relativistic Schrödinger equation. 

In this paper  on the basis of new gauge-invar-
iant  scheme in the relativistic energy approach 
combined with the multi-body perturbation theo-
ry for diatomic molecules it is formulated a new 
theoretical scheme for calculating the probabili-
ties of radiative transitions of molecules. It is ana-
lysed the possible way to take into account for the 
inter-electron correlation and correspondingly the 
non-gauge-invariant contributions in relativistic 
molecular theory.

Naturally, one of the effective ways in relativ-
istic molecular theory is in using the Breit-Pauli 
approximation [3-5]. 

2. Let us describe in brief the important mo-
ment of our theoretical approach. As usually, the 
wave functions zeroth basis is found from the 
Schrodinger (Dirac in the consistent version) 
equation solution with potential, which includes 
the core ab initio potential, electric potentials of 
nuclei and possibly exchange-correlation one-
particle potentials. The last potential in part takes 
into account for contribution of the correlation 
corrections of the PT second and high orders 
(electrons screening, particle-hole interaction 
etc.) are accounted for. 

For arbitrary diatomic molecule in the per-
turbation theory zeroth approximation the  two-
center centre Schrodinger equation is written in 
spheroidal coordinates, l,m,j 

( ( ) Rrr BA +=l , ∞<l≤1 , 

( ) Rrr BA -=µ , 11 ≤µ≤- , p≤µ≤ 20 )

and after a number of transformations results in 
the following form (look,for example, [5]):
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where A is a constant separation. The wave func-
tion is represented as:                                     

( ) ( ) ( ) ( ) ( ) ϕ±µlΛ=ϕµlΛ=ϕµlψ imeGM ,,, .              (4)

and the one-electron energy: 222 RpE -=

The perturbation theory operator is as follows:                                                      

            
[ ]∑∑ -=

δ
δ

-
ρ

ij
iMijT rVrH )(1                (5)

where d,i,j are the summation indexes corre-
spondingly at nuclei and electrons.

In [5] it was constructed for the perturbation 
theory formalism for secular operator matrix and 
there are analyzed the diagrams summation tools 
for secular operator matrix. The terms of this set 
are represemted as contributions on of the Feyn-
man diagrams, which are usually classified on 
number of the end lines. According to such a clas-
sification the matrix element of the secular opera-
tor has a form [5]:

         
,)(...)1()0( iMMMM ξη++ξη+ξη=ξµ                 (6)

where i is a total number of valence  particles, 
М(0) – the vacuum diagrams contribution (without 
the end lines) М(1)  – a contribution of the 1-par-
ticles diagrams (one pair o the end lines); М(2)-
contribution of the two-particle diagrams (two 
pair of the end lines) and so on. Contribution М(1) 
is equal to a sum of the one-particle energies ei. 
In the first perturbation theory order one should 
compute only the contribution of the two-particle 
diagrams of the first order. In fact this correc-
tion is equal to interaction energy of the particles 

)1(ED  and can be expressed  through the matrix 
elements of the usual type on the wave functions 
of the zeroth approximation. For the Coulomb op-

erator 1
12
-r  one should use  the Neumann expan-

sions on the Legendre polynomials of the first and 
second kind and spherical harmonics. 3. 

3. As the first step, the relativistic block of 
the theory may into account the main relativistic 
effects within the model  based on the perturba-
tion theory with the Breit-Pauli Hamiltonian, tak-
ing into account relativistic corrections of the a2 

corder (a-fine structure constant), in particular, 

scheme for calculating the probabilities of 
radiative transitions of molecules. It is 
analysed the possible way to take into 
account for the inter-electron correlation and 
correspondingly the non-gauge-invariant 
contributions in relativistic molecular theory. 
Naturally, one of the effective ways in 
relativistic molecular theory is in using the 
Breit-Pauli approximation [3-5].  
2. Let us describe in brief the important 
moment of our theoretical approach. As 
usually, the wave functions zeroth basis is 
found from the Schrodinger (Dirac in the 
consistent version) equation solution with 
potential, which includes the core ab initio 
potential, electric potentials of nuclei and 
possibly exchange-correlation one-particle 
potentials. The last potential in part takes into 
account for contribution of the correlation 
corrections of the PT second and high orders 
(electrons screening, particle-hole interaction 
etc.) are accounted for.  

For arbitrary diatomic molecule in the 
perturbation theory zeroth approximation the  
two-center centre Schrodinger equation is 
written in spheroidal coordinates, ,,  
 

(   Rrr BA  , 1 , 
  Rrr BA  , 11  ,  20 ) 

 
and after a number of transformations results 
in the following form (look,for example, [5]): 
 

  















 22

2

2
2

1
1[ 





pm      

 
    0]2    AeZZR kR

BA  
 

  















 22

2

2
2

1
1[ 





pm  

                       0]   MAZZR BA        
                                                                 (3) 

 
where A is a constant separation. The wave 
function is represented as:                                      
 
           imeGM ,,, .                             

                                                                   (4) 

and the one-electron energy: 222 RpE   
The perturbation theory operator is as 
follows:                                                       
                    







ij
iMijT rVrH )(1                                     

                                                                   (5) 
where ,i,j are the summation indexes 
correspondingly at nuclei and electrons. 

In [5] it was constructed for the 
perturbation theory formalism for secular 
operator matrix and there are analyzed the 
diagrams summation tools for secular 
operator matrix. The terms of this set are 
represemted as contributions on of the 
Feynman diagrams, which are usually 
classified on number of the end lines. 
According to such a classification the matrix 
element of the secular operator has a form 
[5]: 

 
                ,)(...)1()0( iMMMM                                    

                                                                    (6) 
where i is a total number of valence  
particles, М(0)   - the vacuum diagrams 
contribution (without the end lines) М(1)   -a 
contribution of the 1-particles diagrams (one 
pair o the end lines); М(2)-contribution of the 
two-particle diagrams (two pair of the end 
lines) and so on. Contribution М(1) is equal to 
a sum of the one-particle energies i. In the 
first perturbation theory order one should 
compute only the contribution of the two-
particle diagrams of the first order. In fact 
this correction is equal to interaction energy 
of the particles )1(E  and can be expressed  
through the matrix elements of the usual type 
on the wave functions of the zeroth 
approximation. For the Coulomb operator 

1
12
r  one should use  the Neumann expansions 

on the Legendre polynomials of the first and 
second kind and spherical harmonics. 3.  
3. As the first step, the relativistic block of 
the theory may into account the main 
relativistic effects within the model  based on 
the perturbation theory with the Breit-Pauli 
Hamiltonian, taking into account relativistic 
corrections of the 2 corder (-fine structure 
constant), in particular, the term due to the 

scheme for calculating the probabilities of 
radiative transitions of molecules. It is 
analysed the possible way to take into 
account for the inter-electron correlation and 
correspondingly the non-gauge-invariant 
contributions in relativistic molecular theory. 
Naturally, one of the effective ways in 
relativistic molecular theory is in using the 
Breit-Pauli approximation [3-5].  
2. Let us describe in brief the important 
moment of our theoretical approach. As 
usually, the wave functions zeroth basis is 
found from the Schrodinger (Dirac in the 
consistent version) equation solution with 
potential, which includes the core ab initio 
potential, electric potentials of nuclei and 
possibly exchange-correlation one-particle 
potentials. The last potential in part takes into 
account for contribution of the correlation 
corrections of the PT second and high orders 
(electrons screening, particle-hole interaction 
etc.) are accounted for.  

For arbitrary diatomic molecule in the 
perturbation theory zeroth approximation the  
two-center centre Schrodinger equation is 
written in spheroidal coordinates, ,,  
 

(   Rrr BA  , 1 , 
  Rrr BA  , 11  ,  20 ) 

 
and after a number of transformations results 
in the following form (look,for example, [5]): 
 

  















 22

2

2
2

1
1[ 





pm      

 
    0]2    AeZZR kR

BA  
 

  















 22

2

2
2

1
1[ 





pm  

                       0]   MAZZR BA        
                                                                 (3) 

 
where A is a constant separation. The wave 
function is represented as:                                      
 
           imeGM ,,, .                             

                                                                   (4) 

and the one-electron energy: 222 RpE   
The perturbation theory operator is as 
follows:                                                       
                    







ij
iMijT rVrH )(1                                     

                                                                   (5) 
where ,i,j are the summation indexes 
correspondingly at nuclei and electrons. 

In [5] it was constructed for the 
perturbation theory formalism for secular 
operator matrix and there are analyzed the 
diagrams summation tools for secular 
operator matrix. The terms of this set are 
represemted as contributions on of the 
Feynman diagrams, which are usually 
classified on number of the end lines. 
According to such a classification the matrix 
element of the secular operator has a form 
[5]: 

 
                ,)(...)1()0( iMMMM                                    

                                                                    (6) 
where i is a total number of valence  
particles, М(0)   - the vacuum diagrams 
contribution (without the end lines) М(1)   -a 
contribution of the 1-particles diagrams (one 
pair o the end lines); М(2)-contribution of the 
two-particle diagrams (two pair of the end 
lines) and so on. Contribution М(1) is equal to 
a sum of the one-particle energies i. In the 
first perturbation theory order one should 
compute only the contribution of the two-
particle diagrams of the first order. In fact 
this correction is equal to interaction energy 
of the particles )1(E  and can be expressed  
through the matrix elements of the usual type 
on the wave functions of the zeroth 
approximation. For the Coulomb operator 

1
12
r  one should use  the Neumann expansions 

on the Legendre polynomials of the first and 
second kind and spherical harmonics. 3.  
3. As the first step, the relativistic block of 
the theory may into account the main 
relativistic effects within the model  based on 
the perturbation theory with the Breit-Pauli 
Hamiltonian, taking into account relativistic 
corrections of the 2 corder (-fine structure 
constant), in particular, the term due to the 

scheme for calculating the probabilities of 
radiative transitions of molecules. It is 
analysed the possible way to take into 
account for the inter-electron correlation and 
correspondingly the non-gauge-invariant 
contributions in relativistic molecular theory. 
Naturally, one of the effective ways in 
relativistic molecular theory is in using the 
Breit-Pauli approximation [3-5].  
2. Let us describe in brief the important 
moment of our theoretical approach. As 
usually, the wave functions zeroth basis is 
found from the Schrodinger (Dirac in the 
consistent version) equation solution with 
potential, which includes the core ab initio 
potential, electric potentials of nuclei and 
possibly exchange-correlation one-particle 
potentials. The last potential in part takes into 
account for contribution of the correlation 
corrections of the PT second and high orders 
(electrons screening, particle-hole interaction 
etc.) are accounted for.  

For arbitrary diatomic molecule in the 
perturbation theory zeroth approximation the  
two-center centre Schrodinger equation is 
written in spheroidal coordinates, ,,  
 

(   Rrr BA  , 1 , 
  Rrr BA  , 11  ,  20 ) 

 
and after a number of transformations results 
in the following form (look,for example, [5]): 
 

  















 22

2

2
2

1
1[ 





pm      

 
    0]2    AeZZR kR

BA  
 

  















 22

2

2
2

1
1[ 





pm  

                       0]   MAZZR BA        
                                                                 (3) 

 
where A is a constant separation. The wave 
function is represented as:                                      
 
           imeGM ,,, .                             

                                                                   (4) 

and the one-electron energy: 222 RpE   
The perturbation theory operator is as 
follows:                                                       
                    







ij
iMijT rVrH )(1                                     

                                                                   (5) 
where ,i,j are the summation indexes 
correspondingly at nuclei and electrons. 

In [5] it was constructed for the 
perturbation theory formalism for secular 
operator matrix and there are analyzed the 
diagrams summation tools for secular 
operator matrix. The terms of this set are 
represemted as contributions on of the 
Feynman diagrams, which are usually 
classified on number of the end lines. 
According to such a classification the matrix 
element of the secular operator has a form 
[5]: 

 
                ,)(...)1()0( iMMMM                                    

                                                                    (6) 
where i is a total number of valence  
particles, М(0)   - the vacuum diagrams 
contribution (without the end lines) М(1)   -a 
contribution of the 1-particles diagrams (one 
pair o the end lines); М(2)-contribution of the 
two-particle diagrams (two pair of the end 
lines) and so on. Contribution М(1) is equal to 
a sum of the one-particle energies i. In the 
first perturbation theory order one should 
compute only the contribution of the two-
particle diagrams of the first order. In fact 
this correction is equal to interaction energy 
of the particles )1(E  and can be expressed  
through the matrix elements of the usual type 
on the wave functions of the zeroth 
approximation. For the Coulomb operator 

1
12
r  one should use  the Neumann expansions 

on the Legendre polynomials of the first and 
second kind and spherical harmonics. 3.  
3. As the first step, the relativistic block of 
the theory may into account the main 
relativistic effects within the model  based on 
the perturbation theory with the Breit-Pauli 
Hamiltonian, taking into account relativistic 
corrections of the 2 corder (-fine structure 
constant), in particular, the term due to the 

scheme for calculating the probabilities of 
radiative transitions of molecules. It is 
analysed the possible way to take into 
account for the inter-electron correlation and 
correspondingly the non-gauge-invariant 
contributions in relativistic molecular theory. 
Naturally, one of the effective ways in 
relativistic molecular theory is in using the 
Breit-Pauli approximation [3-5].  
2. Let us describe in brief the important 
moment of our theoretical approach. As 
usually, the wave functions zeroth basis is 
found from the Schrodinger (Dirac in the 
consistent version) equation solution with 
potential, which includes the core ab initio 
potential, electric potentials of nuclei and 
possibly exchange-correlation one-particle 
potentials. The last potential in part takes into 
account for contribution of the correlation 
corrections of the PT second and high orders 
(electrons screening, particle-hole interaction 
etc.) are accounted for.  

