КАСКАД ОЖЕ-ПЕРЕХОДІВ В СПЕКТРІ КСЕНОНА: ТЕОРЕТИЧНІ ДАНІ
DOI:
https://doi.org/10.18524/0235-2435.2020.29.225591Ключові слова:
релятивістська теорія, Оже-спектроскопія, ксеонАнотація
Енергетичні параметри оже-переходів для атомної системи ксенону обчислені на основі комбінованого релятивістського енергетичного підходу і релятивістської багаточастинкової теорії збурень з наближенням функціонала щільності нульового порядку. Результати порівнюються з експериментальними результатами, а також з напівемпіричними дтеоретичними даними. Важливий момент пов'язаний з урахуванням вкладів складних багаточасткових обмінних кореляційних eфектів та з використанням оптимізованого одноквазічастічного уявлення в нульовому наближенні релятивістської багаточастинкової теорії збурень, що визначає фізично певну згоду між теорією і експериментом.
Посилання
Jonauskas V., Partanen L., Kucas S., Karazjia R., Huttula M., Aksela S., Aksela H., Auger cascade satellites following 3d ionization in xenon. J. Phys.B. Atom.Mol.Opt. Phys. 2003, 36, 4403-4416.
Efimova E, Chernyshev A, Buyadzhi V., Nikola L,Theoretical Auger spectroscopy of the neon: transition energies and widths.Photoelectronics. 2019. 28, 24-31
Chernyakova, Y., Ignatenko, A., Vitavetskaya, L.A. Sensing the tokamak plasma parameters by means high resolution x-ray theoretical spectroscopy method: new scheme. Sensor Electr. and Microsyst. Techn. 2004, 1, 20-24.
Aglitsky, E., Safronova, U. Spectroscopy of autoionization states of atomic systems. Energoat: Moscow, 1992.
Glushkov, A.V., Khetselius, O.Yu., Svinarenko, A.A., Buyadzhi, V.V., Spectroscopy of autoionization states of heavy atoms and multiply charged ions. TEC: Odessa, 2015.
Buyadzhi, V., Kuznetsova, A., Buyadzhi, A., Ternovsky, E., Tkach, T. Advanced quantum approach in radiative and collisional spectroscopy of multicharged ions in plasmas. Adv. in Quant. Chem. 2019, 78, 171-191.
Glushkov, A., Buyadzhi, V., Svinarenko, A., Ternovsky, E. Advanced relativistic energy approach in electron-collisional spectroscopy of multicharged ions in plasma. Concepts, Methods, Applications of Quantum Systems in Chemistry and Physics (Springer). 2018, 31, 55-69.
Glushkov, A., Ambrosov, S., Prepelitsa, G., Kozlovskaya, V. Auger effect in atoms and solids: Calculation of characteristics of Auger decay in atoms, quasi-molecules and solids with apllication to surface composition analysis. Funct. Materials. 2003, 10, 206.
Nikola, L. Resonant Auger spectroscopy of the atoms of inert gases. Photoelectr. 2011, 20, 104.
Khetselius, O.Yu. Quantum Geometry: New approach to quantization of quasistationary states of Dirac equation for superheavy ion and calculating hyperfine structure parameters. Proc. Int. Geometry Center. 2012, 5(3-4), 39-45.
Ivanov, L.N., Ivanova, E.P., Aglitsky, E. Modern trends in the spectroscopy of multicharged ions. Phys. Rep. 1988, 166.
Svinarenko, A., Khetselius, O., Buyadzhi, V., Florko, T., Zaichko, P., Ponomarenko E. Spectroscopy of Rydberg atoms in a Black-body radiation field: Relativistic theory of excitation and ionization. J. Phys.: Conf. Ser. 2014, 548, 012048.
Glushkov A.V., Ivanov, L.N. DC strong-field Stark effect: consistent quantum-mechanical approach. J. Phys. B: At. Mol. Opt. Phys. 1993, 26, L379-386.
Glushkov, A. Spectroscopy of atom and nucleus in a strong laser field: Stark effect and multiphoton resonances. J. Phys.: Conf. Ser. 2014, 548, 012020.
Osmekhin, S., Fritzsche, S., Grum-Grzhimailo, A.N., Huttula1, M., Aksela, H., Aksela S. Angle-resolved study of the Ar 2p-11/23d resonant Auger decay. J. Phys. B: At. Phys. 2008, 41, 145003.
Pahler, M., Caldwell, C., Schaphorst, S., Krause, M. Intrinsic linewidths of neon 2s2p5(1,3P)nl2L correlation satellites. J. Phys. B. At. Phys. 1993, 26, 1617-1622.
Sinanis, C., Aspromallis, G., Nicolaides, C. Electron correlation in Auger spectra of the Ne+ K 2s2p5(3,1P0)3p2S satellites. J. Phys. B. At. Phys. 1995, 28, L423-428.
Armen, G.B., Larkins, F.P. Valence Auger and X-ray participator and spectator processes for neon and argon atoms. J. Phys. B. At. Mol. Opt. Phys. 1991, 24, 741-760.
