DOI: https://doi.org/10.18524/0235-2435.2018.27.150312

НАДТОНКА СТРУКТУРА ВАЖКИХ АТОМІВ В РАМКАХ РЕЛЯТИВІСТСЬКОЇ БАГАТОЧАСТИНКОВОЇ ТЕОРІЇ ЗБУРЕНЬ

O A Antoshkina, O Khetselius, M Makushkina, A Smirnov

Анотація


Параметри надтонкої структури і електричний квадрупольний момент ізотопу радону розраховані на основі релятивістської багаточастинкової теорії збурень з ефективним акуратним урахуванням обмінно-кореляційних, релятивістських, ядерних і радіаційних поправок. Аналіз даних показує, що урахування ефектів міжелектронної кореляції має критичне значення при обчисленні параметрів надтонкої структури. Фізично розумне узгодження теорії і прецизійного експерименту може бути забезпечено завдяки повному послідовному обліку міжелектронних кореляційних ефектів, ядерних, релятивістських та радіаційних поправок. Ключова відмінність між результатами розрахунків в наближеннях Дірака-Фока, різних версіях формалізму теорії збурень в основному пов'язано з використанням різних схем обліку міжелектронних кореляцій

Ключові слова


hyperfine structure; heavy atoms; relativistic perturbation theory; correlation, nuclear, radiative corrections

Повний текст:

PDF (English)

Посилання


Grant I. Relativistic Quantum Theory of Atoms and Molecules. Oxford, 2007.

Pyykko, P. Year2008 nuclear quadrupole moments. Mol. Phys. 2008, 106, Nos. 16–18

Khetselius, O.Yu. Hyperfine structure of atomic spectra. Astroprint: Odessa, 2008.

Glushkov, A.V. Relativistic Quantum theory. Quantum mechanics of atomic systems. Astroprint: Odessa, 2008.

Khetselius, O.Yu.; Gurnitskaya, E.P. Sensing the electric and magnetic moments of a nucleus in the N-like ion of Bi. Sensor Electr. and Microsyst. Techn. 2006, 3, 35-39.

Bieron, J.; Pyykkő, P. Degree of accuracy in determining the nuclear electric quadrupole moment of radium. Phys.Rev. A. 2005, 71, 032502.

Khetselius O.Yu.; Gurnitskaya, E.P. Sensing the hyperfine structure and nuclear quadrupole moment for radium. Sensor Electr. and Microsyst. Techn. 2006, 2, 25-29.

Khetselius, O.Yu. Atomic parity non-conservation effect in heavy atoms and observing P and PT violation using NMR shift in a laser beam: To precise theory. J. Phys.: Conf. Ser. 2009, 194, 022009

Glushkov, A; Khetselius, O; Svinarenko, A.; Buyadzhi, V. Spectroscopy of autoionization states of heavy atoms and multiply charged ions. Odessa: TEC, 2015.

Khetselius, O.Yu. Hyperfine structure of radium. Photoelectronics. 2005, 14, 83-85.

Khetselius, O.Yu. Relativistic Hyperfine Structure Spectral Lines and Atomic Parity Non-conservation Effect in Heavy Atomic Systems within QED Theory. AIP Conf. Proceedings. 2010, 1290(1), 29-33.

Khetselius, O.Yu. Relativistic calculating the spectral lines hyperfine structure parameters for heavy ions. AIP Conf. Proc. 2008, 1058, 363-365.

Khetselius, O.Yu. Relativistic energy approach to cooperative electron-γ-nuclear processes: NEET Effect In Quantum Systems in Chemistry and Physics, Series: Progress in Theoretical Chemistry and Physics; Nishikawa, K., Maruani, J., Brändas, E., Delgado-Barrio, G., Piecuch, P., Eds.; Springer: Dordrecht, 2012; Vol. 26, pp 217-229.

Khetselius, O.Yu. Relativistic perturbation theory calculation of the hyperfine structure parameters for some heavy-element isotopes. Int. Journ. Quant.Chem. 2009, 109, 3330-3335.

Khetselius, O.Yu. Relativistic calculation of the hyperfine structure parameters for heavy elements and laser detection of the heavy isotopes. Phys.Scripta. 2009, 135, 014023.

Khetselius, O. Optimized Perturbation Theory for Calculating the Hyperfine Line Shift and Broadening of Heavy Atoms in a Buffer Gas. In Frontiers in Quantum Methods and Applications in Chemistry and Physics, Series: Progress in Theoretical Chemistry and Physics; Nascimento, M., Maruani, J., Brändas, E., Delgado-Barrio, G., Eds.; Springer: Cham, 2015; Vol. 29, pp. 55-76.

Khetselius, O.Yu. Quantum structure of electroweak interaction in heavy finite Fermi-systems. Astroprint: Odessa, 2011.