For arbitrary diatomic molecule in the 
perturbation theory zeroth approximation the  
two-center centre Schrodinger equation is 
written in spheroidal coordinates, ,,  
 

(   Rrr BA  , 1 , 
  Rrr BA  , 11  ,  20 ) 

 
and after a number of transformations results 
in the following form (look,for example, [5]): 
 

  















 22

2

2
2

1
1[ 





pm      

 
    0]2    AeZZR kR

BA  
 

  















 22

2

2
2

1
1[ 





pm  

                       0]   MAZZR BA        
                                                                 (3) 

 
where A is a constant separation. The wave 
function is represented as:                                      
 
           imeGM ,,, .                             

                                                                   (4) 

and the one-electron energy: 222 RpE   
The perturbation theory operator is as 
follows:                                                       
                    







ij
iMijT rVrH )(1                                     

                                                                   (5) 
where ,i,j are the summation indexes 
correspondingly at nuclei and electrons. 

In [5] it was constructed for the 
perturbation theory formalism for secular 
operator matrix and there are analyzed the 
diagrams summation tools for secular 
operator matrix. The terms of this set are 
represemted as contributions on of the 
Feynman diagrams, which are usually 
classified on number of the end lines. 
According to such a classification the matrix 
element of the secular operator has a form 
[5]: 

 
                ,)(...)1()0( iMMMM                                    

                                                                    (6) 
where i is a total number of valence  
particles, М(0)   - the vacuum diagrams 
contribution (without the end lines) М(1)   -a 
contribution of the 1-particles diagrams (one 
pair o the end lines); М(2)-contribution of the 
two-particle diagrams (two pair of the end 
lines) and so on. Contribution М(1) is equal to 
a sum of the one-particle energies i. In the 
first perturbation theory order one should 
compute only the contribution of the two-
particle diagrams of the first order. In fact 
this correction is equal to interaction energy 
of the particles )1(E  and can be expressed  
through the matrix elements of the usual type 
on the wave functions of the zeroth 
approximation. For the Coulomb operator 

1
12
r  one should use  the Neumann expansions 

on the Legendre polynomials of the first and 
second kind and spherical harmonics. 3.  
3. As the first step, the relativistic block of 
the theory may into account the main 
relativistic effects within the model  based on 
the perturbation theory with the Breit-Pauli 
Hamiltonian, taking into account relativistic 
corrections of the 2 corder (-fine structure 
constant), in particular, the term due to the 



118

the term due to the dependence of mass on ve-
locity (Н1 and h1), Darwin correction (Н2 and h2), 

the spin-orbit term 






43
43

hh
HH  [5]. The further 

simplification is connected with using the Cow-
an-Griffin approximation [13], which  takes into 
account only two first effects in molecular calcu-
lations, in particular, for the s states. 

Let us further examine the multielectron mol-
ecule with one or two quasi-particles (valence 
electrons). In the case of the multi-electron sys-
tem with molecular core of the closed electron 
shells one can use the model potential method 
namely the bare two centre potential VN + VC with 
VN describing the electric potential of the nucleue, 
VC, imitating the interaction of the quasi-particle 
with the molecular core. Surely, the core two-cen-
tre potential VC is  related  to  the  core  electron 
density rC in a standard way. The latter fully de-
fines the one electron representation. Moreover, 
all  the  results  of  the approximate calculations 
are the functionals of the density rC(r). The key 
step is determinatiojn of the complex energy of a 
molecule (that is in a relativistic theory). 

According to the energy approach [17-19] the 
probability is directly connected with imaginary 
part of electron energy of the system, which is de-
fined in the lowest order of perturbation theory as 
follows (the a-n transition is studied): 
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The matrix element in (5) is provided by the 
following determination:
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     The separated terms of the sum in (5) repre-
sent the contributions of different channels and a 
probability of the dipole a-n transition  is: 
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Under calculating the matrix elements (5)  one 
could use the angle symmetry of the two-centre 
task and write the expansion for potential sin|w|r12/
r12  on spherical functions as follows [2]. This ex-
pansion is corresponding to usual multipole one 
for probability of radiative decay. 

Obviously that the expression (5) is corre-
sponding to first order of the molecular perturba-
tion theory or second order of the quantum elec-
trodynamical perturbation theory. Corresponding-
ly in the second (fourth) order of the perturbation 
theory there are appeared the exchange-correla-
tion or exchange-polarization  corrections which 
being   under consideration are gauge- dependent 
(dEninv) [19]. 

Surely, all  the  results  of  the exact  calcula-
tion  of  any  physical  quantity  must  be    gauge  
independent . However, even most advanced the-
ories of diatomic molecules can hardly take into 
account all types of exchange-polarization cor-
rections, especially, so called multi-particle ones 
and also continuum pressure etc. In fact their non-
account provides a non-conservation of a gauge 
invariance in molecular calculations.  

The simple way to reconstruct gauge invari-
ance of a theory is to consider the corresponding 
many-particle exchange-polarization  diagrams 
and determine the next corresponding term in an 
expression for the imaginary part of electron ener-
gy of the system (look different schemes in Refs. 
[20-25]). Then the minimization of the functional 
Im dEninv leads to the integro-differential equa-
tion for the rc (the DF or Dirac-Kohn-Sham-like 
equations for the electron density) that should be 
numerically solved. In result there is a possibility 
to obtain the optimal one-particle representation 
and respectively optimal basis of electron orbit-
als, which is further used in calculation of the ra-
diative  transition characteristics. 

Unlike the many-electron atoms in the case 
of diatomic molecules, this approach is natu-
rally much more difficult. However, taking into 
account the substantial progress in the develop-
ment of relativistic molecular theories, including, 
radiative transitions, the problem could be solved 
in a particular in simplifying accompanying ap-
proaches.
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Abstract. 
On the basis of new gauge-invariant  scheme in the relativistic energy approach combined with the 

multi-body perturbation theory for diatomic molecules it is formulated a new theoretical scheme for 
calculating the probabilities of radiative transitions of molecules. It is analysed the possible way to 
take into account for the inter-electron correlation and correspondingly the non-gauge-invariant con-
tributions in relativistic molecular theory

Key words: radiative transitions, diatomic molecules, new relativistic approach

УДК 539.182

А. В. Игнатенко, Е. Л. Пономаренко, А. С. Квасикова, Т. А. Кулакли

ОБ ОПРЕДЕЛЕНИИ ВЕРОЯТНОСТЕЙ РАДИАЦИОННЫХ ПЕРЕХОДОВ В 
РЕЛЯТИВИСТСКОЙ ТЕОРИИ ДВУХАТОМНЫХ МОЛЕКУЛ: НОВАЯ СХЕМА

Резюме. 
С использованием калибровочно-инвариантной схемы в рамках релятивистского энергети-

ческого подхода и многочастичной теории возмущений для двухатомных молекул сформулиро-
вана новая теоретическая схему определения вероятностей радиационных переходов двухатом-
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ных  молекул. Предложены и проанализированы возможные методики учета обменно-корреля-
ционных и  соответственно, калибровочно-неинвариантных вкладов в вероятность перехода в 
релятивистской  молекулярной теории. 
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РЕЛЯТИВІСТСЬКІЙ ТЕОРІЇ ДВОАТОМНИХ МОЛЕКУЛ: НОВА СХЕМА

Резюме. 
З використанням калібрувально-інваріантної схеми в рамках релятивістського енергетич-

ного підходу і багаточастинкової  теорії збурень для двохатомних молекул сформульована 
нова теоретична схему визначення ймовірностей радіаційних переходів двохатомних молекул. 
Запропонованi та проаналізованi можливі методики урахування обмінно-кореляційних і відпо-
відно, калібрувально- неінваріантних внесків в ймовірність переходу в релятивістській моле-
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THE RADIATIVE VACUUM POLARIZATION CONTRIBUTION 
TO THE ENERGY SHIFT OF SOME LEVELS OF THE PIONIC HYDROGEN

Calculating the radiative contribution due to the vacuum polarization effect to energy value for some  levels 
in pionic hydrogen atom including in particular the main Uehling-Serber and the high-order  Källen-Sabry and 
Wichmann - Kroll corrections has been carried out using the modified Uehling-Serber potential. The values 
for some characteristic energy corrections to 1s, 2p, 3p, 4p states of the pion hydrogen (in particular, radiation 
contributions and contributions due to the finite size of the proton and pion are presented and compared with 
alternative data by  Schlesser-Indelicato et al.

1.  Introduction
 
It is well known that the development of a new 

theoretical approach to the description of spectral 
parameters pionic atoms in the excited states with 
precise accounting relativistic, radiation, nuclear, 
electron screening effects (look [1-18]) on the ba-
sis of Klein-Gordon-Fock (Dirac) equation and 
a development of a consistent relativistic theory 
of hyperfine structure of spectra represents one 
of actual fundamental problem of moden optics 
and spectroscopy of hadronic atomic systems. 
Especial problem is connected with précised cal-
culating the radiative corrections to the transition 
energies of the low-Z exotic (pionic, kaonic, mu-
onic) atoms, namely, hydrogen and deuterium. 
Naturally, it is provided by necessity of further 
developing the modern as atomic and as nuclear 
spectra theories. From the other side, one could 
mention that the detailed data about spectra of the 
exotic atomic systems (kaonic, pionic, muonic at-
oms) can be very useful under construction of the 
new X-ray standards. It is worth to remind about 
known achievements and a great importance of 
the theoretical muonic, hadronic chemistry and 
hadronic spectroscopy as well as the  significant 
progress in the modern experimental technologies 
applying to hadronic atoms [1-15].

The standard Dirac approach is traditionally 
used as starting basis in calculations of the heavy 
ions [2]. The problem of accounting the radiative 
corrections, in particular, self-energy part of the 
Lamb shift and vacuum polarization contribu-
tion is mostly treated with using the expansions 
on the natural physical parameters 1/Z, aZ (a is 
fine structure constant) [5,10]. It permits evalua-
tions of the relative contributions of different ex-
pansion energy terms: non-relativistic, relativistic 
ones, as functions of Z. For high Z (Z is a nuclear 
charge) it should be necessary to account for the 
high-order QED corrections and the nuclear finite 
size correction etc [1-3,10-12,16]. Further im-
provement of this method in a case of the heavy 
ions is linked with using gauge invariant proce-
dures of generating relativistic orbital basises and 
more correct treating nuclear and QED effects [1-
3]. In a case of the low-Z exotic atomic systems 
such as an exotic  hydrogen (deuterium) a great 
interest attracts estimation of the radiative, in par-
ticular, vacuum polarization, correction. In refs. 
[17-19] it has been proposed a precise scheme to 
calculating spectra of heavy systems with account 
of nuclear and radiative effects, based on the rela-
tivistic many-body  perturbation theory  (see also 
[3]) and advanced effective procedures for ac-
counting the radiative corrections.  
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In this paper we present the results of calculat-
ing the QED contribution and first of all due to 
the vacuum polarization effect to energy shift for 
some levels energies of  pionic hydrogen.  The 
obtained results are  compared with the calcula-
tion data by [2]. As theoretical model we have 
used relativistic models, presented in Ref. [20,21] 
(look [23-25]). 

The master equation for describing thepi-
onic atom dynamics is the Klein-Gordon-Fock 
equation, which is in atomic units as follows: 

     ( ){ } ( )22 2 2 2 0,cE V r c ra µ ψ - +∇ - = 


    (1)

де  m-наведеная маса p-, Е- енергія піон, Vc–за-
гальний потенціал, який, зокрема, включає ку-
лонівський потенціал взаємодії p- з ядром (з 
урахуванням скінченого розміру), узагальнений 
радіаційний потенціал, потенціал  електронних 
оболонок.
where m- is a reduced mass, E- a pion energy  Vc– 
total electromagnetic interaction which includes 
especially Coulomb interaction potential of p- 

with a nucleus (with accounting for the finite size 
effect), radiation potential (including thr vacuum 
polarization potential) and possibly the potential 
of electron shells (for multi-electron pionic atom). 

