RELATIVISTIC THEORY OF SPECTRAL CHARACTERISTICS OF PIONIC ATOMIC SYSTEMS: APPLICATION TO HEAVY SYSTEMS

Автор(и)

  • Yu. Dubrovskaya
  • O. Khetselius
  • I. Serga
  • Yu. Chernyakova

DOI:

https://doi.org/10.18524/0235-2435.2020.29.225509

Анотація

Розроблено новий теоретичний підхід до опису енергетичних і спектральних параметрів адронних (піонних) атомів з акуратним урахуванням релятивістських, радіаційних і ядерних ефектів.. Наведены дані розрахунку енергетичних і спектральних параметрів піонних атомів 93Nb, 173Yb,  181Ta , 197Au з урахуванням радіаційних (поляризація вакууму), ядерних (кінцевий розмір ядра) поправок і ефекту сильного піон-ядерної взаємодії. Для порівняння також наведені експериментальні значення (вимірювання в лабораторіях в Берклі, ЦЕРН і Вірджинії) і альтернативні теоретичні дані, отримані в рамках інших версій теорії Клейна-Гордона-Фока з урахуванням кінцевого розміру ядра в рамках моделі однорідно зарядженої сфери і стандартним потенціалом Улінга-Сербера для урахування радіаційних поправок.

Посилання

Khetselius, O.Yu. Relativistic perturbation theory calculation of the hyperfine structure parameters for some heavy‐element isotopes. Int. J. Quant. Chem. 2009, 109, 3330–3335.

Khetselius, O. Relativistic calculation of the hyperfine structure parameters for heavy elements and laser detection of the heavy isotopes. Phys. Scripta 2009, 135, 014023.

Khetselius, O. Hyperfine structure of atomic spectra; Astroprint: Odessa, 2008.

Dubrovskaya, Yu., Khetselius, O.Yu., Vitavetskaya, L., Ternovsky, V., Serga, I. Quantum chemistry and spectroscopy of pionic atomic systems with accounting for relativistic, radiative, and strong interaction effects. Adv. in Quantum Chem. 2019, 78, 193-222.

Khetselius, O.Yu., Glushkov, A.V., Dubrovskaya, Yu.V., Chernyakova, Yu.G., Ignatenko, A.V., Serga, I.N., Vitavetskaya, L. Relativistic quantum chemistry and spectroscopy of exotic atomic systems with accounting for strong interaction effects. In: Wang YA, Thachuk M, Krems R, Maruani J (eds) Concepts, Methods and Applications of Quantum Systems in Chemistry and Physics. Springer, Cham, 2018; Vol. 31, pp. 71-91.

Serga, I.N.; Dubrovskaya, Yu.V.; Kvasikova, A.S.; Shakhman, A.N; Sukharev, D.E. Spectroscopy of hadronic atoms: Energy shifts. J. Phys.: Conf. Ser. 2012, 397, 012013.

Serga, I.N.; Khetselius, O.Yu.; Vitavetskaya, L.A.; Bystryantseva A.N. Relativistic theory of spectra of pionic atomic systems 208Pb with account of strong pion-nuclear interaction effects. Photoelectronics. 2017, 26, 68-77.

Sukharev, D.E.; Khetselius, O.Yu.; Dubrovskaya, Yu.V. Sensing strong interaction effects in spectroscopy of hadronic atoms. Sensor Electr. and Microsyst. Techn. 2009, N3, 16-21.

Khetselius, O.Yu. Quantum structure of electroweak interaction in heavy finite Fermi-systems. Astroprint: Odessa, 2011.

Khetselius, O.Y.., Glushkov, A.V., Gurskaya, M.Y., Kuznetsova, A.A., Dubrovskaya, Yu.V., Serga, I.N., Vitavetskaya, L.A. Computational modelling parity nonconservation and electroweak interaction effects in heavy atomic systems within the nuclear-relativistic many-body perturbation theory. J. Phys.: Conf. Ser. 2017, 905(1), 012029.

Batty, C.; Eckhause, M.; Gall, K. et al. Strong interaction effects in high-Z K- atoms. Phys. Rev. C. 1989, 40, 2154.