Buyadzhi, V.V.; Zaichko, P.A.; Antoshkina, O.A.; Kulakli, T.A.; Prepelitsa, G.P.; Ternovsky V.B.; Mansarliysky, V. Computing of radiation parameters for atoms and multicharged ions within relativistic energy approach: Advanced Code. J. Phys.: Conf. Ser. 2017, 905, 012003.

Svinarenko, A.A. Study of spectra for lanthanides atoms with relativistic many- body perturbation theory: Rydberg resonances. J. Phys.: Conf. Ser. 2014, 548, 012039.

Svinarenko, A.; Ignatenko, A.; Ternovsky, V.B.; Nikola, L.; Seredenko, S.S.; Tkach, T.B. Advanced relativistic model potential approach to calculation of radiation transition parameters in spectra of multicharged ions. J. Phys.: Conf. Ser. 2014, 548, 012047.

Buyadzhi, V.; Zaichko, P.; Gurskaya, M.; Kuznetsova, A.; Ponomarenko E.; Ternovsky, V. Relativistic theory of excitation and ionization of Rydberg atomic systems in a Black-body radiation field, J. Phys.: Conf. Ser. 2017, 810, 012047

Glushkov, A.V.; Malinovskaya, S.V.; Loboda, A.V.; Shpinareva, I.M.; Prepelitsa, G.P. Consistent quantum approach to new laser-electron-nuclear effects in diatomic molecules. J.Phys.: Conf. Ser. 2006, 35, 420-424.

Glushkov, A.V. Operator Perturbation Theory for Atomic Systems in a Strong DC Electric Field. In Advances in Quantum Methods and Applications in Chemistry, Physics, and Biology, Series: Progress in Theor. Chem. and Phys.; Hotokka, M., Brändas, E., Maruani, J., Delgado-Barrio, G., Eds.; Springer: Cham, 2013; Vol. 27, pp 161–177.

Glushkov, A.V.; Ambrosov, S.V.; Ignatenko, A.V.; Korchevsky, D.A. DC strong field stark effect for nonhydrogenic atoms: Consistent quantum mechanical approach. Int. Journ. Quant. Chem. 2004, 99, 936-939.

Glushkov, A.V.; Kondratenko, P.A.; Buyadgi V.V.; Kvasikova, A.S.; Sakun, T.N.; Shakhman, A.S. Spectroscopy of cooperative laser electron-γ-nuclear processes in polyatomic molecules. J. Phys.: Conf. Ser. 2014, 548, 012025.

Malinovskaya, S.V.; Dubrovskaya, Yu.V.; Vitavetskaya, L.A. Advanced quantum mechanical calculation of the beta decay probabilities. AIP Conf. Proc. 2005, 796, 201-205.

Glushkov, A.V.; Malinovskaya, S.V.; Chernyakova Y.G.; Svinarenko, A.A. Cooperative laser-electron-nuclear processes: QED calculation of electron satellites spectra for multi-charged ion in laser field. Int. Journ. Quant. Chem. 2004, 99, 889-893.

Glushkov, A.V.; Malinovskaya, S.V.; Prepelitsa, G.; Ignatenko, V. Manifestation of the new laser-electron nuclear spectral effects in the thermalized plasma: QED theory of co-operative laser-electron-nuclear processes. J. Phys.: Conf. Ser. 2005, 11, 199-206.

Glushkov, A.V.; Malinovskaya, S.V.; Loboda, A.V.; Shpinareva, I.M.; Gurnitskaya, E.P.; Korchevsky, D.A. Diagnostics of the collisionally pumped plasma and search of the optimal plasma parameters of x-ray lasing: calculation of electron-collision strengths and rate coefficients for Ne-like plasma. J. Phys.: Conf. Ser. 2005, 11, 188-198.

Glushkov, A.V.; Ambrosov, S.; Loboda, A.; Gurnitskaya, E.; Prepelitsa, G. Consistent QED approach to calculation of electron-collision excitation cross sections and strengths: Ne-like ions. Int. J. Quantum Chem. 2005, 104, 562-569.

Glushkov, A.; Loboda, A.; Gurnitskaya, E.; Svinarenko, A. QED theory of radiation emission and absorption lines for atoms in a strong laser field. Phys. Scripta. 2009, T135, 014022.

Florko, T.A.; Tkach, T.B.; Ambrosov, S.V.; Svinarenko, A.A. Collisional shift of the heavy atoms hyperfine lines in an atmosphere of the inert gas. J. Phys.: Conf. Ser. 2012, 397, 012037.

Buyadzhi, V.V. Laser multiphoton spectroscopy of atom embedded in Debye plasmas: multiphoton resonances and transitions. Photoelectronics. 2015, 24, 128-133.