The total electromagnetic interaction potential:                                                                                      

                     Vc(r)=Vn(r)+UR(r).               (1)

includes the electrical Vn and radiation (including 
polarization)  UR(r) potential of a nucleus with 
accounting the finite size correction. The expec-
tation value of the radiative vacuum polariza-
tion operator gives the corresponding correction. 
In ref. [21] it is presented a consistent approach 
to determining radiation QED corrections 
(main among them, of course, is the correction 
the polarization of the vacuum; effect which is 
typical for a distance of Compton wavelength 

cme
e
C /=l = 386.16Fm; while the Bohr radius 

of a pion orbit ZnrB /194 2=p Fm) to the energy 
states of pionic atom, which is based on using the 
Uehling-Serber potential with effective account-
ing for the Breit-Rosenthal-Crawford-Schawlow):

                  (2)

and additional terms which  take into account a 
contribution of the corrections of  [a ( ) nZ ]a  or-
der, in particular, the  Källen-Sabry and Wichmann 
- Kroll corrections ( ( )2 Za a + a ( )nZa ...).

A vacuum polarization potential without  the 
Breit-Rosenthal-Crawford-Schawlow effect is 
usually represented as follows  (in fact in the first 
PT order): 
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the values (in meV) for some characteristic en-
ergy corrections to 1s, 2p, 3p, 4p states of the pion 
hydrogen (in particular, radiation contribtions and 
contributions due to the finite size of the proton 
and pion) estimated by the theory and Schlesser-
Indelicato et al. [5] and our theory. The following 
abbreviations are used: correction on polarization 
of the vacuum of Uehling Serber (PV-US), the 
correction to the Breit interaction (BI), correction 
to a size radius (SR) of a proton and a pion, the 
higher-order corrections for a vacuum polariza-
tion Kallen-Sabry (PV-KS) and Wichman-Kroll 
(PV-WC). Analyzing the results, it should be not-
ed that, in general between the theoretical results 
(actually the contributions of electromagnetic en-
ergy in the state or transition) obtained under var-
ious theories, in particular, our theory and the the-
ory Schlesser-Indelicato et al. [5] there is a fairly 
good agreement that is easily explained in princi-
ple (as in the case of the conventional hydrogen 
atom) in a sense negligible role of radiation and 
nuclear finite-size corrections, Obviously it is of a 
great interest application of the presented scheme 
in computing QED corrections to levels energies 
in heavy pionic atoms. 

Table 1 
The values (in meV) some specific corrections 
to the energy 1s, 2p, 3p, 4p states of the pion 
hydrogen (QED contributions and contribu-
tions by the proton and pion SR) according to 
the theory Schlesser-Indelicato et al. [5] and 
our theory (see. Text )

QED F 1s [5] 1s (our)

PV-US -3240.802  -3240.799

BI 1/2
3/2

-178.461 -178.458

SR p
p-

61.711
39.33

61.711
39.33

PV-KS -24.365 -24.363
PV-WK -4.110 -4.113

QED F 2p [5] 2p (our)
PV-US -35.795 -35.793

BI 1/2
3/2

-11.655
-4.048

-11.652
-4.046

SR p
p-

0
0

0
0

PV-KS -0.346 -0.343
PV-WK -0.008 -0.010

QED F 3p [5] 3p (our.)
PV-US -11.407 -11.405

BI 1/2
3/2

-4.221
-1.967

-4.219
-1.965

SR p
p-

0
0

0
0

PV-KS -0.108 -0.105
PV-WK -0.002 -0.003

QED F 4p [5] 4p (our)
PV-US -4.921 -4.918

BI 1/2
3/2

-1.943
-0.992

-1.940
-0.989

SR p
p-

0
0

0
0

PV-KS -0.046 -0.044
PV-WK -0.001 -0.002
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THE RADIATIVE VACUUM POLARIZATION CONTRIBUTION  TO THE ENERGY 
SHIFT OF SOME LEVELS OF THE PIONIC HYDROGEN

Abstract. 
Calculating the radiative contribution due to the vacuum polarization effect to energy value for 

some  levels in pionic hydrogen atom including in particular the main Uehling-Serber and the high-
order  Källen-Sabry and Wichmann - Kroll corrections has been carried out using the modified Ue-
hling-Serber potential. The values for some characteristic energy corrections to 1s, 2p, 3p, 4p states 
of the pion hydrogen (in particular, radiation contributions and contributions due to the finite size of 
the proton and pion are presented and compared with alternative data by  Schlesser-Indelicato et al.
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Ю. Г. Чернякова, Л. А. Витавецкая, П. Г. Башкарьов, И. Н. Серга, А. Г. Берестенко

РАДИАЦИОННЫЕ ВКЛАДЫ ЗА СЧЕТ ЭФФЕКТА ПОЛЯРИЗАЦИИ ВАКУУМА В 
СДВИГ ЭНЕРГИИ РЯДА УРОВНЕЙ ПИОННОГО ВОДОРОДА

Резюме. 
Проведен расчет радиационного вклада за счет эффекта поляризации вакуума в величину 

энергии  ряда уровней в пионном водороде в том числе, в частности, основной вклад Юлинга-
Сербера и вклады высоких порядков Каллена-Сабри и Вичманна-Кролла с использованием мо-
дифицированного потенциала Юлинга-Сербера. Приведены значения некоторых характерных 
энергетических поправок к энергии 1s, 2p, 3p, 4p состояний пионного водорода (в частности, 
радиационные поправки, поправки за счет конечного размера протона и пиона представлены и 
др.) и проведено их сравнение по сравнению с альтернативными данным Schlesser-Indelicato и 
др.

Ключевые слова: пионный водород, радиационные поправки 



127

УДК 539.184

Ю. Г. Чернякова, Л. А. Вітавецька, П. Г. Башкарьов, І. М. Сєрга, А. Г. Берестенко

РОЗРАХУНОК РАДІАЦІЙНОГО ВНЕСКУ ЗА РАХУНОК ЕФЕКТУ ПОЛЯРИЗАЦІЇ ВА-
КУУМУ У ЗСУВ ЕНЕРГІЇ ДЕКОТРИХ РІВНІ ПІОННОГО ВОДНЮ

Резюме. 
Виконано розрахунок радіаційного внеску за рахунок ефекту поляризації вакууму у величи-

ну   енергії декотрих рівнів  у піонному водні у тому числі, зокрема, основний внесок Юлінг-
Сербер і вклади високих порядків Каллена-Сабрі і Вічманна –Кролла, з використанням моди-
фікованого потенціалу Юлінга-Сербера. Наведені значення деяких характерних енергетичних 
поправок до енергії 1s, 2p, 3p, 4p станів піонного водню (зокрема, радіаційні поправки, поправ-
ки за рахунок кінцевого розміру протона і півонії представлені і ін.) І проведено їх порівняння 
в порівнянні з альтернативними даними Schlesser-Indelicato та ін. 

Ключові слова: піонний водень, радіаційні поправки
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LASER MULTIPHOTON SPECTROSCOPY OF ATOM EMBEDDED IN DEBYE PLASMAS: 
MULTIPHOTON RESONANCES AND TRANSITIONS  

The consistent relativistic energy approach to atom in a realistic laser field, based on the Gell-Mann and 
Low S-matrix formalism, is applied to studying the resonant multiphoton transitions in atoms embedded in the 
Debye plasmas. There is considered a new scheme to calculating the  multiphoton transitions characteristics, 
shifts and widths of multiphoton resonances.  An approach is used for treating the three-photon transitions in 
krypton embedded in the Debye plasmas.

1. The physics of multiphoton phenomena is 
one of the very quickly developed branches of the 
modern optics and spectroscopy, photophysics. 
Studying of multiphoton phenomena in atoms, 
molecules ets has a great progress that is stimu-
lated by development of new laser technologies 
(see Refs. [1-10]). The appearance of the power-
ful laser sources allowing to obtain the radiation 
field amplitude of the order of atomic field in the 
wide range of wavelengths results to systematic 
investigations of the nonlinear interaction of radi-
ation with atomic and molecular systems [1-14]. 

At the same time a direct laser-nucleus inter-
actions traditionally have been dismissed because 
of the well known effect of small interaction ma-
trix elements [9-11]. Some exceptions such as 
an interaction of x-ray laser fields with nuclei in 
relation to alpha, beta-decay and x-ray-driven 
gamma emission of nuclei have been earlier con-
sidered. With the advent of new coherent x-ray 
laser sources in the near future, however, these 
conclusions have to be reconsidered. 

At present time a great interest has been con-
nected with studying atomic processes in plasma 
environments because of the plasma environment 
screening effect on the plasma-embedded atomic 
systems. One should remind that the screening ef-
fects have play a important and significant part in 
the investigation of plasma environments over the 
past several decades. 

Different theoretical methods have been em-
ployed along with the Debye screening to study 
plasma environments.

The interaction of atoms with the external al-
ternating fields, in particular, laser fields, has been 
the subject of intensive experimental and theoret-
ical studied (see, for example, Refs. [1-8, 12-24]). 
A definition of the k-photon emission and absorp-
tion probabilities and atomic levels shifts, study 
of dynamical stabilization and field ionization etc 
are the most actual problems to be solved. 

Above methods which are usually used one 
should mention such approaches as the standard 
perturbation theory (surely for low laser filed in-
tensities), Green function method, the density-
matrix formalism, time-dependent density func-
tional formalism, direct numerical solution of the 
Schrödinger (Dirac) equation, multi-body multi-
photon approach, the time-independent Floquet 
formalism etc (see [1-8,12-24] and Refs. therein). 

Earlier the relativistic energy approach to 
studying the interaction  of atom with a  realis-
tic strong laser  field, based  on  the Gell-Mann 
and Low S-matrix formalism, has been devel-
oped. Originally, Ivanov has proposed an idea to 
describe quantitatively a behaviour of an atom in 
a realistic laser field by means studying the ra-
diation emission and absorption lines and further 
the theory of interaction of an atom with the Lor-
enz laser pulse and calculating the corresponding 



129

lines moments has been in details developed in 
Ref. [19-25]. It has been checked in numerical 
simulation of the multiphoton resonances shifts 
and widths in the hydrogen and caesium. Theo-
ry of interaction of an atom with the Gauss and 
soliton-like laser pulses and calculating the cor-
responding lines moments has been in details pre-
sented in Refs. [23,26,27]. 

Here the consistent relativistic energy approach 
to atom in a realistic laser field, based on the Gell-
Mann and Low S-matrix formalism, is applied to 
studying the resonant multiphoton transitions in 
atoms embedded in the Debye plasmas. There is 
considered a new scheme to calculating the  mul-
tiphoton transitions characteristics, shifts and 
widths of multiphoton resonances.  An approach 
is used for treating the three-photon transitions in 
krypton embedded in the Debye plasmas

2. The relativistic energy approach in the dif-
ferent realizations and the radiation lines moments 
technique is in details presented in Refs. [19-30]. 
So, here we are limited only by presenting the 
master elements. In the theory of the non-relativ-
istic atom a convenient field procedure is known 
for calculating the energy shifts dE of degenerate 
states. This procedure is connected with the secu-
lar matrix M diagonalization. In constructing M, 
the Gell-Mann and Low adiabatic formula for dE 
is used [20-23,31]. In relativistic theory, the Gell-
Mann and Low formula dE is connected with 
electrodynamical scattering matrice, which in-
cludes interaction with as a laser field as a photon 
vacuum field. A case of interaction with photon 
vacuum is corresponding to standard theory of 
radiative decay of excited atomic states. Surely, 
in relativistic theory the secular matrix elements 
are already complex in the second perturbation 
theory (PT) order. Their imaginary parts are con-
nected with radiation decay possibility. The total 
energy shift is usually presented in the form [23]:

dE = RedE + i ImdE ,
                     

                     Im dE = -P/2,                        (1)

where P is the level width (decay possibility). Let 
us describe the interaction “atom-laser field” by 
the Ivanov potential [21,23]:

V(r,t)=V(r)òdwf(w-w0) cos
n=-∞

∞

∑ [w0t+w0nt]    (2)

Here w0 is the central laser radiation frequen-
cy, n is the whole number. The function f(w) is a 
Fourier component of the laser pulse. The con-
dition òdwf2(w)=1 normalizes potential V(rt) on 
the definite energy in the pulse. Usually one could  
consider the pulses with Lorentz shape (coherent 
1-mode pulse): ¦(w) = b/(w2+D2), Gaussian one 
(multi-mode chaotic pulse): ¦(w) = bexp[ln2(w2/
D2)]  and the soliton-like pulse: f(t) = b ch-1[t/D] 
(b -normalizing multiplier). 

