РЕЛЯТИВІСТСЬКА ОПЕРАТОРНА ТЕОРІЯ ЗБУРЕНЬ В СПЕКТРОСКОПІЇ БАГАТОЕЛЕКТРОННОГО АТОМА В ЕЛЕКТРОМАГНІТНОМУ ПОЛІ
DOI:
https://doi.org/10.18524/0235-2435.2018.27.150629Ключові слова:
multielectron atom in a dc electric field, modified operator perturbation theory, Stark resonancesАнотація
Викладені теоретичні основи нового апарату релятивістської операторної теорії збурень (ОТЗ) в спектроскопії багатоелектронного атома в електромагнітному полі, об'єднаного з формалізмом релятивістської багаточастинкової теорії збурень для вільного багатоелектронного атома. В якості ілюстрації можливостей представленого підходу представлені результати оцінки деяких енергетичних і спектральних параметрів для ряду атомів. Релятивістський метод OPЗ тестується для таких багатоелектронних систем як Fr і Tm. Новий підхід розроблений для послідовного опису ефекту Штарка в багатоелектронних атомах в сильному зовнішньому електромагнітному поліПосилання
Landau, L.D.; Lifshitz, E.M. Quantum Mechanics. Pergamon: Oxford, 1977.
Glushkov, A.V. Atom in an electromagnetic field. KNT: Kiev, 2005.
Glushkov, A.V. Relativistic Quantum theory. Quantum mechanics of atomic systems. Astroprint: Odessa, 2008.
Lisitsa, V.S. New results on the Stark and Zeeman effects in the hydrogen atom. Sov. Phys. Usp. 1987, 30, 927-960.
Ivanov, L.N.; Letokhov, V.S. Selective ionization of atoms by a light and electric field. Quant. Electr.(in Russian) 1975, 2, 585-590.
Ivanov, L.N.; Letokhov, V.S. Spectroscopy of autoionization resonances in heavy elements atoms. Com.Mod.Phys.D.:At.Mol.Phys. 1985, 4, 169-184.
Letokhov, V.S. ; Hurst, G.S. Resonance Ionization Spectroscopy. Phys. Today. 1994, Oct., 38-45.
Glushkov, A.V. Operator Perturbation Theory for Atomic Systems in a Strong DC Electric Field. In Advances in Quantum Methods and Applications in Chemistry, Physics, and Biology, Series: Progress in Theoretical Chemistry and Physics; Hotokka, M., Brändas, E., Maruani, J., Delgado-Barrio, G., Eds.; Springer: Cham, 2013; Vol. 27, pp 161–177.
Glushkov, A.V. Advanced Relativistic Energy Approach to Radiative Decay Processes in Multielectron Atoms and Multicharged Ions. In Quantum Systems in Chemistry and Physics: Progress in Methods and Applications, Series: Progress in Theoretical Chemistry and Physics; Nishikawa, K., Maruani, J., Brandas, E., Delgado-Barrio, G., Piecuch, P., Eds.; Springer: Dordrecht, 2012; Vol. 26, pp 231–252.
Moiseyev, N. Quantum theory of resonances: calculating energies, widths and cross-sections by complex scaling Phys. Rep. 1998, 302, 211-293
Glushkov, A.V. Relativistic and Correlation Effects in Spectra of Atomic Systems; Astroprint: Odessa, 2006.
Rao, J.; Liu, W.; Li, B. Theoretical complex Stark energies of hydrogen by a complex-scaling plus B-spline approach. Phys. Rev. A. 1994, 50, 1916-1919 (1994).
Rao, J.; Li, B. Resonances of the hydrogen atom in strong parallel magnetic and electric fields. Phys. Rev. A. 1995, 51, 4526-4530.
Glushkov A.V.; Ivanov, L.N. DC strong-field Stark effect: consistent quantum-mechanical approach. J. Phys. B: At. Mol. Opt. Phys. 1993, 26, L379-386
Glushkov, A.V.; Ternovsky, V.B.; Buyadzhi, V.V.; Prepelitsa, G.P. Geometry of a Relativistic Quantum Chaos: New approach to dynamics of quantum systems in electromagnetic field and uniformity and charm of a chaos. Proc. Intern. Geom. Center. 2014, 7(4), 60-71.
