Хвильові і осциляторні сильні сторони Li-подібних багатозарядних іонів в рамках теорії відносного збудження багатьох тіл
DOI:
https://doi.org/10.18524/0235-2435.2018.27.150538Ключові слова:
Relativistic many-body perturbation theory, Optimal one-quasiparticle representation, Oscillator strengths, Energy approach, Correlation correctionsАнотація
Релятивістська багаточастинкова теорія збурень з оптимізованим нульовим наближенням Дірака-Кона-Шема застосована для розрахунку довжин хвиль радіаційних переходів і сил осциляторів для деяких Li-подібних багатозарядних іонів. Релятивістські, обмінно-кореляційні та інші поправки враховуються в рамках послідовних процедур. Оптимізований базис релятивістських орбіталей генерується в послідовному нульовому наближенні релятивістської багаточастинкової теорії збурень, виходячи з умови виконання принципу калібрувальної інваріантності. Запропоновано процедуру акуратного урахування вкладів, описуваних діаграмами Фейнмана четвертого порядку КЕД теорії збурень (другий порядок атомної теорії збурень), в уявну частину енергетичного зсуву атомних рівнів (радіаційні ширини) багатоелектронних атомів з метою врахування багаточастинкових кореляційних ефектів. Отримані дані по довжинам хвиль радіаційних переходів та силам осциляторів для деяких переходів у спектрах Li-подібних багатозарядних іонів, які порівнюються з альтернативними теоретичними і експериментальними результатамиПосилання
Davidson E.R., Natural Orbitals. Adv. Quant. Chem. 1972, 6, 235-266.
Kohn, J.W.; Sham, L.J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. A 1964, 140, 1133.
Froelich, P.; Davidson, E.R.; Brändas, E. Error estimates for complex eigenvalues of dilated Schrödinger operators. Phys. Rev. A 1983, 28, 2641.
Wang, Y.A.; Yung, Y.C.; Chen, Y.K.; Chen, G.H. Communication: Linear-expansion shooting techniques for accelerating self-consistent field convergence. J. Chem. Phys. 2011, 134, 241103.
Thakkar, A.J.; Koga, T.; Tanabe, F.; Teruya, H. Compact Hylleraas-type wave functions for the lithium isoelectronic sequence. Chem. Phys. Lett. 2002, 366, 95-99.
Khetselius, O.Yu. Hyperfine structure of atomic spectra. Astroprint: Odessa, 2008.
Glushkov, A.V. Relativistic Quantum theory. Quantum mechanics of atomic systems. Astroprint: Odessa, 2008.
Svinarenko, A.A. Study of spectra for lanthanides atoms with relativistic many- body perturbation theory: Rydberg resonances. J. Phys.: Conf. Ser. 2014, 548, 012039.
Svinarenko, A.A.; Ignatenko, A.V.; Ternovsky, V.B.; Nikola, L.V.; Seredenko, S.S.; Tkach, T.B. Advanced relativistic model potential approach to calculation of radiation transition parameters in spectra of multicharged ions. J. Phys.: Conf. Ser. 2014, 548, 012047.
Zhang, H.L.; Sampson, D.H.; Fontes, C.J. Relativistic distorted-wave collision strengths and oscillator strengths for the 85 Li-like ions with 8
Nahar, S. N. Relativistic fine structure oscillator strengths for Li-like ions: C IV - Si XII,SXIV,ArXVI,CaXVIII,Ti XX,Cr XXII, Ni XXVI. Astr. and Astrophys. 2002. 389, 716-728.
Banglin, Deng.; Gang, Jiang; Chuanyu Zhang. Relativistic configuration-interaction calculations of electric dipole n = 2 − n = 3 transitions for medium-charge Li-like ions. Atom. Dat. and Nucl. Dat. Tabl. 2014, 100, 1337-1355.