Erikcson, M.; Ericson, T. Optical Properties of Low Energy Pions in Nuclei. Ann. Phys. 1966, 36, 323.

Batty, C J.; Friedman, E.; Gal, A. Saturation effects in pionic atoms and the π−-nucleus optical potential. Nucl. Phys. A. 1983, 402, 411-428.

Indelicato, P. Relativistic effects in few-electron heavy ions. Ab initio evaluation of levels energy and transitions probabilities. Phys. Scripta 1996, 65, 57.

Flambaum, V.; Ginges J. Radiative potential and calculation of QED radiative corrections to energy levels and electromagnetic amplitudes in many-electron atoms. Phys.Rev.A. 2005, 72, 052115.

Glushkov A.V., Malinovskaya S.V., Svinarenko A.A., Vitavetskaya L.A., Sensing spectral hierarchy, quantum chaos, chaotic diffusion and dynamical stabilisation effects in a multi- photon atomic dynamics with intense laser field. Sensor Electr. and Microsyst. Techn. 2005, 2(2), 29-35.

Mohr, P.J. Quantum Electrodynamics Calculations in few-Electron Systems. Phys. Scripta. 1993, 46, 44.

Rusov V., Glushkov A., Vaschenko V., Korchevsky D., Ignatenko A. Stochastic dynamics of the atomic systems in the crossed electric and magnetic field: the rubidium atom recurrence spectra. Bull.of Kiev Nat. Univ.:Ser.Phys.-Math. 2004, N4, 433.

Glushkov, A.V. Spectroscopy of cooperative muon-gamma-nuclear processes: Energy and spectral parameters. J. Phys.: Conf. Ser. 2012, 397, 012011.

Gubanova, E.R., Glushkov, A.V., Khetselius, O.Yu., Bunyakova, Yu., Buyadzhi, V., Pavlenko, E. New methods in analysis and project management of environmental activity: Electronic and radioactive waste. Kharkiv, FOP, 2017..

Khetselius, O.Yu., Lopatkin Yu.M., Dubrovskaya, Yu.V, Svinarenko A.A. Sensing hyperfine-structure, electroweak interaction and parity non-conservation effect in heavy atoms and nuclei: New nuclear-QED approach. Sensor Electr. and Microsyst. Techn. 2010, 7(2), 11-19.

Bystryantseva A., Khetselius O.Yu., Dubrovskaya Yu., Vitavetskaya L.A., Berestenko A.G. Relativistic theory of spectra of heavy pionic atomic systems with account of strong pion-nuclear interaction effects: 93Nb, 173Yb, 181Ta , 197Au. Photoelectronics. 2016,25, 56-61.

Glushkov, A.V. Relativistic Quantum theory. Quantum mechanics of atomic systems; Astroprint: Odessa, 2008.

Kuznetsova A.A., Vitavetskaya L.A., Chernyakova Yu.G., Korchevsky D., Calculating the radiative vacuum polarization contribution to the energy shift of 2p-3s transition in pionic deuterium. Photoelectronics. 2013, 22, 108-111.

Glushkov, A.V.; Khetselius, O.Yu.; Svinarenko, A.A.; Buyadzhi, V.V. Spectroscopy of autoionization states of heavy atoms and multiply charged ions. Odessa: TEC, 2015.

Glushkov, A.V. Spectroscopy of atom and nucleus in a strong laser field: Stark effect and multiphoton Resonances. J. Phys.: Conf. Ser. 2014, 548, 012020.

Khetselius, O.Yu. Atomic parity non-conservation effect in heavy atoms and observing P and PT violation using NMR shift in a laser beam: To precise theory. J. Phys.: Conf. Ser. 2009, 194, 022009.

Khetselius, O. Relativistic hyperfine structure spectral lines and atomic parity nonconservation effect in heavy atomic systems within QED theory. AIP Conf. Proc. 2010, 1290, 29–33.

Chernyakova, Y.G., Vitavetskaya L., Bashkaryov, P., Serga I., Berestenko, A. The radiative vacuum polarization contribution to the energy shift of some levels of the pionic hydrogen. Photoelectronics 2015, 24, 122-127.

