SPECTROSCOPY OF MULTIELECTRON ATOM IN DC ELECTRIC FIELD: RELATIVISTIC OPERATOR PERTURBATION THEORY

Автор(и)

  • A. A. Kuznetsova Одеський національний університет імені І. І. Мечникова, Ukraine
  • A. V. Glushkov National University “Odessa Maritime Academy”, Ukraine
  • E. S. Romanenko National University “Odessa Maritime Academy”, Ukraine
  • E. K. Plisetskaya National University “Odessa Maritime Academy”, Ukraine

DOI:

https://doi.org/10.18524/0235-2435.2019.28.194292

Ключові слова:

multielectron atom, electric field, relativistic operator perturbation theory, Rydberg states

Анотація

We develop the theoretical basis of a new relativistic operator perturbation theory  approach to multielectron atom in a DC electric field combined with a relativistic many-body perturbation theory formalism for a free multielectron atom. As illustration of application of the presented formalism, the results of energy and spectral parameters for a number of atoms are presented. The relativistic  OPT  method is tested for computing the Stark shifts of Rydberg states for a few the multielectron systems such as the sodium and rubidium. The approach allows an accurate and consistent treatment of a DC strong field Stark effect in multielectron atoms.

Посилання

Meng, H.-Y.; Zhang, Y.-X.; Kang, S.; Shi, T.-Y.; Zhan, M.-S. Theoretical complex Stark energies of lithium by a complex scaling plus the B-spline approach. J. Phys. B: At. Mol. Opt. Phys. 2008, 41, 155003.

Glushkov, A.V. Relativistic Quantum theory. Quantum mechanics of atomic systems. Astroprint: Odessa, 2008.

Khetselius, O.Yu. Quantum structure of electroweak interaction in heavy finite Fermi-systems. Astroprint: Odessa, 2011.

Mur, V. D. ; Popov, V.S.; Sergeev, A.V.; Shcheblykin, A.V. Stark resonances and scaling in Rydberg atoms. JETP. 1989, 96, 91-106.

Glushkov, A., Buyadzhi, V., Kvasikova, A., Ignatenko, A., Kuznetsova, A., Prepelitsa, G., Ternovsky, V. Non-Linear chaotic dynamics of quantum systems: Molecules in an electromagnetic field and laser systems. In: Quantum Systems in Physics, Chemistry, and Biology. Springer, Cham. 2017, 30, 169-180.

Harmin, D.A. Theory of the Stark effect. Phys. Rev. A 1982, 26, 2656.

Popov, V.; Mur, V.; Sergeev A.; Weinberg, V. Strong-field Stark effect: perturbation theory and 1/n expansion. Phys. Lett. A 1990, 149(9), 418-424.

Glushkov, A.V.; Ambrosov, S.V.; Ignatenko, A.V. Non-hydrogenic atoms and Wannier-Mott excitons in a DC electric field: Photoionization, Stark effect, Resonances in ionization continuum and stochasticity. Photoelectr. 2001, 10, 103-106.

Glushkov A.V.; Ivanov, L.N. DC strong-field Stark effect: consistent quantum-mechanical approach. J. Phys. B: At. Mol. Opt. Phys. 1993, 26, L379-386

Glushkov, A. Atom in an electromagnetic field. KNT: Kiev, 2005.

Glushkov, A.V. Operator Perturbation Theory for Atomic Systems in a Strong DC Electric Field. In: Hotokka M., Brändas E., Maruani J., Delgado-Barrio G. (eds) Advances in Quantum Methods and Applications in Chemistry, Physics, and Biology.Eds.; Springer: Cham. 2013, 27, 161–177.

Glushkov, A.V. Spectroscopy of atom and nucleus in a strong laser field: Stark effect and multiphoton resonances. J. Phys.: Conf. Ser. 2014, 548, 012020

Glushkov A. Spectroscopy of cooperative muon- gamma- nuclear processes: Energy and spectral parameters. J. Phys.: Conf. Ser. 2012, 397, 012011

Ignatenko, A.V. Probabilities of the radiative transitions between Stark sublevels in spectrum of atom in an DC electric field: New approach. Photoelectronics, 2007, 16, 71-74.

Glushkov, A.; Ambrosov, S.; Ignatenko, A. Non-hydrogenic atoms and Wannier-Mott excitons in a DC electric field: Photoionization, Stark effect, Resonances in ionization continuum and stochasticity. Photoelectronics, 2001, 10, 103-106.

Glushkov, A.V.; Ternovsky, V.B.; Buyadzhi, V.; Prepelitsa, G.P. Geometry of a Relativistic Quantum Chaos: New approach to dynamics of quantum systems in electromagnetic field and uniformity and charm of a chaos. Proc. Intern. Geom. Center. 2014, 7(4), 60-71.

Kuznetsova, A.A.; Glushkov, A.V.; Ignatenko, A.V.; Svinarenko, A.A.; Ternovsky V.B. Spectroscopy of multielectron atomic systems in a DC electric field. Adv. Quant. Chem. (Elsevier) 2018, 78, 287-306.

Kuznetsova, A.; Buyadzhi, A.; Gurskaya, M.; Makarova, A. Spectroscopy of multi electron atom in a DC electric field: Modified operator perturbation theory approach to Stark resonances. Photoelectronics. 2018, 27, 94-102

Glushkov, A.V. Relativistic and correlation effects in spectra of atomic systems; Astroprint: Odessa, 2006.