Buyadzhi, V.V.; Zaichko, P.A.; Gurskaya, M.Y.; Kuznetsova, A.A.; Ponomarenko E.L.; Ternovsky, V.B.; Relativistic theory of excitation and ionization of Rydberg atomic systems in a Black-body radiation field, J. Phys.: Conf. Ser. 2017, 810, 012047
Buyadzhi, V.V.; Zaichko, P.A.; Antoshkina, O.A.; Kulakli, T.A.; Prepelitsa, G.P.; Ternovsky V.B.; Mansarliysky, V. Computing of radiation parameters for atoms and multicharged ions within relativistic energy approach: Advanced Code. J. Phys.: Conf. Ser. 2017, 905, 012003.
Glushkov, A.V.; Malinovskaya, S.V.; Loboda, A.V.; Shpinareva, I.M.; Prepelitsa, G.P. Consistent quantum approach to new laser-electron-nuclear effects in diatomic molecules. J.Phys.: Conf. Ser. 2006, 35, 420-424.
Glushkov, A.V. Operator Perturbation Theory for Atomic Systems in a Strong DC Electric Field. In Advances in Quantum Methods and Applications in Chemistry, Physics, and Biology, Series: Progress in Theoretical Chemistry and Physics; Hotokka, M., Brändas, E., Maruani, J., Delgado-Barrio, G., Eds.; Springer: Cham, 2013; Vol. 27, pp 161–177.
Glushkov, A.V.; Ambrosov, S.V.; Ignatenko, A.V.; Korchevsky, D.A. DC strong field stark effect for nonhydrogenic atoms: Consistent quantum mechanical approach. Int. Journ. Quant. Chem. 2004, 99, 936-939.
Glushkov, A.V.; Kondratenko, P.A.; Buyadgi V.V.; Kvasikova, A.S.; Sakun, T.N.; Shakhman, A.S. Spectroscopy of cooperative laser electron-γ-nuclear processes in polyatomic molecules. J. Phys.: Conf. Ser. 2014, 548, 012025.
Malinovskaya, S.V.; Dubrovskaya, Yu.V.; Vitavetskaya, L.A. Advanced quantum mechanical calculation of the beta decay probabilities. AIP Conf. Proc. 2005, 796, 201-205.
Filatov, M.; Cremer, D. A gauge-independent zeroth-order regular approximation to the exact relativistic Hamiltonian—Formulation and applications. J. Chem. Phys. 2005, 122, 044104.
Glushkov, A.V.; Malinovskaya, S.V.; Chernyakova Y.G.; Svinarenko, A.A. Cooperative laser-electron-nuclear processes: QED calculation of electron satellites spectra for multi-charged ion in laser field. Int. Journ. Quant. Chem. 2004, 99, 889-893.
Glushkov, A.V.; Malinovskaya, S.V.; Prepelitsa, G.; Ignatenko, V. Manifestation of the new laser-electron nuclear spectral effects in the thermalized plasma: QED theory of co-operative laser-electron-nuclear processes. J. Phys.: Conf. Ser. 2005, 11, 199-206.
Glushkov, A.V.; Malinovskaya, S.V.; Loboda, A.V.; Shpinareva, I.M.; Gurnitskaya, E.P.; Korchevsky, D.A. Diagnostics of the collisionally pumped plasma and search of the optimal plasma parameters of x-ray lasing: calculation of electron-collision strengths and rate coefficients for Ne-like plasma. J. Phys.: Conf. Ser. 2005, 11, 188-198.
Glushkov, A.V.; Ambrosov, S.; Loboda, A.; Gurnitskaya, E.; Prepelitsa, G. Consistent QED approach to calculation of electron-collision excitation cross sections and strengths: Ne-like ions. Int. J. Quantum Chem. 2005, 104, 562-569.
Glushkov, A.; Loboda, A.; Gurnitskaya, E.; Svinarenko, A. QED theory of radiation emission and absorption lines for atoms in a strong laser field. Phys. Scripta. 2009, T135, 014022.
Florko, T.A.; Tkach, T.B.; Ambrosov, S.V.; Svinarenko, A.A. Collisional shift of the heavy atoms hyperfine lines in an atmosphere of the inert gas. J. Phys.: Conf. Ser. 2012, 397, 012037.
Buyadzhi, V.V. Laser multiphoton spectroscopy of atom embedded in Debye plasmas: multiphoton resonances and transitions. Photoelectronics. 2015, 24, 128-133.