Buyadzhi, V.V.; Chernyakova, Yu.G.; Smirnov, A.V.; Tkach, T.B. Electron-collisional spectroscopy of atoms and ions in plasma: Be-like ions. Photoelectronics. 2016, 25, 97-101.

Buyadzhi, V.V.; Chernyakova, Yu.G.; Antoshkina, O.; Tkach, T. Spectroscopy of multicharged ions in plasmas: Oscillator strengths of Be-like ion Fe. Photoelectronics. 2017, 26, 94-102.

Glushkov, A.V.; Malinovskaya S.V. Co-operative laser nuclear processes: border lines effects In New Projects and New Lines of Research in Nuclear Physics. Fazio, G., Hanappe, F., Eds.; World Scientific: Singapore, 2003, 242-250.

Glushkov, A.V. Spectroscopy of atom and nucleus in a strong laser field: Stark effect and multiphoton resonances. J. Phys.: Conf. Ser. 2014, 548, 012020

Ivanov, L.N.; Ivanova, E.P. Atomic ion energies for Na-like ions by a model potential method Z = 25–80. Atom. Data Nucl. Data Tabl. 1979, 24, 95-109.

Ivanov, L.N.; Ivanova, E.P.; Knight, L. Energy approach to consistent QED theory for calculation of electron-collision strengths: Ne-like ions. Phys. Rev. A. 1993, 48, 4365-4374.

Ivanova, E.P.; Ivanov, L.N.; Glushkov, A.V.; Kramida, A.E. High order corrections in the relativistic perturbation theory with the model zeroth approximation, Mg-Like and Ne-Like Ions. Phys. Scripta 1985, 32, 513-522.

Glushkov, A.V.; Ivanov, L.N.; Ivanova, E.P. Autoionization Phenomena in Atoms. Moscow University Press, Moscow, 1986, 58-160

Glushkov, A.V.; Ivanov, L.N. Radiation decay of atomic states: atomic residue polarization and gauge noninvariant contributions. Phys. Lett. A 1992, 170, 33-36.

Glushkov, A.V. Advanced relativistic energy approach to radiative decay processes in multielectron atoms and multicharged ions. In Quantum Systems in Chemistry and Physics: Progress in Methods and Applications, Series: Progress in Theoretical Chemistry and Physics; Nishikawa, K., Maruani, J., Brandas, E., Delgado-Barrio, G., Piecuch, P., Eds.; Springer: Dordrecht, 2012; Vol. 26, pp 231–252.

Flambaum, V.; Ginges J. Radiative potential and calculation of QED radiative corrections to energy levels and electromagnetic amplitudes in many-electron atoms. Phys.Rev.A. 2005, 72, 052115.

Glushkov, A.V. Relativistic and Correlation Effects in Spectra of Atomic Systems. Astroprint: Odessa, 2006.

Glushkov, A.V. Negative ions of inert gases. JETP Lett. 1992, 55, 97-100.

Glushkov, A.V. Spectroscopy of cooperative muon-gamma-nuclear processes: Energy and spectral parameters J. Phys.: Conf. Ser. 2012, 397, 012011

Glushkov, A. Multiphoton spectroscopy of atoms and nuclei in a laser field: relativistic energy approach and radiation atomic lines moments method// Adv. Quant.Chem. (Elsevier), 2018, 78, doi.org/10.1016/bs.aiq.2018.06.004

Khetselius, O. Optimized relativistic many-body perturbation theory calculation of wavelengths and oscillator strengths for li-like multicharged ions// Adv. Quant. Chem. (Elsevier) , 2018, 78,

doi.org/10.1016/bs.aiq.2018.06.001.

Ignatenko, A.V. Probabilities of the radiative transitions between Stark sublevels in spectrum of atom in an DC electric field: New approach. Photoelectronics, 2007, 16, 71-74.

Glushkov A.V.; Ivanov, L.N. DC strong-field Stark effect: consistent quantum-mechanical approach. J. Phys. B: At. Mol. Opt. Phys. 1993, 26, L379-386.

Glushkov, A.V.; Ambrosov, S.V.; Ignatenko, A.V. Non-hydrogenic atoms and Wannier-Mott excitons in a DC electric field: Photoionization, Stark effect, Resonances in ionization continuum and stochasticity. Photoelectronics, 2001, 10, 103-106.

Glushkov, A.V.; Gurskaya, M.Yu.; Ignatenko, A.V.; Smirnov, A.V.; Serga, I.N.; Svinarenko, A.A.; Ternovsky, E.V. Computational code in atomic and nuclear quantum optics: Advanced computing multiphoton resonance parameters for atoms in a strong laser field. J. Phys.: Conf. Ser. 2017, 905, 012004.




ISSN: 0235-2435 (Print)