Khetselius, O.Yu. Hyperfine structure of atomic spectra. Astroprint: Odessa, 2008

Glushkov, A.V. Advanced relativistic energy approach to radiative decay processes in multielectron atoms and multicharged ions. In Quantum Systems in Chemistry and Physics: Progress in Methods and Applications. Springer: Dordrecht, 2012; Vol. 26, pp 231–252.

Svinarenko, A. A., Glushkov, A. V., Khetselius, O.Yu., Ternovsky,V.B., Dubrovskaya, Yu., Kuznetsova, A., Buyadzhi, V. Theoretical spectroscopy of rare-earth elements: spectra and autoionization resonances. Rare Earth Element. InTech, 2017, pp 83-104.

Glushkov, A.V., Khetselius, O.Yu., Svinarenko, A.A., Buyadzhi, V.V., Spectroscopy of autoionization states of heavy atoms and multiply charged ions. TEC: Odessa, 2015.

Glushkov, A.V., Khetselius, O.Yu., Svinarenko, A., Buyadzhi, V. Methods of computational mathematics and mathematical physics. P.1. Odessa: 2015.

Khetselius, O., Glushkov, A., Dubrovskaya, Yu., Chernyakova, Yu., Ignatenko, A.V., Serga, I., Vitavetskaya, L. Relativistic quantum chemistry and spectroscopy of exotic atomic systems with accounting for strong interaction effects. In: Concepts, Methods and Applications of Quantum Systems in Chem. and Phys. Springer, Cham, 2018, 31, 71-91.

Glushkov, A.V., Khetselius, O.Yu., Svinarenko A.A., Buyadzhi, V.V., Ternovsky, V.B, Kuznetsova, A., Bashkarev, P Relativistic perturbation theory formalism to computing spectra and radiation characteristics: application to heavy element. Recent Studies in Perturbation Theory, ed. D. Uzunov (InTech) 2017, 131-150.

Khetselius, O. Relativistic perturbation theory calculation of the hyperfine structure parameters for some heavy-element isotopes. Int. Journ. Quant. Chem. 2009, 109, 3330-3335.

Khetselius, O. Relativistic calculation of the hyperfine structure parameters for heavy elements and laser detection of the heavy isotopes. Phys. Scr. 2009, 135, 014023

Khetselius, O.Yu., Spectroscopy of cooperative electron-gamma-nuclear processes in heavy atoms: NEET effect. J. Phys.: Conf. Ser. 2012, 397, 012012.

Svinarenko, A. Study of spectra for lanthanides atoms with relativistic many- body perturbation theory: Rydberg resonances. J. Phys.: Conf. Ser. 2014, 548, 012039.

Buyadzhi, V., Zaichko, P., Antoshkina, O., Kulakli, T., Prepelitsa, G., Ternovsky, V., Mansarliysky, V. Computing of radiation parameters for atoms and multicharged ions within relativistic energy approach: Advanced Code. J. Phys.: Conf. Ser. 2017, 905(1), 012003.

Buyadzhi, V.V., Glushkov, A.V., Mansarliysky, V.F., Ignatenko, A.V., Svinarenko, A.A. Spectroscopy of atoms in a strong laser field: new method to sensing ac stark effect, multiphoton resonances parameters and ionization cross-sections. Sensor Electr. and Microsyst. Techn. 2015, 12(4), 27-36

Ambrosov, S., Khetselius, O., Ignatenko, A. Wannier-Mott exciton and H, Rb atom in a DC electric field: Stark effect. Photoelectronics. 2008, 17, 84-87.

Ambrosov S., Ignatenko V., Korchevsky D., Kozlovskaya V. Sensing stochasticity of atomic systems in crossed electric and magnetic fields by analysis of level statistics for continuous energy spectra. Sensor Electr. and Microsyst. Techn. 2005, Issue 2, 19-23.

Buyadzhi, V.V. Laser multiphoton spectroscopy of atom embedded in Debye plasmas: multiphoton resonances and transitions. Photoelectrs. 2015, 24, 128.

Buyadzhi, V.V.; Chernyakova, Yu.G.; Smirnov, A.V.; Tkach, T.B. Electron-collisional spectroscopy of atoms and ions in plasma: Be-like ions. Photoelectronics. 2016, 25, 97-101.

Buyadzhi, V.; Chernyakova, Yu.; Antoshkina, O.; Tkach, T. Spectroscopy of multicharged ions in plasmas: Oscillator strengths of Be-like ion Fe. Photoelectronics. 2017, 26, 94-102.

Chernyakova, Y.G., Ignatenko A.V., Vitavetskaya L.A. Sensing the tokamak plasma parameters by means high resolution x-ray theoretical spectroscopy method: new scheme. Sensor Electr. and Microsyst. Techn. 2004, 1, 20-24

Khetselius, O.Yu., Gurnitskaya, E.P., Loboda, A.V., Vitavetskaya, L.A. Consistent quantum approach to quarkony energy spectrum and semiconductor superatom and in external electric field. Photoelectronics. 2008, 17, 127-130.

##submission.downloads##

Опубліковано

2020-02-05

Номер

Розділ

Статті