Buyadzhi, V.V.; Chernyakova, Yu.G.; Smirnov, A.V.; Tkach, T.B. Electron-collisional spectroscopy of atoms and ions in plasma: Be-like ions. Photoelectronics. 2016, 25, 97-101.
Buyadzhi, V.V.; Chernyakova, Yu.G.; Antoshkina, O.; Tkach, T. Spectroscopy of multicharged ions in plasmas: Oscillator strengths of Be-like ion Fe. Photoelectronics. 2017, 26, 94-102.
Khetselius, O.Yu. Relativistic Energy Approach to Cooperative Electron-γ-Nuclear Processes: NEET Effect In Quantum Systems in Chemistry and Physics, Series: Progress in Theoretical Chemistry and Physics; Nishikawa, K., Maruani, J., Brändas, E., Delgado-Barrio, G., Piecuch, P., Eds.; Springer: Dordrecht, 2012; Vol. 26, pp 217-229.
Khetselius, O.Yu. Relativistic perturbation theory calculation of the hyperfine structure parameters for some heavy-element isotopes. Int. Journ. Quant.Chem. 2009, 109, 3330-3335.
Khetselius, O.Yu. Relativistic calculation of the hyperfine structure parameters for heavy elements and laser detection of the heavy isotopes. Phys.Scripta. 2009, 135, 014023.
Khetselius, O.Yu. Optimized Perturbation Theory for Calculating the Hyperfine Line Shift and Broadening of Heavy Atoms in a Buffer Gas. In Frontiers in Quantum Methods and Applications in Chemistry and Physics, Series: Progress in Theoretical Chemistry and Physics; Nascimento, M., Maruani, J., Brändas, E., Delgado-Barrio, G., Eds.; Springer: Cham, 2015; Vol. 29, pp. 55-76.
Khetselius, O.Yu. Quantum structure of electroweak interaction in heavy finite Fermi-systems. Astroprint: Odessa, 2011.
Glushkov, A.V.; Malinovskaya S.V. Co-operative laser nuclear processes: border lines effects In New Projects and New Lines of Research in Nuclear Physics. Fazio, G., Hanappe, F., Eds.; World Scientific: Singapore, 2003, 242-250.
Glushkov, A.V. Spectroscopy of atom and nucleus in a strong laser field: Stark effect and multiphoton resonances. J. Phys.: Conf. Ser. 2014, 548, 012020
Ivanov, L.N.; Ivanova, E.P. Atomic ion energies for Na-like ions by a model potential method Z = 25–80. Atom. Data Nucl. Data Tabl. 1979, 24, 95-109.
Driker, M.N.; Ivanova, E.P.; Ivanov, L.N.; Shestakov, A.F. Relativistic calculation of spectra of 2-2 transitions in O-and F-like atomic ions. J. Quant. Spectr. Rad. Transf. 1982, 28, 531-535.
Ivanova, E.P.; Ivanov, L.N.; Glushkov, A.V.; Kramida, A.E. High order corrections in the relativistic perturbation theory with the model zeroth approximation, Mg-Like and Ne-Like Ions. Phys. Scripta 1985, 32, 513-522.
Ivanov, L.N.; Ivanova, E.P.; Knight, L. Energy approach to consistent QED theory for calculation of electron-collision strengths: Ne-like ions. Phys. Rev. A. 1993, 48, 4365-4374.
Glushkov, A.V.; Ivanov, L.N.; Ivanova, E.P. Autoionization Phenomena in Atoms. Moscow University Press, Moscow, 1986, 58-160
Glushkov, A.V.; Ivanov, L.N. Radiation decay of atomic states: atomic residue polarization and gauge noninvariant contributions. Phys. Lett. A 1992, 170, 33-36.
Glushkov A.V.; Ivanov, L.N. DC strong-field Stark effect: consistent quantum-mechanical approach. J. Phys. B: At. Mol. Opt. Phys. 1993, 26, L379-386.
Glushkov, A.V. Relativistic and Correlation Effects in Spectra of Atomic Systems. Astroprint: Odessa, 2006.
Glushkov, A.V. Relativistic polarization potential of a many-electron atom. Sov. Phys. Journal. 1990, 33(1), 1-4.