The master program results in the calculating 
an imaginary part of energy shift ImdEa (w0) for 
any atomic level as the function of the central la-
ser frequency w0. An according function has the 
shape of the resonance, which is connected with 
the transition a-p (a, p-discrete levels) with ab-
sorption (or emission) of the “k” number of pho-
tons. For this transition the following values are 
determined [20-23]: 

dw(pa|k)=ò ¢dw Im dEa (w)(w - wpa/ k)/N,  (3)

mm =  ò ¢dw Im dEa (w) (v - wpa / k)m / N,             

where 
ò ¢dwImEa

is the normalizing multiplier; wpa is position of 
the non-shifted line for  transition a-p, dw(pa|k)  is 
the line shift under k-photon absorption; vpa=wpa+ 
k×dw(pa|k). The first moments m1, m2 and m3 de-
termine the atomic line centre shift, its dispersion 
and the asymmetry. 

 To find mm, we need to get an expansion of 
Ea to PT series: 

Ea = å Ea
(2k) (w0).

One may use here the Gell-Mann and Low adi-
abatic formula for dEa [20-23]. The consideration 
can be simplified by account of the k-photon ab-
sorption contribution in the first two PT orders. 
Besides, summation on laser pulse is exchanged 
by integration. The corresponding (l+2k+1)-times 
integral on (l+2k) temporal variables and r (l=0,2) 
(integral Ig ) are calculated [19-23]. Finally, after 
some cumbersome transformations one can get 
the expressions for the line moments. The corre-
sponding expressions for the Gaussian laser pulse 
are as follows:

behaviour of an atom in a realistic laser field 
by means studying the radiation emission and 
absorption lines and further the theory of 
interaction of an atom with the Lorenz laser 
pulse and calculating the corresponding lines 
moments has been in details developed in 
Ref. [19-25]. It has been checked in 
numerical simulation of the multiphoton 
resonances shifts and widths in the hydrogen 
and caesium. Theory of interaction of an 
atom with the Gauss and soliton-like laser 
pulses and calculating the corresponding 
lines moments has been in details presented 
in Refs. [23,26,27].  

Here the consistent relativistic energy 
approach to atom in a realistic laser field, 
based on the Gell-Mann and Low S-matrix 
formalism, is applied to studying the resonant 
multiphoton transitions in atoms embedded 
in the Debye plasmas. There is considered a 
new scheme to calculating the  multiphoton 
transitions characteristics, shifts and widths 
of multiphoton resonances.  An approach is 
used for treating the three-photon transitions 
in krypton embedded in the Debye plasmas 
2. The relativistic energy approach in the 
different realizations and the radiation lines 
moments technique is in details presented in 
Refs. [19-30]. So, here we are limited only 
by presenting the master elements. In the 
theory of the non-relativistic atom a 
convenient field procedure is known for 
calculating the energy shifts E of degenerate 
states. This procedure is connected with the 
secular matrix M diagonalization. In 
constructing M, the Gell-Mann and Low 
adiabatic formula for E is used [20-23,31]. 
In relativistic theory, the Gell-Mann and Low 
formula E is connected with 
electrodynamical scattering matrice, which 
includes interaction with as a laser field as a 
photon vacuum field. A case of interaction 
with photon vacuum is corresponding to 
standard theory of radiative decay of excited 
atomic states. Surely, in relativistic theory 
the secular matrix elements are already 

complex in the second perturbation theory 
(PT) order. Their imaginary parts are 
connected with radiation decay possibility. 
The total energy shift is usually presented in 
the form [23]: 

 
E = ReE + i ImE , 

                      
                     Im E = -P/2,                       (1) 

where P is the level width (decay possibility). 
Let us describe the interaction “atom-laser 
field” by the Ivanov potential [21,23]: 

 

V(r,t)=V(r)df(0) cos
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

 [0t+0n]  (2) 

 
Here 0 is the central laser radiation 

frequency, n is the whole number. The 
function f() is a Fourier component of the 
laser pulse. The condition df2()=1 
normalizes potential V(rt) on the definite 
energy in the pulse. Usually one could  
consider the pulses with Lorentz shape 
(coherent 1-mode pulse): (2+2), 
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calculating an imaginary part of energy shift 
ImE (0) for any atomic level as the 
function of the central laser frequency 0. An 
according function has the shape of the 
resonance, which is connected with the 
transition -p (, p-discrete levels) with 
absorption (or emission) of the “k” number 
of photons. For this transition the following 
values are determined [20-23]:  
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where  
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atom with the Gauss and soliton-like laser 
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normalizes potential V(rt) on the definite 
energy in the pulse. Usually one could  
consider the pulses with Lorentz shape 
(coherent 1-mode pulse): (2+2), 
Gaussian one (multi-mode chaotic pulse): 
exp[ln2(2/2)]  and the soliton-like 
pulse: f(t) =  ch-1[t/D] ( -normalizing 
multiplier).  

The master program results in the 
calculating an imaginary part of energy shift 
ImE (0) for any atomic level as the 
function of the central laser frequency 0. An 
according function has the shape of the 
resonance, which is connected with the 
transition -p (, p-discrete levels) with 
absorption (or emission) of the “k” number 
of photons. For this transition the following 
values are determined [20-23]:  

 
p|k)= d Im E ()( - p/ k)/N,  (3) 
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 dImE 

behaviour of an atom in a realistic laser field 
by means studying the radiation emission and 
absorption lines and further the theory of 
interaction of an atom with the Lorenz laser 
pulse and calculating the corresponding lines 
moments has been in details developed in 
Ref. [19-25]. It has been checked in 
numerical simulation of the multiphoton 
resonances shifts and widths in the hydrogen 
and caesium. Theory of interaction of an 
atom with the Gauss and soliton-like laser 
pulses and calculating the corresponding 
lines moments has been in details presented 
in Refs. [23,26,27].  

Here the consistent relativistic energy 
approach to atom in a realistic laser field, 
based on the Gell-Mann and Low S-matrix 
formalism, is applied to studying the resonant 
multiphoton transitions in atoms embedded 
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new scheme to calculating the  multiphoton 
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in krypton embedded in the Debye plasmas 
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exp[ln2(2/2)]  and the soliton-like 
pulse: f(t) =  ch-1[t/D] ( -normalizing 
multiplier).  

The master program results in the 
calculating an imaginary part of energy shift 
ImE (0) for any atomic level as the 
function of the central laser frequency 0. An 
according function has the shape of the 
resonance, which is connected with the 
transition -p (, p-discrete levels) with 
absorption (or emission) of the “k” number 
of photons. For this transition the following 
values are determined [20-23]:  

 
p|k)= d Im E ()( - p/ k)/N,  (3) 
 
    m =   d Im E () ( - p / k)m / N,                            

 
where  

 dImE 
is the normalizing multiplier; p is position 
of the non-shifted line for  transition -p, 
(pa|k)  is the line shift under k-photon 
absorption; p=p+ kp|k). The first 
moments 1, 2 and 3 determine the atomic 
line centre shift, its dispersion and the 
asymmetry.  
 To find m, we need to get an 
expansion of E to PT series:  
 

E =  E
(2k) (0). 

 
One may use here the Gell-Mann and Low 
adiabatic formula for E [20-23]. The 
consideration can be simplified by account of 
the k-photon absorption contribution in the 
first two PT orders. Besides, summation on 
laser pulse is exchanged by integration. The 
corresponding (l+2k+1)-times integral on 
(l+2k) temporal variables and  (l=0,2) 
(integral I ) are calculated [19-23]. Finally, 
after some cumbersome transformations one 
can get the expressions for the line moments. 
The corresponding expressions for the 
Gaussian laser pulse are as follows: 

 
(p | k) = 

 
  ={/(k+1)k}[E(p,p/k)-E(,p/k)],    (9) 

 
2 = 2/k 

 
3={43/[k(k+1)]}[E(p,p/k)-E(, p/k)], 
 
where 
 

E(j,p/k)=0,5 V
pi

 jpi Vpij [ 1
  jp pi

k /
+ 

+ 1
  jp pi

k /
]                   (10) 

 
The summation in (10) is over all 

atomic states. Let us note that these formulas 
for the Gaussian pulse differ of the Lorenz 

shape laser pulse expressions [21-23]. For the 
soliton-like pulse it is necessary to carry out 
the numerical calculation or use some 
approximations to simplify the expressions 
[27].  

In order to calculate (10),  one should 
use the technique [28,29] of calculating sums 
of the QED PT second order, which has been 
earlier applied by us in calculations of some 
atomic and mesoatomic parameters 
[26,27,30-32].  

Finally the computational procedure 
results in a solution of the ordinary 
differential equations system for above 
described functions and integrals. In concrete 
numerical calculations the PC “Superatom-
ISAN” package is used. The construction of 
the operator wave functions basises within 
the QED PT, the technique of calculating the 
matrix elements in Egs. (9,10) and other 
details is are presented in Refs. [19-30].  
3. In order to take into account the plasmas 
screening effect one could use the known 
Debye shielding model.  As it is well known 
(c.f.[33-35] and refs there) in the classical 
theory of plasmas developed by Debye and 
Hückel, the interaction potential between two 
charged particles  in a plasma is modelled by 
a Yukawa-type potential as follows:  
 

V(ri, rj) = (ZaZb/|ra-rb|}exp (-|ra-rb|),                                                          
                                                                 (11) 
where ra, rb represent respectively the spatial 
coordinates of particles A and B and Za,   Zb 

denote their charges. A difference between 
the Yukawa type potential and standard 
Coulomb potential is in account for the effect 
of plasma, which is modeled by the shielding 
parameter  [33]. The parameter  is linked  
with the plasma parameters such as the 
temperature T and the charge density n  as 
follows  Tkne B/~ 2  where, as usually, е 
is the electron charge and kB  is the Boltzman 
constant.  The density n is given as a sum of 
the electron density Ne and the ion density Nk 
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dw(pa | k) =

  ={pD/(k+1)k}[E(p,wpa/k)-E(a,wpa/k)],    (9)

m2 = D2/k

m3={4pD3/[k(k+1)]}[E(p,wpa/k)-E(a, wpa/k)],

where

E(j,wpa/k)=0,5jpi Vpij [ 1
ω ω ajp pi

k+ /
+

+ 1
ω ω ajp pi

k- /
]                  

The summation in (10) is over all atomic states. 
Let us note that these formulas for the Gaussian 
pulse differ of the Lorenz shape laser pulse ex-
pressions [21-23]. For the soliton-like pulse it is 
necessary to carry out the numerical calculation 
or use some approximations to simplify the ex-
pressions [27]. 

In order to calculate (10),  one should use the 
technique [28,29] of calculating sums of the QED 
PT second order, which has been earlier applied 
by us in calculations of some atomic and mesoat-
omic parameters [26,27,30-32]. 

Finally the computational procedure results in 
a solution of the ordinary differential equations 
system for above described functions and inte-
grals. In concrete numerical calculations the PC 
“Superatom-ISAN” package is used. The con-
struction of the operator wave functions basises 
within the QED PT, the technique of calculating 
the matrix elements in Egs. (9,10) and other de-
tails is are presented in Refs. [19-30]. 

3. In order to take into account the plasmas 
screening effect one could use the known Debye 
shielding model.  As it is well known (c.f.[33-35] 
and refs there) in the classical theory of plasmas 
developed by Debye and Hückel, the interac-
tion potential between two charged particles  in 
a plasma is modelled by a Yukawa-type potential 
as follows: 

 V(ri, rj) = (ZaZb/|ra-rb|}exp (-m×|ra-rb|),      (11)

where ra, rb represent respectively the spatial co-
ordinates of particles A and B and Za,   Zb denote 
their charges. A difference between the Yukawa 

type potential and standard Coulomb potential 
is in account for the effect of plasma, which is 
modeled by the shielding parameter m [33]. The 
parameter m is linked  with the plasma parameters 
such as the temperature T and the charge density 
n  as follows  Tkne B/~ 2µ  where, as usually, 
е is the electron charge and kB  is the Boltzman 
constant.  The density n is given as a sum of the 
electron density Ne and the ion density Nk of the 
k-th ion species having the nuclear charge qk :. 
Let us remind [35] that under typical laser plasma 
conditions of T~ 1keV and n~ 1023 cm-3  the pa-
rameter m is of the order of 0,1 in atomic units. 
By introducing the Yukawa-type electron-nuclear 
attraction and electron-electron repulsion poten-
tials, the electronic Hamiltonian for N-electron 
multicharged ion in a plasma is given in atomic 
units as follows:  

      (12)

A difference between the Hamiltonian (12) and 
analogous model Hamiltonian with the Yukawa 
potential of ref. [33] is in using the relativistic 
approximation, which is obviously necessary for 
adequate description of relativistic systems [35]. 

