ELECTRON-COLLISIONAL SPECTROSCOPY OF ATOMS AND IONS: ADVANCED ENERGY APPROACH

Автор(и)

  • V. V. Buyadzhi Одеський національний університет імені І. І. Мечникова, Ukraine

DOI:

https://doi.org/10.18524/0235-2435.2019.28.194341

Ключові слова:

spectroscopy of ions, relativistic energy approach, collision cross-sections

Анотація

An advanced relativistic energy approach combined with a scattering theory is used to calculate the electron-collision excitation cross-sections, collision strengths for a number of multicharged ions. The relativistic many-body perturbation theory is used alongside the gauge-invariant scheme to generate an optimal Dirac-Kohn-Sham- Debye-Hückel one-electron representation.  The results of relativistic calculation (taking into account the exchange and correlation corrections) of the electron collision cross-sections (strengths) of excitation of the transition between the fine-structure levels (2P 3/2- 2P 1/ 2) of the ground state of F-like ions with Z = 19-26 and  of the [2s2 1S-(2s2p 1Р)] transition in the В-like O4+ are presented and analysed.

Посилання

Badnell, N.R. Calculations for electron-ion collisions and photoionization processes for plasma modeling. J. Phys.: Conf. Ser. 2007, 88, 012070.

Griffin, D.C., Balance, C., Mitnik, D., Berengut, J.C. Dirac R-matrix calculations of electron-impact excitation of neon-like krypton. J. Phys. B: At. Mol. Opt. Phys. 2008, 41, 215201.

Yongqiang, Li; Jianhua, Wu; Yong, Hou, Jianmin Yuan. Influence of hot and dense plasmas on energy levels and oscillator strengths of ions: Be-like ions for Z = 26–36, J. Phys. B: At. Mol. Opt. Phys. 2008, 41, 145002.

Bannister, M. E., Djuri , N., Woitke, O., Dunn, G., Chung, Y. -S, Smith, A. C. H., Wallbank, B., Berrington, K. A. Absolute cross-sections for near–threshold electron-impact excitation of Be-like C2+, N3+, O4+. Int. J. Mass Spectr. 1999, 192, 39-48.

Smith, A. C. H., Bannister, M. E., Chung, Y. -S, Djuri, N., Dunn, G. H., Wallbank, B., Woitke, O. Near-threshold Electron-impact Excitation of Multiply-charged Be-like Ions. Phys.Scr. 1999, T80, 283-287.

Ivanov, L.N.; Ivanova, E.P.; Knight, L. Energy approach to consistent QED theory for calculation of electron-collision strengths: Ne-like ions. Phys. Rev. A. 1993, 48, 4365-4374.

Buyadzhi, V.V. Laser multiphoton spectroscopy of atom embedded in Debye plasmas: multiphoton resonances and transitions. Photoelectronics. 2015, 24, 128-133.

Buyadzhi, V.V.; Chernyakova, Yu.G.; Smirnov, A.V.; Tkach, T.B. Electron-collisional spectroscopy of atoms and ions in plasma: Be-like ions. Photoelectronics. 2016, 25, 97-101.

Buyadzhi, V.; Chernyakova, Yu.; Antoshkina, O.; Tkach, T. Spectroscopy of multicharged ions in plasmas: Oscillator strengths of Be-like ion Fe. Photoelectronics. 2017, 26, 94-102.

Glushkov, A.V.; Malinovskaya, S.V.; Prepelitsa, G.P.; Ignatenko, V. Manifestation of the new laser-electron nuclear spectral effects in the thermalized plasma: QED theory of co-operative laser-electron-nuclear processes. J. Phys.: Conf. Ser. 2005, 11, 199-206.

Glushkov, A.V.; Malinovskaya, S.V.; Chernyakova Y.G.; Svinarenko, A.A. Cooperative laser-electron-nuclear processes: QED calculation of electron satellites spectra for multi-charged ion in laser field. Int. Journ. Quant. Chem. 2004, 99, 889-893.

Glushkov, A.V.; Malinovskaya, S.V.; Loboda, A.V.; Shpinareva, I.M.; Gurnitskaya, E.P.; Korchevsky, D.A. Diagnostics of the collisionally pumped plasma and search of the optimal plasma parameters of x-ray lasing: calculation of electron-collision strengths and rate coefficients for Ne-like plasma. J. Phys.: Conf. Ser. 2005, 11, 188-198.

Glushkov, A.V.; Ambrosov, S.V.; Loboda, A.V.; Gurnitskaya, E.P.; Prepelitsa, G.P. Consistent QED approach to calculation of electron-collision excitation cross sections and strengths: Ne-like ions. Int. J. Quantum Chem. 2005, 104, 562-569.

Glushkov, A.V. Relativistic Quantum theory. Quantum mechanics of atomic systems; Astroprint: Odessa, 2008.

Khetselius, O.Yu. Hyperfine structure of atomic spectra. Astroprint: Odessa, 2008.

Glushkov, A.V.; Ivanov, L.N.; Ivanova, E.P. Autoionization Phenomena in Atoms. Moscow Univ. Press, 1986, 58-160

Glushkov, A.; Ivanov, L. Radiation decay of atomic states: atomic residue polarization and gauge noninvariant contributions. Phys. Lett. A 1992, 170, 33.

Glushkov, A.V. Spectroscopy of atom and nucleus in a strong laser field: Stark effect and multiphoton resonances. J. Phys.: Conf. Ser. 2014, 548, 012020

Khetselius, O.Yu. Spectroscopy of cooperative electron-gamma-nuclear processes in heavy atoms: NEET effect. J. Phys.: Conf. Ser. 2012, 397, 012012.

Glushkov A.V.; Ivanov, L.N. DC strong-field Stark effect: consistent quantum-mechanical approach. J. Phys. B: At. Mol. Opt. Phys. 1993, 26, L379-386.

Ignatenko, A.V. Probabilities of the radiative transitions between Stark sublevels in spectrum of atom in an DC electric field: New approach. Photoelectronics, 2007, 16, 71-74.

Glushkov, A.V.; Ambrosov, S.V.; Ignatenko, A.V. Non-hydrogenic atoms and Wannier-Mott excitons in a DC electric field: Photoionization, Stark effect, Resonances in ionization continuum and stochasticity. Photoelectronics, 2001, 10, 103-106.

Glushkov A., Ternovsky V., Buyadzhi V., Prepelitsa G., Geometry of a relativistic quantum chaos: New approach to dynamics of quantum systems in electromagnetic field and uniformity and charm of a chaos. Proc. Intern. Geom. Center. 2014, 7(4), 60-71.

Khetselius, O.Yu. Relativistic perturbation theory calculation of the hyperfine structure parameters for some heavy-element isotopes. Int. Journ.Quant.Chem. 2009, 109, 3330-3335.

Khetselius, O. Hyperfine structure of radium. Photoelectronic. 2005, 14, 83-85.

##submission.downloads##

Опубліковано

2020-02-05

Номер

Розділ

Статті