Glushkov, A.V. Negative ions of inert gases. JETP Lett. 1992, 55, 97-100.
Glushkov, A.V. Energy approach to resonance states of compound superheavy nucleus and EPPP in heavy nuclei collisions In Low Energy Antiproton Physics; Grzonka, D., Czyzykiewicz, R., Oelert,W., Rozek, T., Winter, P., Eds.; AIP: New York, AIP Conf. Proc. 2005, 796, 206-210.
Glushkov, A.V. Spectroscopy of cooperative muon-gamma-nuclear processes: Energy and spectral parameters J. Phys.: Conf. Ser. 2012, 397, 012011
Glushkov, A.V. Advanced Relativistic Energy Approach to Radiative Decay Processes in Multielectron Atoms and Multicharged Ions. In Quantum Systems in Chemistry and Physics: Progress in Methods and Applications, Series: Progress in Theoretical Chemistry and Physics; Nishikawa, K., Maruani, J., Brandas, E., Delgado-Barrio, G., Piecuch, P., Eds.; Springer: Dordrecht, 2012; Vol. 26, pp 231–252.
Glushkov, A. Multiphoton spectroscopy of atoms and nuclei in a laser field: relativistic energy approach and radiation atomic lines moments method// Adv. Quant.Chem. (Elsevier), 2018, 78, doi.org/10.1016/bs.aiq.2018.06.004
Khetselius, O. Optimized relativistic many-body perturbation theory calculation of wavelengths and oscillator strengths for Li-like multicharged ions// Adv. Quant. Chem. (Elsevier) , 2018, 78,
doi.org/10.1016/bs.aiq.2018.06.001.
Khetselius, O.Yu. Relativistic Hyperfine Structure Spectral Lines and Atomic Parity Non-conservation Effect in Heavy Atomic Systems within QED Theory. AIP Conf. Proceedings. 2010, 1290(1), 29-33.
Khetselius, O.Yu. Relativistic Calculating the Spectral Lines Hyperfine Structure Parameters for Heavy Ions. AIP Conf. Proc. 2008, 1058, 363-365.
Khetselius, O.Yu. Hyperfine structure of radium. Photoelectronics. 2005, 14, 83-85.
Khetselius, O.Yu.; Gurnitskaya, E.P. Sensing the electric and magnetic moments of a nucleus in the N-like ion of Bi. Sensor Electr. and Microsyst. Techn. 2006, 3, 35-39.
Khetselius O.Yu.; Gurnitskaya, E.P. Sensing the hyperfine structure and nuclear quadrupole moment for radium. Sensor Electr. and Microsyst. Techn. 2006, 2, 25-29.
Khetselius, O.Yu. Atomic parity non-conservation effect in heavy atoms and observing P and PT violation using NMR shift in a laser beam: To precise theory. J. Phys.: Conf. Ser. 2009, 194, 022009
Ignatenko, A.V. Probabilities of the radiative transitions between Stark sublevels in spectrum of atom in an DC electric field: New approach. Photoelectronics, 2007, 16, 71-74.
Glushkov, A.V.; Ambrosov, S.V.; Ignatenko, A.V. Non-hydrogenic atoms and Wannier-Mott excitons in a DC electric field: Photoionization, Stark effect, Resonances in ionization continuum and stochasticity. Photoelectronics, 2001, 10, 103-106.
Glushkov, A.V.; Gurskaya, M.Yu.; Ignatenko, A.V.; Smirnov, A.V.; Serga, I.N.; Svinarenko, A.A.; Ternovsky, E.V. Computational code in atomic and nuclear quantum optics: Advanced computing multiphoton resonance parameters for atoms in a strong laser field. J. Phys.: Conf. Ser. 2017, 905, 012004.
Glushkov, A; Khetselius, O; Svinarenko, A.; Buyadzhi, V. Spectroscopy of autoionization states of heavy atoms and multiply charged ions. Odessa: TEC, 2015
##submission.downloads##
Опубліковано
Номер
Розділ
Ліцензія
Авторське право (c) 2020 Photoelectronics
Ця робота ліцензується відповідно до Creative Commons Attribution-NonCommercial 4.0 International License.
авторське право переходить до видання.