DOI: https://doi.org/10.18524/0235-2435.2019.28.195373

SPECTROSCOPIC FACTORS OF DIATOMIC MOLECULES: OPTIMIZED GREEN’S FUNCTIONS AND DENSITY FUNCTIONAL METHOD

A. V. Ignatenko, A. P. Lavrenko

Анотація


It is presented an advanced approach to computing the spectroscopic factors of the diatomic molecules, which is based on the hybrid combined density functional theory (DFT) and the Green’s-functions (GF) approach. The Fermi-liquid quasiparticle version of the density functional theory is modified and used. The density of states, which describe the vibrational structure in photoelectron spectra, is defined with the use of combined DFT-GF approach and is well approximated by using only the first order coupling constants in the optimized one-quasiparticle approximation. Using the combined DFT-GF approach to computing the spectroscopic factors of diatomic molecules leads to significant simplification of the calculation procedure and increasing an accuracy of theoretical prediction.

Ключові слова


diatomic molecules; Green’s functions; density functional

Повний текст:

PDF

Посилання


Köppel, H., Domcke, W., Cederbaum, L.S., Green’s function method in quantum chemistry. Adv. Chem. Phys. 1984, 57, 59-132.

Cederbaum, L., Domcke, W., On vibrational structure of photoelectron spectra by the Green’s functions method. J.Chem. Phys. 1984, 60, 2878-2896.

Glushkov, A. An universal quasiparticle energy functional in a density functional theory for relativistic atom. Opt. and Spectr. 1989, 66(1), 31-36.

Glushkov, A.V. New approach to theoretical definition of ionization potentials for molecules on the basis of Green’s function method. J. Phys. Chem. 1992, 66, 2671-2677.

Glushkov, A.V. Relativistic and correlation effects in spectra of atomic systems. Astroprint: Odessa, 2006.

Glushkov, A.V. Relativistic Quantum theory. Quantum mechanics of atomic systems. Astroprint: Odessa, 2008.

Ignatenko, A.V., Glushkov, A.V., Lepikh, Ya.I., Kvasikova, A.S. Photoelectron spectroscopy of diatomic molecules:optimized Green’s functions and density functional approach. Photoelectronics. 2018, 27, 44-51.

Glushkov A., Khetselius O., Svinarenko A., Buyadzhi V. Spectroscopy of autoionization states of heavy atoms and multiply charged ions. TEC, 2015.

Ponomarenko, Е.L., Kuznetsova, A.A., Dubrovskaya, Yu.V., Bakunina, E.V. Energy and spectroscopic parameters of diatomics within generalized equation of motion method. Photoelectronics. 2016, 25, 114-118.

Svinarenko, A.A., Glushkov, A. V., Khetselius, O.Yu., Ternovsky,V.B., Dubrovskaya, Yu., Kuznetsova, A., Buyadzhi, V. Theoretical spectroscopy of rare-earth elements: spectra and autoionization resonances. Rare Earth Element, Ed. J. Orjuela (InTech) 2017, pp 83-104.

Glushkov, A.V., Khetselius, O.Yu., Svinarenko A.A., Buyadzhi, V.V., Ternovsky, V.B, Kuznetsova, A., Bashkarev, P Relativistic perturbation theory formalism to computing spectra and radiation characteristics: application to heavy element. Recent Studies in Perturbation Theory, ed. D. Uzunov (InTech) 2017, 131-150.

Kobayashi, K., Kurita, N., Kumahora, H., Kuzatami, T. Bond-energy calculations of Cu, Ag, CuAg with the generalized gradient approximation. Phys.Rev.A. 1991, 43, 5810.

Lagowscki, J., Vosko, S. Analysis of local and gradient-correction correlation energy functionals using electron removal energies. J. Phys.B: At. Mol. Opt. Phys. 1988, 21(1), 203-208.

Guo, Y., Whitehead, M. Effect of the correlation correction on the ionization potential and electron affinity in atoms. Phys.Rev.A. 1989, 39(1), 28-34.

Khetselius, O.Yu., Lopatkin Yu.M., Dubrovskaya, Yu.V, Svinarenko A.A. Sensing hyperfine-structure, electroweak interaction and parity non-conservation effect in heavy atoms and nuclei: New nuclear-QED approach. Sensor Electr. And Microsyst. Techn. 2010, 7(2), 11-19.

Florko, T., Ambrosov, S., Svinarenko A., Tkach, T. Collisional shift of the heavy atoms hyperfine lines in an atmosphere of the inert gas. J. Phys: Conf. Ser. 2012, 397(1), 012037.

Khetselius, O. Relativistic perturbation theory calculation of the hyperfine structure parameters for some heavy‐element isotopes. Int. J. Quant. Chem. 2009, 109, 3330–3335.

Khetselius, O. Relativistic calculation of the hyperfine structure parameters for heavy elements and laser detection of the heavy isotopes. Phys. Scr. 2009, 135, 014023.

Glushkov A.V., Atom in electromagnetic field. KNT: Kiev, 2005.

Khetselius, O. Yu. Hyperfine structure of atomic spectra; Astroprint: Odessa, 2008.

Khetselius, O.Yu. Quantum structure of electroweak interaction in heavy finite Fermi-systems. Astroprint: Odessa, 2011.

Khetselius, O.Y.., Glushkov, A.V., Gurskaya, M.Y., Kuznetsova, A.A., Dubrovskaya, Yu.V., Serga, I.N., Vitavetskaya, L.A. Computational modelling parity nonconservation and electroweak interaction effects in heavy atomic systems within the nuclear-relativistic many-body perturbation theory. J. Phys.: Conf. Ser. 2017, 905(1), 012029.