4. In ref. [36] there were presented the results 
of the numerical simulation for the three-photon 
resonant, four-photon ionization profile of atomic 
krypton (the 4p ® 5d[1/2]1 and 4p ® 4d[3/2]1 three 
photon Kr resonances are considered; intense uv 
(285-310 nm) laser radiation with intensity range 
3´1012-1014 W/cm2  studied) in a free state (n in 
sense of the absence a plasmas environment). 
There have been determined the correspond-
ing parameters of the 4p ® 5d[1/2]1 (i) and 4p 
® 4d[3/2]1  (ii) three photon Kr resonances. The 
resonance shift is proportional to intensity with 
a width dominated by lifetime broadening of the 
excited state. 

The  numerical simulation [36] results for 
the 4p ® 5d[1/2]1 (i) and 4p ® 4d[3/2]1  (ii) three 
photon Kr resonances are as follows: (i) the 
shift dw0(pa|3)=aI, aexp=3.95 meV/(Tw×cm-2) 
and width bexp= 1.5 meV/(Tw×cm-2); (ii) shift 
dw0(pa|3)=aI, aexp=8.1 meV/(Tw×cm-2) and width 
bexp=4.2 meV/(Tw×cm-2). We have chosen the 
Debye length parameter values λD =50 (25) and 
the corresponding computed coefficients are as 
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follows: (i) a=3.76 meV/(Tw×cm-2   (a=3.2 meV/
(Tw×cm-2 ); (ii) a=7.8 meV/(Tw×cm-2) (a=6.5 
meV/(Tw×cm-2). 

The presented  results show that Debye plasma 
environments have an effect on the multiphoton 
transitions. Nevertheless, one should keep in 
mind some important facts the  (see, for exam-
ple, [33,34]). It is clear the static screening result 
considered above is subject to the condition that 
the plasma is a thermodynamically equilibrium 
plasma and neglects the contributions from ions 
in plasma since electrons provide more effective 
shielding than ions. 

Obviously with the changing the plasma con-
ditions (parameters)  in principle there can be tak-
en a place a significant variations. Besides, one 
should remember about the conditions of applica-
bility of the Debye approximation. 
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LASER MULTIPHOTON SPECTROSCOPY OF ATOM EMBEDDED IN DEBYE 
PLASMAS: MULTIPHOTON RESONANCES AND TRANSITIONS  

Abstract. 
The consistent relativistic energy approach to atom in a realistic laser field, based on the Gell-Mann 

and Low S-matrix formalism, is applied to studying the resonant multiphoton transitions in atoms 
embedded in the Debye plasmas. There is considered a new scheme to calculating the  multiphoton 
transitions characteristics, shifts and widths of multiphoton resonances.  An approach is used for treat-
ing the three-photon transitions in krypton embedded in the Debye plasmas.
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резонансных многофотонных переходов атомов в дебаевской плазме.  Предложена новая схема 
вычисления характеристик  многофотонных переходов, энергий и ширин многофотонных пере-
ходов. Подход использован для описания трехфотонных переходов в криптоне в плазме Дебая.

Ключевые слова: электромагнитное, лазерное поле, многофотонные резонансы, плазма
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В. В. Буяджи 

ЛАЗЕРНА МУЛЬФОТОНА СПЕКТРОСКОПІЯ АТОМІВ У ДЕБАЄВСЬКІЙ ПЛАЗМІ: 
БАГАТОФОТОННІ ПЕРЕХОДИ І РЕЗОНАНСИ

Резюме. 
Релятивістський енергетичний підхід до опису спектроскопії атома в лазерному полі, що 

грунтується на S-матричному формалізмі Гелл-Манна і Лоу, застосовується для вивчення ре-
зонансних багато фотонних переходів атомів в дебаєвській плазмі. Запропоновано нову схему 
обчислення характеристик багатофотонніих переходів, енергій і ширин багато фотонних пере-
ходів. Підхід використаний для опису трьох фотонних переходів у криптоні в плазмі Дебая.

Ключові слова: електромагнітна взаємодія, лазерне поле, багатофотонні резонанси, плазма
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PENNING AND STOCHASTIC COLLISIONAL IONIZATION  OF ATOMS IN AN EXTERNAL 
MAGNETIC FIELD: MODEL POTENTIAL SCHEME 

 

The key physical aspects of the  Penning and stochastic collisional ionization of atoms in an external magnetic 
field are considered and new model potential approach has been implemented in order to take into account an 
effect of magnetic field on multi-electron atom energy parameters and to compute the wave functions basis for 
next using in the collisional block. The corresponding Schrödinger equation for atom in a magnetic field and 
the Focker-Plank stochastic equation are solved within the standard differences-grid method.  

1. Above a great number of different elemen-
tary atomic and molecular processes to be stud-
ied in collisions physics, physics and chemistry 
of plasma, gases and other mediums one should 
note such complicated phenomena as an ioniza-
tion of excited atoms by means of the photon and 
electron impact, atom-atom or ion-atom colli-
sions, inclufing these processes at presence of the 
external field. As a rule in any case an adequate 
treating these processes requires an accurate ac-
count of different exchange-correlation and even 
relativistic corrections [1-25]. Indeed to fulfill an 
accurate account of the inter electron correlation 
effects in the atomic collisions is very difficult as 
these effects and other ones are not  adequately 
described within many simplified models. Situa-
tion changes dramatically under consideration of 
the different atomic collisional processes under 
availability of the external electromagnetic fields. 
Even more simple case of the external static elec-
tric or magnetic field is remained hitherto quanti-
tatively undeceived. Several theoretical attempts 
were taken to make  formulation of the consistent 
quantum theory for the atomic collisional pro-
cesses in presence of the external magnetic field.  
[11-20]. 

Usually there are considered the key intera-
tomic collisional processes, which are of a great 
interest for many applications, namely [1-4]: 

                                                                                
                                                                     (1)

                                                                     (2)

                                                                     (3)

As usually, in these formula  A* denotes the 
atom in an excited state, B+ is the ionized atom. 
The first process (1) occurs and runs very effec-
tively in a case when the excitation energy of the 
A atom is more than the ionization potential of the 
atom B. Here one can introduce the Penning pro-
cess, which is corresponding to the situation when 
the  atom A is in the metastable state. The process 
(3) is corresponding to the associative ionization. 
It takes a place when the dissociation energy of 
molecular ion AB+  is more than the ionization po-
tential of the excited atom [1,2].  

The most widespread theoretical schemes for 
description of the cited processes (look, for ex-
ample, [1-5,17-22]) are based on the computing 
the capture cross-section of collisional particles 
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were taken to make  formulation of the 
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collisional processes in presence of the 
external magnetic field.  [11-20].  

Usually there are considered the key 
interatomic collisional processes, which are 
of a great interest for many applications, 
namely [1-4]:                                                                                  

             A*(nl)+B(A+B+)+e or            (1)                                                           

             A*(nl)+B(A+ +B)+e or           (2) 
                A*(nl)+BAB++e.                  (3) 

 
As usually, in these formula  A* denotes the 
atom in an excited state, B+ is the ionized 
atom. The first process (1) occurs and runs 
very effectively in a case when the excitation 
energy of the A atom is more than the 
ionization potential of the atom B. Here one 
can introduce the Penning process, which is 
corresponding to the situation when the  atom 
A is in the metastable state. The process (3) 
is corresponding to the associative ionization. 
It takes a place when the dissociation energy 
of molecular ion AB+  is more than the 
ionization potential of the excited atom [1,2].   

The most widespread theoretical 
schemes for description of the cited 
processes (look, for example, [1-5,17-22]) 
are based on the computing the capture cross-
section of collisional particles by field of the 
wan der Waals interaction potential. Above 
other consistent methods one should mention 
a few versions of the rectilinear classical 
trajectories model too [1-3,20]. Besides, 
standard problems of adequate treating 
complex inter electron correlations, there are 
other difficulties in a correct description of 
collisional processes studied.  

Remember that the above cited models 
do not account for any difference between 
the Penning process and resonant collisional 
processes. Though the Penning and 
stochastic collisional ionization of atomic 
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by field of the wan der Waals interaction poten-
tial. Above other consistent methods one should 
mention a few versions of the rectilinear classical 
trajectories model too [1-3,20]. Besides, standard 
problems of adequate treating complex inter elec-
tron correlations, there are other difficulties in a 
correct description of collisional processes studied. 

Remember that the above cited models do 
not account for any difference between the Pen-
ning process and resonant collisional processes. 
Though the Penning and stochastic collisional 
ionization of atomic systems remains a subject 
of intensive theoretical and experimental inter-
est, however, at present time an available level of 
modelling these processes is still not satisfactory. 
The most important tasks include more accurate 
modelling of an external electromagnetic field on 
the corresponding Penning and stochastic colli-
sional ionization processes. As for the last years 
a great interest has been renewed after discovery 
of the quantum chaos phenomenon in atomic sys-
tems in the static magnetic field [1-13,22], it is 
of a importance  studying stochastic collisional 
ionization processes.

In series of papers [17, 22-24] the different as-
pects of new theoretical methods to the treating  
elementary atomic processes (1)-(3) in a presence 
of external electric and magnetic field were con-
sidered . In this paper we formulate a consistent,  
computationally effective model potential ap-
proach of accounting the external magnetic field 
effect in many-electron atomic system and further 
using in collisional problem. 

2. Further we formulate the simple physical 
model of elementary collisional process with ad-
ditional stochastic block. Let us remind the main 
moments of the elementary model for collisional 
process, in particular (1). A definition of complete 
cross section for the collisional process can be 
written as [24]:   

                                                                  (4)

where G( R ) is a probability of the Auger effect 
G( R)= 2p|V12|2g2 (indexes 1and 2 are relating to 
states: A*+B and A+B++e; g is a density of the 
final states; V is operator of interaction between 
atoms). 

In a case when ionization process is realized 
in the repulsive potential of interaction between 
atoms in the initial channel, the cross-section is :

 
     (5)

Here v is the relative velocity of collision, Rtn 
is the minimally possible distance of rapproche-
ment (the turning point);  fw is the probability that 
the process is permitted on full  electron spin of 
system of the collisional atoms. 

The important step is to account for a possibil-
ity of decay in the second and higher orders of 
perturbation theory on V( R). Such approach may 
be used as for the Penning ionization description 
as for ionization through the wan-der-Waalse cap-
ture [3,5, 17,24]. 

Let us remind that in the perturbation theory 
second and higher orders it is introduced the ma-

trix element:  2)()...()(1 RVRVEGRV
∞

 insist of 

the simple matrix element 2)(1 RV in expres-
sion for probability of collisional decay. Here [1>
≡ [А*+В> is the initial state, [2>≡ [А+В++e> is 
the final state; g

e
 is the Green function (see be-

low);  Е∞ is an energy of quasi-molecule А*В under 
R ∞→  . 

Further one can use for operator V(R) the 
standard expansion on non-reducible tensor op-
erators:

                    (6)

                             
(7)

where lmQ


is an operator of the 2l-pole moment of 
atom and Clm (n) is the modified spherical func-
tion. If we suppose that atom А* is in the state 
with the whole moment Ji and projection on the 
quantization axe Мi; in the final state the corre-
sponding quantum numbers are JfМf ; The final 
expression for the full probability of the electron 
ejection is similar to expressions in different ap-
proximation is, for example,  presented in ref. 
[17-24]. 
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where G( R ) is a probability of the Auger 
effect G( R)= 2|V12|2g2 (indexes 1and 2 are 
relating to states: A*+B and A+B++e; g is a 
density of the final states; V is operator of 
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In a case when ionization process is 
realized in the repulsive potential of 
interaction between atoms in the initial 
channel, the cross-section is : 
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Here v is the relative velocity of collision, Rtn 
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rapprochement (the turning point);  fw is the 
probability that the process is permitted on 
full  electron spin of system of the collisional 
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Above the theoretical consideration concerns 
the standard  collisional process without account-
ing any stochastical (or chaotic) elements. In ref. 
[22,23] it has been considered the perspective for 
realization the stochastic collisional process for a 
case  when the atom A in process (1) is highly ex-
cited (Rydberg state). This physical situation can 
be adequately treated within generalized theory 
of chaotic drift for the Coulomb electron in the 
external microwave field  (see refs. [4-6,19-23]). 