Kuznetsova, A.A.; Glushkov, A.V.; Ignatenko, A.V.; Svinarenko, A.A.; Ternovsky V.B. Spectroscopy of multielectron atomic systems in a DC electric field. Adv. Quant. Chem. (Elsevier) 2018, 78,
doi.org/10.1016/bs.aiq.2018.06.005
Hehenberger, M.; McIntosh, H.V.; Brändas, E. Weyl's theory applied to the Stark effect in the hydrogen atom. Phys. Rev. A 1974, 10 (5), 1494-1506.
Khetselius, O.Yu. Hyperfine structure of atomic spectra. Astroprint: Odessa, 2008
Krug, A.; Buchleitner, A., Microwave ionization alkali-metal Rydberg states in a realistic numerical experiment. Phys. Rev. A. 2002, 66, 053416,
Gallagher, T.; Mahon, C.; Dexter, J.; Pillet, P. Ionization of sodium and lithium Rydberg atoms by 10-MHz to 15-GHz electric fields, Phys. Rev. A. 1991, 44, 1859-1872.
Buyadzhi, V.V. Laser multiphoton spectroscopy of atom embedded in Debye plasmas: multiphoton resonances and transitions. Photoelectronics. 2015, 24, 128-133.
Glushkov, A.V. Spectroscopy of cooperative muon-gamma-nuclear processes: Energy and spectral parameters J. Phys.: Conf. Ser. 2012, 397, 012011
Glushkov, A.V. Spectroscopy of atom and nucleus in a strong laser field: Stark effect and multiphoton resonances. J. Phys.: Conf. Ser. 2014, 548, 012020
Glushkov, A.V.; Ambrosov, S.V.; Ignatenko, A.V.; Korchevsky, D.A. DC strong field stark effect for nonhydrogenic atoms: Consistent quantum mechanical approach. Int. Journ. Quant. Chem. 2004, 99, 936-939.
Buyadzhi, V.V.; Glushkov, A.V.; Lovett, L. Spectroscopy of atom and nucleus in a strong laser field: Stark effect and multiphoton resonances. Photoelectronics. 2014, 23, 38-43.
Ivanov, L.N.; Ivanova, E.P.; Aglitsky, E.V. Modern trends in the spectroscopy of multicharged ions. Phys. Rep. 1988, 166, 315-390.
Ivanova, E.P.; Glushkov, A.V. Theoretical investigation of spectra of multicharged ions of F-like and Ne-like isoelectronic sequences. J. Quant. Spectr. Rad. Transfer. 1986, 36, 127-145.
Glushkov, A.V.; Ivanov, L.N.; Ivanova, E.P. Autoionization Phenomena in Atoms. Moscow University Press, Moscow, 1986, 58-160
Vidolova-Angelova, E.; Ivanov, L.N.; Ivanova, E.P.; Angelov, D.A. Relativistic perturbation theory method for investigating the radiation decay of highly excited many electron atomic states. Application to the Tm atom. J. Phys. B: At. Mol. Opt. Phys. 1986, 19, 2053-2069.
Khetselius, O. Relativistic perturbation theory calculation of the hyperfine structure parameters for some heavy-element isotopes. Int. Journ. Quant.Chem. 2009, 109, 3330-3335.
Khetselius, O.Yu. Relativistic calculation of the hyperfine structure parameters for heavy elements and laser detection of the heavy isotopes. Phys.Scripta. 2009, 135, 014023.
Glushkov, A.V.; Loboda, A.V.; Gurnitskaya, E.P.; Svinarenko, A.A. QED theory of radiation emission and absorption lines for atoms in a strong laser field. Phys. Scripta. 2009, T135, 014022
Ignatenko, A.V. Probabilities of the radiative transitions between Stark sublevels in spectrum of atom in an DC electric field: New approach. Photoelectronics, 2007, 16, 71-74.
Glushkov, A.V.; Ambrosov, S.V.; Ignatenko, A.V. Non-hydrogenic atoms and Wannier-Mott excitons in a DC electric field: Photoionization, Stark effect, Resonances in ionization continuum and stochasticity. Photoelectronics, 2001, 10, 103-106.
Glushkov, A.V. Negative ions of inert gases. JETP Lett. 1992, 55, 97-100.
Glushkov, A.V.; Malinovskaya, S.V.; Loboda, A.V.; Shpinareva, I.M.; Prepelitsa, G.P. Consistent quantum approach to new laser-electron-nuclear effects in diatomic molecules. J.Phys.: Conf. Ser. 2006, 35, 420-424.
Glushkov, A.V.; Malinovskaya S.V. Co-operative laser nuclear processes: border lines effects In New Projects and New Lines of Research in Nuclear Physics. Fazio, G., Hanappe, F., Eds.; World Scientific: Singapore, 2003, 242-250.