Glushkov, A.V. Relativistic and correlation effects in spectra of atomic systems. Astroprint: Odessa, 2006.
Khetselius, O.Yu. Quantum structure of electroweak interaction in heavy finite Fermi-systems. Astroprint: Odessa, 2011.
Glushkov A, Spectroscopy of cooperative muon-gamma-nuclear processes: Energy and spectral parameters J. Phys.: Conf. Ser. 2012, 397, 012011.
Khetselius, O.Yu. Hyperfine structure of atomic spectra.-Odessa: Astroprint, 2008.
Glushkov, A.V., Ivanov, L.N. Radiation decay of atomic states: atomic residue polarization and gauge noninvariant contributions. Phys. Lett. A 1992, 170, 33.
Glushkov, A.V.; Ivanov, L.N. DC strong-field Stark effect: consistent quantum-mechanical approach. J. Phys. B: At. Mol. Opt. Phys. 1993, 26, L379-386.
Ivanova, E., Glushkov, A. Theoretical investigation of spectra of multicharged ions of F-like and Ne-like isoelectronic sequences. J. Quant. Spectr. and Rad. Tr. 1986, 36(2), 127-145.
Ivanova, E.P., Ivanov, L.N., Glushkov, A., Kramida, A. High order corrections in the relativistic perturbation theory with the model zeroth approximation, Mg-Like and Ne-Like Ions. Phys. Scripta 1985, 32, 513-522.
Dubrovskaya, Yu., Khetselius, O.Yu., Vitavetskaya, L., Ternovsky, V., Serga, I. Quantum chemistry and spectroscopy of pionic atomic systems with accounting for relativistic, radiative, and strong interaction effects. Adv. Quantum Chem. 2019, 78, 193-222.
Khetselius, O.Yu., Glushkov, A.V., Dubrovskaya, Yu., Chernyakova, Yu., Ignatenko, A., Serga, I., Vitavetskaya, L. Relativistic quantum chemistry and spectroscopy of exotic atomic systems with accounting for strong interaction effects. In: Concepts, Methods and Applications of Quantum Systems in Chem. and Phys. Springer. 2018, 31, 71.
Khetselius, O. Relativistic perturbation theory calculation of the hyperfine structure parameters for some heavy‐element isotopes. Int. J. Quant. Chem. 2009, 109, 3330–3335.
Buyadzhi, V.V., Chernyakova, Yu.G., Antoshkina, O., Tkach, T. Spectroscopy of multicharged ions in plasmas: Oscillator strengths of Be-like ion Fe. Photoelectronics. 2017, 26, 94-102.
Malinovskaya, S., Dubrovskaya, Yu., Zelentzova, T. The atomic chemical environment effect on the b decay probabilities: Relativistic calculation. Herald of Kiev Nat. Univ. Ser.: Phys.-Math. 2004, N4, 427-432.
Bystryantseva, A., Khetselius, O.Yu., Dubrovskaya, Yu., Vitavetskaya, L.A., Berestenko, A.G. Relativistic theory of spectra of heavy pionic atomic systems with account of strong pion-nuclear interaction effects: 93Nb,173Yb,181Ta, 197Au. Photoelectronics. 2016, 25, 56-61.
Buyadzhi, V., Zaichko, P., Antoshkina, O., Kulakli, T., Prepelitsa, P., Ternovsky, V., Mansarliysky, V. Computing of radiation parameters for atoms and multicharged ions within relativistic energy approach: Advanced Code. J. Phys.: Conf. Ser. 2017, 905(1), 012003.
Khetselius, O.Yu., Lopatkin, Yu.M., Dubrovskaya, Yu.V, Svinarenko, A.A. Sensing hyperfine-structure, electroweak interaction and parity non-conservation effect in heavy atoms and nuclei: New nuclear-QED approach. Sensor Electr. and Microsyst. Techn. 2010, 7(2), 11-19.
Danilov, V., Kruglyak, Y., Pechenaya, V. The electron density-bond order matrix and the spin density in the restricted CI method. Theor. Chim. Act. 1969, 13(4), 288-296.
Kruglyak, Yu. Configuration interaction in the second quantization representation: basics with application up to full CI. Science Rise. 2014, 4(2), 98-115.
Glushkov, A.V., Khetselius, O.Yu., Svinarenko, A., Buyadzhi, V. Methods of computational mathematics and mathe-matical physics. TES: Odessa, 2015.
Ignatenko, A.V., Svinarenko, A.A., Prepelitsa, G.P., Perelygina, T.B. Optical bi-stability effect for multi-photon absorption in atomic ensembles in a strong laser field. Photoelectronics. 2009, 18, 103-105.
De Fanis, A., Tamenori, Y., Kitajima, M., Tanaka, H., Ueda, K. Doopler-free resonant Auger Raman spectroscopy on atoms and molecules at Spring-8. J. Phys.: Conf. Ser. 2004, 183, 63-72.
##submission.downloads##
Опубліковано
Номер
Розділ
Ліцензія
Ця робота ліцензується відповідно до Creative Commons Attribution-NonCommercial 4.0 International License.
авторське право переходить до видання.