Glushkov, A., Gurskaya, M., Ignatenko, A., Smirnov, A., Serga, I., Svinarenko, A., Ternovsky, E. Computational code in atomic and nuclear quantum optics: Advanced computing multiphoton resonance parameters for atoms in a strong laser field. J. Phys.: Conf. Ser. 2017, 905(1), 012004.

Ambrosov S., Ignatenko V., Korchevsky D., Kozlovskaya V. Sensing stochasticity of atomic systems in crossed electric and magnetic fields by analysis of level statistics for continuous energy spectra. Sensor Electr. and Microsyst. Techn. 2005, Issue 2, 19-23.

Buyadzhi, V.V., Glushkov, A.V., Mansarliysky, V.F., Ignatenko, A.V., Svinarenko, A. Spectroscopy of atoms in a strong laser field: new method to sensing ac stark effect, multiphoton resonances parameters and ionization cross-sections. Sensor Electr. and Microsyst. Techn. 2015, 12(4), 27-36.

Svinarenko A.A., Mischenko E., Loboda A., Dubrovskaya Yu. Quantum measure of frequency and sensing the collisional shift of the ytterbium hyperfine lines in medium of helium gas. Sensor Electr. and Microsyst. Techn. 2009, 1, 25-29.

Malinovskaya S.V., Dubrovskaya Yu.V., Zelentzova T.N. The atomic chemical environment effect on the b decay probabilities: Relativistic calculation. Herald of Kiev Nat. Univ. Ser.: Phys.-Math. 2004, N4, 427-432.

Glushkov A., Khetselius O., Svinarenko A., Prepelitsa G., Mischenko E., The Green’s functions and density functional approach to vibrational structure in the photoelectron spectra for molecules. AIP Conf. Proc. 2010, 1290, 263-268.

Khetselius O., Florko T., Svinarenko A., Tkach T. Radiative and collisional spectroscopy of hyperfine lines of the Li-like heavy ions and Tl atom in an atmosphere of inert gas. Phys.Scripta. 2013, T153, 014037.

Glushkov, A.V., Kivganov, A.F., Khokhlov, V.N., Buyadzhi, T.V., Vitavetskaya, L.A., Borovskaya, G.A., Polishchuk, V.N. Calculation of the spectroscopic characteristics of diatomic van der Waals molecules and ions: Inert gas atom—halogen-type inert gas ion in the ground state. Russian Phys. Journ. 1998, 41(3), 223-226

Glushkov, A., Malinovskii, A., Efimov, V., Kivganov, A., Khokhlov, V., Vitavetskaya, L., Borovskaya, G., Calculation of alkaline metal dimers in terms of model perturbation theory. J. Struct. Chem. 1998, 39(2), 179-185.

Khetselius, O.Yu. Hyperfine structure of radium. Photoelectron. 2005, 14, 83-85.

Khetselius O.Yu., Quantum Geometry: New approach to quantization of the quasistationary states of Dirac equation for super heavy ion and calculating hyper fine structure parameters. Proc. Int. Geometry Center. 2012, 5(3-4), 39-45.

Dubrovskaya, Yu., Khetselius, O.Yu., Vitavetskaya, L., Ternovsky, V., Serga, I. Quantum chemistry and spectroscopy of pionic atomic systems with accounting for relativistic, radiative, and strong interaction effects. Adv. in Quantum Chem. 2019, Vol.78, pp 193-222.

Khetselius, O.Yu., Glushkov, A.V., Dubrovskaya, Yu.V., Chernyakova, Yu.G., Ignatenko, A.V., Serga, I.N., Vitavetskaya, L. Relativistic quantum chemistry and spectroscopy of exotic atomic systems with accounting for strong interaction effects. In: Wang YA, Thachuk M, Krems R, Maruani J (eds) Concepts, Methods and Applications of Quantum Systems in Chemistry and Physics. Springer, Cham, 2018; Vol. 31, pp. 71-91.

Glushkov, A., Ivanov, L. DC strong-field Stark effect: consistent quantum-mechanical approach. J. Phys.B: At. Mol. Opt. Phys. 1993, 26(14), L379 –386.

Glushkov, A.V., Khetselius, O.Yu., Svinarenko, A.A., Buyadzhi, V. Methods of computational mathematics and mathematical physics. P.1. TES: Odessa, 2015.

Glushkov, A.V., Safranov, T.A., Khetselius, O.Yu., Ignatenko, A.V., Buyadzhi, V.V., Svinarenko, A.A. Analysis and forecast of the environmental radioactivity dynamics based on methods of chaos theory: General conceptions. Environm. Problems. 2016, 1(2), 115-120.

Glushkov, A., Buyadzhi, V., Kvasikova, A., Ignatenko, A., Kuznetsova, A., Prepelitsa, G., Ternovsky, V. Non-Linear chaotic dynamics of quantum systems: Molecules in an electromagnetic field and laser systems. In: Tadjer A, Pavlov R, Maruani J etal, (eds) Quantum Systems in Physics, Chemistry, and Biology. Springer, Cham. 2017, 30, 169

Robert, C., Morrison, R., Liu, G., Extended Koopmans theorem: approximate ionization energies from MCSCF Wave Functions. J. Comp. Chem. 1992, 13, 1004-1010.

Svinarenko, A. Spectroscopy of autoioni-zation resonancesin spectra of barium. Photoelectronics. 2014, 23, 86-90.




Creative Commons License
Ця робота ліцензована Creative Commons Attribution-NonCommercial 4.0 International License.

ISSN: 0235-2435 (Print)