Glushkov, A.V. Energy approach to resonance states of compound superheavy nucleus and EPPP in heavy nuclei collisions In Low Energy Antiproton Physics; AIP: New York, AIP Conf. Proc. 2005, 796, 206-210.
Glushkov, A.V.; Malinovskaya, S.V.; Prepelitsa, G.P.; Ignatenko, V. Manifestation of the new laser-electron nuclear spectral effects in the thermalized plasma: QED theory of co-operative laser-electron-nuclear processes. J. Phys.: Conf. Ser. 2005, 11, 199-206.
Glushkov, A.V.; Malinovskaya, S.V.; Loboda, A.V.; Shpinareva, I.M.; Gurnitskaya, E.P.; Korchevsky, D.A. Diagnostics of the collisionally pumped plasma and search of the optimal plasma parameters of x-ray lasing: calculation of electron-collision strengths and rate coefficients for Ne-like plasma. J. Phys.: Conf. Ser. 2005, 11, 188-198.
Glushkov, A.V.; Ambrosov, S.V.; Loboda, A.V.; Gurnitskaya, E.P.; Prepelitsa, G.P. Consistent QED approach to calculation of electron-collision excitation cross sections and strengths: Ne-like ions. Int. J. Quantum Chem. 2005, 104, 562-569.
Khetselius, O.Yu. Relativistic Energy Approach to Cooperative Electron-γ-Nuclear Processes: NEET Effect In Quantum Systems in Chemistry and Physics, Series: Progress in Theoretical Chemistry and Physics; Nishikawa, K., Maruani, J., Brändas, E., Delgado-Barrio, G., Piecuch, P., Eds.; Springer: Dordrecht, 2012; Vol. 26, pp 217-229.
Glushkov. A.; Khetselius, O.; Svinarenko, A.; Buyadzhi, V.; Ternovsky, V.; Kuznetsova, A.; Bashkarev, P. Relativistic perturbation theory formalism to computing spectra and radiation characteristics: Application to heavy elements Recent Studies in Perturbation Theory; Uzunov, D. Ed.; InTech, 2017; pp 131-150
Khetselius, O.Yu. Relativistic Hyperfine Structure Spectral Lines and Atomic Parity Non-conservation Effect in Heavy Atomic Systems within QED Theory. AIP Conf. Proceedings. 2010, 1290(1), 29-33.
Khetselius, O.Yu. Spectroscopy of cooperative electron-gamma-nuclear processes in heavy atoms: NEET effect. J. Phys.: Conf. Ser. 2012, 397, 012012
Khetselius, O.Yu. Atomic parity non-conservation effect in heavy atoms and observing P and PT violation using NMR shift in a laser beam: To precise theory. J. Phys.: Conf. Ser. 2009, 194, 022009.
Buyadzhi, V.V.; Chernyakova, Yu.G.; Smirnov, A.V.; Tkach, T.B. Electron-collisional spectroscopy of atoms and ions in plasma: Be-like ions. Photoelectronics. 2016, 25, 97-101.
Buyadzhi, V.V.; Chernyakova, Yu.G.; Antoshkina, O.A.; Tkach, T.B. Spectroscopy of multicharged ions in plasmas: Oscillator strengths of Be-like ion Fe. Photoelectronics. 2017, 26, 94-102.
Glushkov, A.V.; Ternovsky, V.B.; Buyadzhi, V.; Prepelitsa, G.P. Geometry of a Relativistic Quantum Chaos: New approach to dynamics of quantum systems in electromagnetic field and uniformity and charm of a chaos. Proc. Intern. Geom. Center. 2014, 7(4), 60-71.
Glushkov, A.V.; Kondratenko, P.A.; Buyadgi, V.V.; Kvasikova, A.S.; Sakun T.N.; Shakhman, A.S. Spectroscopy of cooperative laser electron-γ-nuclear processes in polyatomic molecules. J. Phys.: Conf. Ser. 2014, 548, 012025.
Svinarenko, A.A. Study of spectra for lanthanides atoms with relativistic many- body perturbation theory: Rydberg resonances. J. Phys.: Conf. Ser. 2014, 548, 012039.
##submission.downloads##
Опубліковано
Номер
Розділ
Ліцензія
Авторське право (c) 2020 Photoelectronics
Ця робота ліцензується відповідно до Creative Commons Attribution-NonCommercial 4.0 International License.
авторське право переходить до видання.