The function of distribution f(n,t) of the Ry-
dberg electron on space of effective quantum 
numbers n  should be introduced. The equation 
of motion of the Rydberg electron has the well 
known form:  

ttnf ∂∂ /),( t= n∂∂ /  [Q(n-Nmin)D( R)n3
 

ntnf ∂∂ /),( ] - Q(n-Nmax)G(n,R)f(n,t)                 (8)

Here Q(n-Nmin) is the Heviside function. It 
served here as additive multiplier in the coeffi-
cient of diffusion: Dn3 and provides freeezing of 
the stochastic processes in region of the low ly-
ing states in accordance with the known Cirikov 
criterion: Nmin<n<Nmax. For the Rydberg states 
(n>Nmax) a direct channel of ionization is opened 
and the electron ejection takes a place. It is im-
portant to note that process will be realized with 
more probability under availability of the external 
magnetic field. So the task is further resulted in 
implementation of an adequate theoretical mod-
el of an external magnetic field accounting or in 
more details the model for computing the corre-
sponding electron wave functions of the Zeemane  
problem. 

3.  The next step is implementation of the  mod-
el potential approach to multi-electron atom in a 
magnetic field into collisional problem. Let us re-
mind that despite a long history since the discov-
ery of the Zeemane effect and sufficiently great 
number papers on atomic systems in an external 
magnetic field, hitherto a majority of results are 
as a little acceptable for many applications  as re-
lated only the hydrogen atom  (look, for instance, 
[4-6,11-13]). The problem of the treating many-
electron atom in a magnetic field remains very 
complicated especially in a case of the strong 
field. Below we implement  a simple scheme to 

treating multi-electron atom in a static magnetic 
field. The purpose is to present the  basis scheme 
for definition of the electron wave functions for 
further using in the collisional task. 

The Hamiltonian of the many-electron atom in 
magnetic field is different from the operator of the 
hydrogen atom by the presence of the operator of 
electron-electron Coulomb interaction, which, of 
course, exacerbates the problem of separation of 
variables in the Schrödinger equation. 

Because of the invariance of Ĥ  in relation to 
rotations around the axe Oz (it is parallel to field 
В and crossing a nucleus of an atom), naturally 
z-component of the orbital moment Lz=hМ is 
the conserving variable. In the cylindrical coor-
dinates with axe Oz||В with account of the trivial 
dependence of the wave function upon the rota-

tion angle ϕ  around the axe z ( ϕiMe~Ψ ), one 
could write the corresponding equation in the 
form (in atomic units: e=h=m=1): 
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where Vc( r) is the self-consistent model potential 
(analog of the Hartree-Fock potential).  It can be, 
for example, chosen in the Green et al like form 
(look details in Ref.  [5,16], which indeed well 
approximates the Hartree potential:

                   ( ) ( )
r

rN
V c Ω-

-=
1

                    

(10)

where the screening function is  

( ) ( ) ]1[exp1 21 ddrr +-=Ω 
and d1,2 are the known parameters of the model 
potential.

Naturally the equation (9) has not an analyti-
cal solution as the Coulomb interaction term with 

,2/1)22( zr += ρ  prevents to the variables separa-
tion. As usually the equation (9) can be in some 
approximation rewritten as follows:  

                       Hy(r,z)=Ey(r,z)                     (11)
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where Vc( r) is the self-consistent model 
potential (analog of the Hartree-Fock 
potential).  It can be, for example, chosen in 
the Green et al like form (look details in Ref.  
[5,16], which indeed well approximates the 
Hartree potential: 
 
                            

r

rN
V c 


1     

                                                   (10) 
where the screening function is   
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Where, as usually,  g=В/Во (Во=2,3505×109). 

The potential  22ρg8/1 limits a motion in the 
direction, which is perpendicular to the B direc-
tion. In the region g >>1 the electron motion 
along (or perpendicular) magnetic field is defined 
by the Coulomb interaction (by a size of the cy-

clotronic orbit 2/1)/( eMc=l ). The simplified 
circumstance is that the potential of the longitu-
dinal Coulomb interaction can be received by 
way of the averaging the total Coulomb potential 

2/1222 )( -+ ze ρ  on the little radius оf the trans-
verse motion. 

The one-particle energy for given values of 
magnetic field B is defined as:

µµµµµ ege -+++= 2/)12||( zB smm    (13)

where  em - one-particle energy (the field is ab-
sent), Szm  is the spin projection on the axe z. 

After the analytical integration on the angles,  
two-dimensional (r,z)  Schrodinger equation (12) 
is solved by the finite difference method. One-
electron function is represented in the form:

),,()2(),,( 2/1 ρψpφρ µ
φ

µ
µ zez im--=Ψ            (14)

where m is the number of electrons  numbers, 
each of which is described by a certain value of 
the magnetic quantum number mm. Note that un-
like the hydrogen-like system for a multi-electron 
atom is an essential consideration of the effects 
of electron correlations and exchange. The nu-
merical solution of the written equations can be 
performed on the basis of the  differences-grid 
standard method. Really, according, for example, 
to [5],under the differences solving, an infinite 

region was replaced by rectangular area: 0<r< ρL , 

0<z< zL  by sufficienlt large size , in which there 

is constructed  ь uniform grid with steps ρh , zh
. On the outer boundary there are set conditions: 

.0)( =/∂Ψ∂ rn  In the absence of a field, the wave 
function decreases at infinity like exp[- 2/1)2( E-  
r]. In the presence of E must be replaced with 
the ionization energy of the stationary state in the 
lowest Landau level: (-E). A rough estimate for L:

L=15 2/1)2( -- E . Derivatives of r are  ap-
proximated (2m + 1) -point symmetric difference 
schemes obtained by differentiating the interpo-
lation formula of Lagrange. For the second de-
rivative z used symmetric three-point difference 
scheme. The eigenvalues of the Hamiltonian are 
calculated based on the method of inverse itera-
tions. The corresponding system of inhomoge-
neous equations solved by Thomas (look details, 
for example, in Ref. [5]). Naturally, the concrete 
realization of such a algorithms and its further 
implementation into collisional problem block 
requires significant computational work and will 
be considered in the next paper. Here let under-
line that using the simple model potential model  
simplifies all theory. Though, it is obvious that in 
a case of the stochastic collisional process, in par-
ticular, with Rydberg collided atoms, the model 
became more complicated to take into account 
the possible essential changing stochastic mecha-
nism due to an effect of the  external filed. 
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Abstract. 
The key physical aspects of the  Penning and stochastic collisional ionization of atoms in an exter-

nal magnetic field are considered and new model potential approach has been implemented in order 
to take into account an effect of magnetic field on multi-electron atom energy parameters and to com-
pute the wave functions basis for next using in the collisional block. The corresponding Schrödinger 
equation for atom in a magnetic field and the Focker-Plank stochastic equation are solved within the 
standard differences-grid method. 
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ПЕННИНГОВСКАЯ И СТОХАСТИЧЕСКАЯ СТОЛКНОВИТЕЛЬНАЯ ИОНИЗАЦИЯ 
АТОМОВ ВО ВНЕШНЕМ МАГНИТНОМ ПОЛЕ: СХЕМА НА ОСНОВЕ 
МОДЕЛЬНОГО ПОТЕНЦИАЛА

Резюме. 
Рассмотрены ключевые физические аспекты пеннинговской и стохастической столкнови-

тельной  ионизации атомов во внешнем магнитном поле и сформулирован  новый подход к ре-
шению задачи учета  влияния внешнего магнитного поля на энергетические параметры многоэ-
лектронных атомов и вычисления базиса волновых функций для последующего использования 
в столкновительном блоке. Соответствующее уравнение Шредингера для атома в магнитном 
поле и стохастическое уравнение Фоккера-Планка решаются в рамках стандартном конечно-
разностного метода сеток. 

Ключевые слова: пеннинговская, стохастическая столкновительная  ионизация, магнитное 
поле, подход на основе модельного потенциала



140

УДК 539.182

Г. О. Кузнецова

ПЕННІНГІВСЬКА ТА СТОХАСТИЧНА ЗА РАХУНОК ЗІТКНЕНЬ ІОНІЗАЦІЯ 
АТОМІВ У ЗОВНІШНЬОМУ МАГНІТНОМУ ПОЛІ: СХЕМА НА ОСНОВІ 
МОДЕЛЬНОГО ПОТЕНЦІАЛА

Резюме. 
Розглянуті ключові фізичні аспекти пеннінговской і стохастичною зіткнень іонізації атомів у 

зовнішньому магнітному полі і сформульований новий підхід до вирішення завдання врахуван-
ня впливу зовнішнього магнітного поля на енергетичні параметри багатоелектронних атомів і 
обчислення базису хвильових функцій для подальшого використання в  блоці зіткнення. Відпо-
відне рівняння Шредінгеру для атома в магнітному полі і стохастичне рівняння Фоккера-План-
ку вирішуються в рамках стандартного  скінченно-різницевого методу сіток.

Ключові слова: пеннінгівська, стохастична за рахунок зіткнень іонізація,магнітне поле, під-
хід на основі модельного потенціалу 
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ON PROBABILITIES OF THE VIBRATION-NUCLEAR TRANSITIONS IN SPECTRUM 
OF THE RuO4  MOLECULE 

There are firstly presented theoretical data on the vibration-nuclear transition probabilities in a case of the 
emission and absorption spectrum of the nucleus of ruthenium 186Re (E(0)

γ= 186.7 keV) in the molecule of  
RuO4, estimated on the basis of consistent quantum-mechanical  approach to cooperative  electron-γ-nuclear   
spectra (a set of the vibration-rotational satellites in a spectrum of molecule) of multiatomic molecules. 

From physical viewpint it is obvious that any 
alteration of the molecular state must be mani-
fested in the quantum transitions, for example, 
in a spectrum of the γ-radiation of a nucleus (see 
for example [1-22]). In result of the gamma nu-
clear transition in a nucleus of a molecule there is 
arised a set of the electron-vibration-rotation sat-
ellites, which are due to an alteration of the state 
of the molecular system interacting with photon.  
The known example is the Szilard-Chalmers ef-
fect which results to molecular dissociation be-
cause of the recoil during radiating gamma quan-
tum with large energy (c.f. [1-5]). 

In series of works [11-22] it has been carried 
out detailed studying the co-operative dynamical 
phenomena due the interaction between atoms, 
ions, molecule electron shells and nuclei nucle-
ons. There have been developed a few advanced 
approaches to description of a new class of dy-
namical laser-electron-nuclear effects in molecu-
lar spectroscopy, in particular, a nuclear gamma-
emission or absorption spectrum of a molecule. 

A consistent quantum- mechanical approach 
to calculation of the electron-nuclear g transition 
spectra (set of vibration-rotational satellites in 
molecule) of a nucleus in the multiatomic mole-
cules has been earlier proposed [13,14] and gener-
alizes the well known approach by Letokhov-Mi-
nogin [8]. Earlier there were have been obtained 

estimates and calculations of the  vibration-nuclear 
transition probabilities in a case of the emission and 
absorption spectrum of nucleus 191Ir (E(0)

g= 82 keV)  
in the molecule of IrO4  , 

188Os (E(0)
g= 155 keV in 

OsO4  and other molecules were  listed. 
In this paper there are firstly presented theoretical 

data on the vibration-nuclear transition probabilities 
in a case of the emission and absorption spectrum 
of the nucleus of ruthenium 97Ru in the molecule of 
RuO4 , estimated on the basis of the simplified ver-
sion [18,19] of the consistent quantum-mechanical  
approach to cooperative  electron-g-nuclear   spectra 
(a set of the vibration-rotational satellites in a spec-
trum of molecule) of multiatomic molecules.

As the method of computing is earlier presented 
in details, here we consider only by the key topics 
following to Ref. [18] The aim is to compute param-
eters of the  gamma transitions (a probability of tran-
sition) or spectrum of the gamma satellites because 
of changing the electron-vibration-rotational states 
of the multi-atomic molecules under gamma quan-
tum radiation (absorption). Here it is considered a 
case of the five-atomic molecules (of XY4 type; Td).  