Glushkov, A., Gurskaya, M., Ignatenko, A., Smirnov, A., Serga, I., Svinarenko, A., Ternovsky, E. Computational code in atomic and nuclear quantum optics: Advanced computing multiphoton resonance parameters for atoms in a strong laser field. J. Phys.: Conf. Ser. 2017, 905(1), 012004.

Ambrosov S., Ignatenko V., Korchevsky D., Kozlovskaya V. Sensing stochasticity of atomic systems in crossed electric and magnetic fields by analysis of level statistics for continuous energy spectra. Sensor Electr. and Microsyst. Techn. 2005, Issue 2, 19-23.

Glushkov, A.V., Ivanov, L.N. Radiation decay of atomic states: atomic residue polarization and gauge noninvariant contributions. Phys. Lett. A 1992, 170, 33.

Glushkov, A.V.; Ivanov, L.N. DC strong-field Stark effect: consistent quantum-mechanical approach. J. Phys. B: At. Mol. Opt. Phys. 1993, 26, L379-386.

Ivanova, E., Glushkov, A. Theoretical investigation of spectra of multicharged ions of F-like and Ne-like isoelectronic sequences. J. Quant. Spectr. and Rad. Tr. 1986, 36(2), 127-145.

Ivanova, E.P., Ivanov, L.N., Glushkov, A., Kramida, A. High order corrections in the relativistic perturbation theory with the model zeroth approximation, Mg-Like and Ne-Like Ions. Phys. Scripta 1985, 32, 513-522.

Glushkov, A.V. Relativistic and correlation effects in spectra of atomic systems. Astroprint, Odessa, 2006..

Glushkov, A.V. Multiphoton spectroscopy of atoms and nuclei in a laser field: Relativistic energy approach and radiation atomic lines moments method. Adv. in Quantum Chem. 2019, 78, 253-285.

Chernyakova, Y.G., Ignatenko A.V., Vitavetskaya L.A., Sensing the tokamak plasma parameters by means high resolution x-ray theoretical spectroscopy method: new scheme. Sensor Electr. and Microsyst. Techn. 2004, 1, 20-24.

Glushkov, A.V., Malinovskaya, S.V., Dubrovskaya, Yu.V., Sensing the atomic chemical composition effect on the beta decay probabilities. Sensor Electr. and Microsyst. Techn. 2005, 2(1), 16-20.

Glushkov, A.V., Khetselius, O.Yu., Svinarenko, A.A., Buyadzhi, V.V. Methods of computational mathematics and mathematical physics. P.1. Odessa: TES, 2015.

Svinarenko, A. A., Glushkov, A. V., Khetselius, O.Yu., Ternovsky,V.B., Dubrovskaya, Yu., Kuznetsova, A., Buyadzhi, V. Theoretical spectroscopy of rare-earth elements: spectra and autoionization resonances. Rare Earth Element, Ed. J. Orjuela (InTech) 2017, pp 83-104

Glushkov, A.V., Khetselius, O.Yu., Svinarenko A.A., Buyadzhi, V.V., Ternovsky, V.B, Kuznetsova, A., Bashkarev, P Relativistic perturbation theory formalism to computing spectra and radiation characteristics: application to heavy element. Recent Studies in Perturbation Theory, ed. D. Uzunov (InTech) 2017, 131-150.

Danilov, V., Kruglyak, Y., Pechenaya, V. Electron density-bond order matrix and the spin density in the restricted CI method. Theor. Chim Acta. 1969, 13(4), 288-296.

Glushkov A.V., Khetselius O.Yu., Loboda A.V., Ignatenko A., Svinarenko A., Korchevsky D., Lovett L., QED Approach to Modeling Spectra of the Multicharged Ions in a Plasma: Oscillator and Electron‐ion Collision Strengths.. AIP Conference Proceedings. 2008. 1058. 175-177

Glushkov, A.V., Safranov, T.A., Khetselius, O.Yu., Ignatenko, A.V., Buyadzhi, V.V., Svinarenko, A.A. Analysis and forecast of the environmental radioactivity dynamics based on methods of chaos theory: General conceptions. Environm. Problems. 2016, 1(2), 115-120.

##submission.downloads##

Опубліковано

2021-02-26

Номер

Розділ

Статті