Hamiltonian of interaction of the gamma ra-
diation with a system of nucleons for the first nu-
cleus can be expressed through the co-ordinates 
of nucleons rn

’ in a system of the mass centre of 
the one nucleus [14,18]:
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          )exp()()( uikrHrH nn g-′=                  (1)

where kg is a wave vector of the gamma quantum; 
u is the shift vector from equality state  (coin-
ciding with molecule mass centre) in system of 
co-ordinates in the space. The matrix element 
for transition from the initial state “a” to the final 
state “b” is presented as usually:

•>ΨΨ< ab H ||* >ΨΨ< -
a

uik
b å ||* g       (2)

where a and b is a set of quantum numbers, which 
define the vibrational and rotational states before 
and after interaction (with gamma- quantum). 
The first multiplier in eq. (2) is defined by the 
gamma transition of nucleus and is not dependent 
upon the internal structure of molecule in a good 
approximation. The second multiplier is the ma-
trix element of transition of the molecule from the 
initial state “a” to the final state “b”:

•>ΨΨ=< )(|)(*
eaebba rrM

>ΨΨ<• - ),(||),( 2121
* 1 RReRR a

Rik
b

g   (3)

The expression (3) gives a general formula 
for calculating the probability of changing the 
internal state of molecule during  absorption or 
emitting g quantum by a nucleus. It determines an 
intensity of the corresponding g-satellites. Their 
positions are fully determined as follows:

       )(0
ab EEvkREE -±+±= ggg         (4a)

Here M is the molecule mass, v is a velocity 
of molecule before interaction of nucleus with g 
quantum;  Ea and Eb are the energies of the mol-
ecule before and after interaction; Eg is an energy 
of nuclear transition; Rom is an energy of recoil: 

                   Rom= [(Eg
(o)] 2/2Mc2.                (4b)

Obviously only single non-generated normal 
vibration (vibration quantum ω ) is excited and 
initially a molecule is on the vibrational level va 
=0. If denote a probability of the excitation as 
P(vb, va)  and use expression for shift u of the g-

active nucleus through the normal co-ordinates, 
then an averaged energy for excitation of the sin-
gle normal vibration is as follows [8,14,18]: 
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∞

=

=∞-+
0

2
1 2/)0,(

v
vPv ω

( )∑
∞

=

=-+=
0

2
1 2/)0,(

v
vPv ωω 

( )∑
=

- 





 -

=-+=
0

2
1

2
1

2!v

z
v

m
mMRe

v
zv ωω 



,   (5)

where 

               ,cos]/)[/( 2ϑω mmMRz -= 

and m is the mass of g-active nucleus, ϑ  is an 
angle between nucleus shift vector and wave vec-
tor of g-quantum and  line in E vib means averag-
ing on orientations of molecule (or on angles ϑ
). To estimate an averaged energy for excitation 
of the molecule rotation, one must not miss the 
molecule vibrations as they provide non-zeroth 
momentum L=kvusinϑ , which is transferred to a 
molecule by g-quantum. In supposing that a nu-
cleus is only in the single non-generated normal 
vibration and vibrational state of a molecule is not 
changed va=vb=0, one could evaluate an averaged 
energy for excitation of the molecule rotations as 
follows:

E rot= == ϑg
2222 sinuBkBL   

                ]/))[(/(2
1 mmMBR -= ω              (6)

As for multi-atomic molecules it is typical B/
ω ~10-4-10-2, so one could miss the molecule 

rotations and consider g-spectrum of a nucleus 
in the molecule mass centre as a spectrum of the 
vibration-nuclear transitions. 

A shift u of the g-active nucleus can be ex-
pressed through the normal co-ordinates  σsQ  of 
a molecule:

                      ∑=
σ

σσ
s

ss Qb
m

u 1                     (7)

where m is a mass of the g- active nucleus; com-
ponents of the vector bsF  of nucleus shift due to 
the F-component of  “s” normal vibration of a 
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molecule are the elements of matrix b [2]; it real-
izes the orthogonal transformation of the normal 
co-ordinates matrix Q to matrix of masses of the 
weighted Cartesian components of the molecule 
nuclei shifts q. 

According to eq.(1), the matrix element can 
be written as multiplying the matrix elements on 
molecule normal vibration, which takes contribu-
tion to a shift of the g- active nucleus:

=),( abM

.)/exp(|∏ ∏ -=
s

a
sss

b
s vmQbikv

σ
σσg (8)

It is obvious that missing molecular rotations 
means missing the rotations which are connected 
with the degenerated vibrations. Usually wave 
functions of a molecule can be written for non-
degenerated vibration as:

 )(| svss Qv Φ= ,                 (9)

for double degenerated vibration in the form: 

( ) )()(1
2

321
211

2
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,,
σ
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(where sss vvv =+
21 σσ ) and for triple degener-

ated vibration as follows:   
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where 

                      ssss vvvv =++
321 σσσ .

In the simple approximation function 

)( σσ
Φ sv Qs

 can be chosen in a form of the linear 
harmonic oscillator one. More exact calculating 
requires a numerical determination of these func-
tions. Taking directly the wave functions a

sv  

and b
sv , calculating the matrix element (8) is 

reduced to a definition of the matrix elements  on 
each component F  of the normal vibration.

Below we present the accurate data on the vi-
bration-nuclear transition probabilities in a case 
of the emission and absorption spectrum of the 
nucleus of ruthenium 97Ru (E(0)

g= 215 keV) in the 
molecule of RuO4 . As a molecule has the only 
normal vibration of the given symmetry type, 
then the corresponding values of bss can be found 
from the well known Eccart conditions, normali-
zation one and data about the molecule symmetry. 

For several normal vibrations of the one sym-
metry type, a definition of bss requires solving the 
secular equation for molecule |GF-lE|=0  [23-26].  
There have been used the results of advanced the-
oretical calculating electron structure of the mol-
ecule within an advanced relativistic scheme of 
the X”- scattered waves method (see description 
in Refs.[23,26]). 

In table 1 we present the  results of calculat-
ing probabilities of the first several the vibration-
nuclear transition probabilities in a case of the 
emission and absorption spectrum of the nucleus 
of ruthenium 97Ru (E(0)

g= 215 keV) in the molecule 
of RuO4. 

Table 1 
The vibration-nuclear transition probabilities 
in a case of the emission and absorption spec-
trum of the nucleus of ruthenium 97Ru  in the 
molecule of RuO4,

Vibration transition
v3

a ,v4
a – v3

b, v4
b P ( v3

a ,v4
a – v3

b, v4
b)

This work 

0,0  –  0,0 0.74

1,0  –  0,0 0.014

0,1  –  0,0 0.067

1,0  –  1,0 0.68

0,1  –  0,1 0.61
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ON PROBABILITIES OF THE VIBRATION-NUCLEAR TRANSITIONS IN SPECTRUM 
OF THE RuO4  MOLECULE 

Abstract. 
There are firstly presented theoretical data on the vibration-nuclear transition probabilities in a case 

of the emission and absorption spectrum of the nucleus of ruthenium 97Ru in the molecule of RuO4 , 
estimated on the basis of consistent quantum-mechanical  approach to cooperative  electron-γ-nuclear   
spectra (a set of the vibration-rotational satellites in a spectrum of molecule) of multiatomic molecules. 
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О ВЕРОЯТНОСТИ КОЛЕБАТЕЛЬНО-ЯДЕРНЫХ ПЕРЕХОДОВ В СПЕКТРЕ 
МОЛЕКУЛЫ RuO4

Резюме.
Впервые представлены теоретические данные о вероятностях колебательно-ядерных 

переходов в случае испускания и поглощения гамма-кванта ядром рутения 97Ru в молекуле 
RuO4, полученные на основе  последовательного квантово-механического подхода  к расчету 
электронно-гамма-ядерного спектра (система  колебательно-вращательных спутников в спектре 
молекуле) в многоатомных молекулах. 

Ключевые слова: спектр электрон -γ- ядерных переходов, многоатомные молекулы
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ПРО ІМОВІРНОСТІ КОЛИВАЛЬНО-ЯДЕРНИХ ПЕРЕХОДІВ 
В СПЕКТРІ МОЛЕКУЛИ RuO4

Резюме.
Вперше представлені теоретичні дані про ймовірності колебательно-ядерних переходів у 

разі випускання і поглинання гамма-кванта ядром рутенію 97Ru в молекулі RuO4, отримані на 
основі послідовного квантово-механічного підходу до розрахунку електронно гамма-ядерного 
спектру (система колебательно-обертальних супутників в спектрі молекулі) в багатоатомних 
молекулах.

Ключові слова: спектр електрон -γ- ядерних переходів, багатоатомні молекули
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ON INTENSITY OF  EMISSION OF THE METALS ATOMS IN A HYDROGEN-OXYGEN 
FLAME IN A PRESENCE OF  A MAGNETIC FIELD

In this paper we present renewed theoretical 
estimates for intensity of emission of the alkali 
atoms (potassium and rubidium) in the hydrogen-
oxygen flame under action of a magnetic field. 
To take into account the magnetic field effect 
we use simplified model based on the operator 
perturbation theory for  atomic systems in ex-
ternal magnetic field. New estimates are listed 
for the  intensities of emission of the lines for К  
(D1: 21

2
21

2 44 SP - and D2: 21
2

23
2 44 SP - ) and Rb 

(1: 21
2

23
2 55 SP - and 2: 21

2
23

2 56 SP - ).  The maxi-
mum value of the magnetic effect for D2 line of К 
atom for σ - polarization is equal 1.65, for π -po-
larization— 1,24. For Dl line the maximum value 
is equal 1,36 for both polarizations. Let us remind 
that an effect of external field on the spectral pa-
rameters for atoms and ions in the flame is of a 
great interest as in the modern chemical physics 
and physics of combustion as atomic optics and 
spectroscopy [1-10].  

Among the effects that require further theoreti-
cal and experimental research related phenome-
non is increasing the intensity of the glow of at-
oms in a strong magnetic field in the complete ab-
sorption at the line center. The known example is 
the excess luminosity of sunspots in the rays Na

An  intensity of emission for the alkali atoms (potassium and rubidium) in the hydrogen-oxygen flame 
under action of a magnetic field is theoretically estimated with using quantum defect approximation in operator 
perturbation theory for  atomic systems in external magnetic field.  New estimates for the  intensities of emission 

of the lines for К (D1: 21
2

21
2 44 SP - and D2: 21

2
23

2 44 SP - ) and Rb (1: 21
2

23
2 55 SP - and 2: 21

2
23

2 56 SP - ) are 

presented. The maximum value of the magnetic effect for D2 line of К atom for σ - polarization is equal 1.65, 
for π -polarization— 1,24. For Dl line the maximum value is equal 1,36 for both polarizations. 

, +Ca  , on the luminosity of the solar disk, which 
is apparently due to the effects of environmental 
enlightenment in a magnetic field of about 4.5 kE. 

In series of papers by Hayashi et al (look for 
example, [1])  it has been investigated the fluo-
rescence additives of inorganic salts in flames at 
atmospheric pressure and was found the effect of 
external magnetic field Н on the intensity of the 
luminescence of the intermediate particles.  For 
the OH radical in a magnetic field of 18 kE lumi-
nescence intensity increased by 14%, and for the 
sodium atom - by 2.5 times. Sodium salts were 
introduced into the dispersing aqueous solutions 
of flame under a stream of nitrogen. The experi-
mentally measured magnetic effect, i.e. the ratio 
of I(H)/I(0) luminescence intensity in a magnetic 
field H to the intensity of the glow without a mag-
netic field. Hayashi et al have shown that such salts 
NaÑl  magnetic effect increases with the concen-
tration (s) of the salt in solution, and salts of the 
type  2NaNO , on the contrary, the magnetic ef-
fect decreases. Sorokin and others [1] concerning 
the effect of the magnetic field on the intensity 
of the luminescence of alkali metals sodium and 
cesium in the flames. Appropriate aerosol stream 
is saturated nitrogen vapor salts NaÑl , ÑsÑl . 
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It was studied an influence of the magnetic field 
strength of 10 kЕ on the luminescence intensity of 

the resonance lines of sodium (D1: 21
2

21
2 33 SP -   

and  D2: 21
2

23
2 33 SP - ). The range of variation 

of    pressure    sodium 45 10.510 -- -  Torr. For the 
line D2 in the case of σ - polarization maximum 
value of the magnetic effect is equal to 2, and in 
the case of π- polarization - 1.5. In the case of lines 
D1 maximum value is 1.6 and is the same for both 
polarizations. For cesium atom measurements 
were taken at two wavelengths of     transitions    

(1:   21
2

23
2 66 SP -      and   2: 21

2
23

2 67 SP -  ).  
In refs. [2,3] there were presented first theoreti-
cal estimates for the effect of a magnetic field on 
the intensity of the luminescence of alkali met-
als: sodium and cesium (salts NaÑl ,  ÑsÑl ) in a 
hydrogen - oxygen flame intensity magnetic field 
of 10 kE. There were listed preliminary data for 
the intensity of the luminescence lines of sodium 
(D1: 21

2
21

2 33 SP - and D2: 21
2

23
2 33 SP - ) and ce-

sium lines (1: 21
2

23
2 66 SP -  and 2: 21

2
23

2 67 SP -
). The maximum value of the magnetic effect of 
the D2 line of the sodium atom in the case of σ 
- polarization is equal to 1.9, and in the case of π - 
polarization - 1.45, and for the line D1 maximum  
value   is   1.5.    

In order to get more precise data it is necessary 
to use more consistent model for treating an effect 
of a magnetic field on the intensity of the lumines-
cence of alkali metals. Here we use such a model 
and apply it to studying emission intensities for  
alkali atoms  in the hydrogen - oxygen flame un-
der availability of the magnetic field (strength 
10 kE) for the lines D1: 21

2
21

2 44 SP -  , D2: 

21
2

23
2 44 SP -  in potassium and D1: 21

2
23

2 55 SP -  
D2: 21

2
23

2 56 SP -  )in the caesium.
Naturally, the  intensity I of   the  i-j  transi-

tion is connected with the concentration of atoms 
(standardly determined    by   the appropriate dis-
sociation constant, see. [2.4]) and corresponding-
ly the line strength S is defined as follows: 

                 .23 01
2 ωmfgeS ji-=               (1)

Here ji EE -=0ω  - the frequency of the tran

sition, and jif - -is the radiative transition i-j     os-
cillator strength. In approximation of the “length” 
form D transition operator an oscillator strength 
is defined by the following expresssion:

( ) 222 ijjiji DEEmf ΨΨ-=- 

.
                                                                     (2)
Naturally the intensity σ - component is pro-

portional to the square of the standard 3j- sym-
bols:
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The key moment of the model is determination 
of the wave functions. Here the   wave   functions   
of   the states were    found from the  numerical    
solution   of  the  Schrodinger   equation   for  al-
kali atom  in   a  magnetic field  using  the simpli-
fied quantum defect approximation version of the 
operator perturbation theory method [11]. Such a 
model is more correct with the usual H-like ap-
proximation, nevertheless it is more simplified 
in comparison with the model potential approach 
(look analysis regarding different models in Refs. 
[6-8,12-14]).

In Table 1  we present our data which illustrate 
an influence of the magnetic field H in the lumi-
nescence intensity of D2 line of the potassium 
atom in the σ - and π - polarizations depending 
on the partial pressure    of   potassium   atoms. In   
the   first case, the maximum value of the mag-
netic   effect   of   I(H)/I(0)   is    equal   to   1.65, 
and   in   the   second - 1.24.  

In the case of    line    D1 potassium atom 
calculated   value   of   the maximum magnetic    
effect - 1,36. Let us not that the preliminary esti-
mate of this value in [3] is 1.4. 

For the rubidium atoms the magnetic  field   in-
creases   the intensity of emission  line (1)  in ~1.5 
times.  Analysis shows that the obtained renewed 
estimates are in physically reasonable (at least 
qualitative) agreement with experimental data. 
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Table 1
The influence of magnetic field on the intensity of 
the sodium atom D2 line in the s- and p-polariza-

tion as a function of the partial pressure of sodium 
atoms in flames: I(H)/I(0) - the ratio of the lumi-
nescence intensity in the magnetic field strength 

H of the luminescence intensity without magnetic 
field; p is the partial pressure ( 510 - Torr).

( ) ( ) pOIHI \
6 12 18 24 30

σ - polarization 1,04 1,27 1,65 1,59 1,28

π  - polarization 0,98 1,10 1,24 1,22 0,68
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ON INTENSITY OF  EMISSION OF THE METALS ATOMS IN A HYDROGEN-OXYGEN 
FLAME IN A PRESENCE OF  A MAGNETIC FIELD

Abstract. 
An  intensity of emission for the alkali atoms (potassium and rubidium) in the hydrogen-oxygen 

flame under action of a magnetic field is theoretically estimated with using quantum defect approxi-
mation in operator perturbation theory for  atomic systems in external magnetic field 10 кЕ.  New esti-
mates for the  intensities of emission of the lines for К (D1: 21

2
21

2 44 SP - and D2: 21
2

23
2 44 SP - ) and Rb 

(1: 21
2

23
2 55 SP - and 2: 21

2
23

2 56 SP - ) are presented. The maximum value of the magnetic effect for D2 
line of К atom for σ - polarization is equal 1.65, for π -polarization— 1,24. For Dl line the maximum 
value is equal 1,36 for both polarizations
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Т. А. Флорко, А. В. Глушков, Ю. М. Лопаткин, С. В. Амбросов, В. П. Козловская

O ИНТЕНСИВНОСТИ СВЕЧЕНИЯ АТОМОВ ЩЕЛОЧНЫХ МЕТАЛЛОВ В 
ВОДОРОДНО-КИСЛОРОДНОМ ПЛАМЕНИ В ПРИСУТСТВИИ МАГНИТНОГО 
ПОЛЯ

Резюме.  
Дана теоретическая оценка эффекта влияния магнитного поля (10 кЭ) на интенсивности све-

чения атомов щелочных металлов: калия и рубидия в водородно- кислородном пламени с ис-
пользованием приближения квантового дефекта в операторной теории возмущений для атомов 
во внешнем  магнитном поле. Рассчита ны интенсивности  свечения  линий К (Dl: 21

2
21

2 44 SP -  
и D2: 21

2
23

2 44 SP - )   и  линий     Rb (1: 21
2

23
2 55 SP - и 2: 21

2
23

2 56 SP - ). Максимальная величина 
магнитного эффекта для линии D2 атома калия в случае σ- поляризации равна 1.65, в случае 
π- поляриза ции — 1.24, для линии D1 максимальное значение составляет 1.36 и одинаково для 
обеих поляризаций.

Ключевые слова: интенсивность излучения, щелочные металлы, водородно-кислородное 
пламя, магнитное поле
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УДК 539.182

Т. О. Флорко, O. В. Глушков, Ю. М. Лопаткін, С. В. Амбросов,  В. П. Козловська

ПРО   ІНТЕНСИВНІСТЬ СВІЧЕННЯ АТОМІВ ЛУЖНИХ МЕТАЛІВ  У ВОДНЄ-
КИСЕНЕВОМУ ПЛАМЕНІ У ПРИСУТНОСТІ МАГНІТНОГО ПОЛЯ

Резюме.
Одержана  теоретична оцінка ефекту впливу магнітного поля (10 кЕ) на інтенсивності світіння 

атомів лужних металів: калію і рубідію в воднево кисневому полум’ї з використанням наближення 
квантового дефекту в операторної теорії збурень для атомів у зовнішньому магнітному полі. Роз-
раховані інтенсивності свічення ліній К (Dl: 21

2
21

2 44 SP -  та  D2: 21
2

23
2 44 SP - )  і  Rb (1:  21

2
23

2 55 SP -  і 
2: 21

2
23

2 56 SP - ). Максималь на величина магнітного ефекту для лінії D2 атому К у випадку σ - поля-
ризації складає 1.65, а у випадку π- поляризації – 1.24 , а для лінії D1 макси мальне значення складає 
1.36 і є однаковим для обох поляризацій.

Ключові слова: iнтенсивність випромінювання, лужні метали, водне-кисневе полум’я, магнітне 
поле
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стической обработки должны быть конвертируемые в вышеуказанные графические форматы.

Рукописи присылаются в адрес:
Отв. секр. Куталовій М.И., ул. Пастера, 42, физ. фак. ОНУ, г.Одесса, 65026 
E-mail: wadz@mail.ru, тел. 0482 – 726 6356 .
Аннотации статей сб.”Photoelectronics” находятся на сайте:http://photoelectronics.onu.edu.ua

К рукописи прилагается
1 Коды РАС и УДК. Допускается использование нескольких шифров, которые разделяются 

запятой. В случае, когда автором (авторами) не будет указан ни один шифр, редакция журнала 
устанавливает шифр статьи по своему выбору.

2. Фамилия (а) и инициалы  автора (ел).
3 Учреждение, полный почтовый адрес, номер телефона, номер факса, адреса электронной 

почты для каждого из авторов
4.Название статьи
5.Резюме  объемом до 200 слов пишется на  английском,  русском  языках, и ( для авторов из 

Украины) – на украинском.,после текста резюме печатаются Ключевые слова.
Текст должен печататься шрифтом 14 пунктов через два интервала на белой бумаге формата 

А4. Название статьи, а также заголовки подразделов печатаются прописными буквами и отме-
чаются полужирным шрифтом.

Уравнения необходимо печатать в редакторе формул MS Equation Editor. . Необходимо да-
вать определение величин, которые появляются в тексте впервые.

Таблицы Должны быть выполнены в соответствующих табличных редакторах или представ-
ленные в текстовом виде с использованием разделителей (точка, запятая, запятая с точкой, знак 
табуляции). 

Ссылки на литературу должны печататься через два интервала, нумероваться в квадратных 
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дужках (в нормальном положении) последовательно в порядке их появления в тексте статьи. 
Ссылаться необходимо на литературу, которая  издана начиная с 2000 года. Для ссылок исполь-
зуются следующие форматы:

Книги. Автор(и) (инициалы, потом фамилии), название книги курсивом, издательство, город 
и год издания. (При ссылке на главу книги, указывается название главы, название книги курси-
вом, номера страниц). Пример J A Hall, Imaging tubes, Chap 14 ш The Infrared Handbook, Eds W 
W Wolfe, О J’ Zissis. 2000,, ERIM, Arm Arbor, MI .рр 132-176,

Журналы ( Журналы). Автор(и) (инициалы, потом фамилии), название статьи, название жур-
нала курсивом (используются аббревиатуры только для известных журналов), номер поэтому 
и выпуска, номер страниц и год издания. Пример N Blutzer and A S Jensen, Current readout of 
infrared detectors // Opt Eng  2000,26(3), pp 241-248

Иллюстрации будут сканироваться цифровым сканером. Принимаются в печать только вы-
сококачественные иллюстрации. Подписи и символы должны быть впечатаны. Не принимают-
ся в печать негативы, слайды, транспоранты. Графики и рисунки печатаются в тексте статьи.

Рисунки должны иметь соответствующий к формату журнала размер не больше 160x200 гг. 
Текст на рисунках должен выполняться шрифтом 12пунктов. На графиках единицы измерения 
указываются через запятую (а не в  скобках). Все рисунки (иллюстрации) нумеруются в по-
рядке их размещения в тексте. Не допускается вносить номер и подпись непосредственно на 
рисунках. 

Резюме объемом до 200 слов пишется на английском, русском  языках. и на украинском (для 
авторов из Украины). Перед текстом резюме соответствующим языком указываются УДК,  фа-
милии и инициалы всех авторов, название статьи, ключевые слова..   



155

Information for contributors of
«Photoelectronics» articles

“Photoelectronics” Articles publishes the papers which contain information about scientific research 
and technical designs in the following areas:

•	Physics of semiconductors;
•	Physics of microelectronic devices;
•	Linear and non-linear optics of solids;
•	Optoelectronics and optoelectronic devices;
•	Quantum electronics;
•	Sensorics.

“Photoelectronics” Articles is defined by the decision of the Highest Certifying Commission as the 
specialized edition for physical-mathematical and technical sciences and published  and printed at the 
expense of budget items of Odessa I.I. Mechnikov National University.

«Photoelectronics» Articles is published in English. Authors send two copies of papers in English. 
The texts are accompanied by 3.5» diskette with text file, tables and figures. Electronic copy of a 
material can be sent by e-mail to the Editorial Board and should meet the following requirements:

  1.The following formats are applicable for texts – MS Word (rtf, doc).
2. Figures should be made in formats – EPS, TIFF, BMP, PCX, JPG, GIF, WMF, MS Word I MS 

Giaf, Micro Calc Origin (opj). Figures made by packets of mathematical and statistic processing 
should be converted into the foregoing graphic formats.

The papers should be sent to the address:
Kutalova M.I., Physical Faculty of Odessa I.I. Mechnikov National University, 42 Pastera str, 

65026 Odessa, Ukraine, e-mail: wadz@mail.ru, tel. +38-0482-7266356. Information is on the site:
 http://www.photoelectronics.onu.edu.ua

The title   page should contain: 

1. Codes of PACS
2. Surnames and initials of authors
3. TITLE OF PAPER
4. Name of institution, full postal address, number of telephone and fax, electronic address
An abstract of paper should be not more than 200 words. Before a text of summary a title of paper, 

surnames and initials of authors should be placed.
Equations are printed in MS Equation Editor.
References should be printed in double space and should be numbered in square brackets 

consecutively throughout the text. References for literature published in 2000-2009 years are 
preferential.

Illustrations will be scanned for digital reproduction. Only high-quality illustrations will be taken 
for publication. Legends and symbols should be printed inside. Neither negatives, nor slides will be 
taken for publication. All figures (illustrations) should be numbered in the sequence of their record in 
text.

For additional information please contact with the Editorial Board.
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