РЕЛЯТИВІСТСЬКИЙ РОЗРАХУНОК ЙМОВІРНОСТЕЙ РАДІАЦІЙНИХ ПЕРЕХОДІВ І ЧАСУ ЖИТТЯ ЗБУДЖЕНИХ СТАНІВ ДЛЯ АТОМУ РУБІДІЮ В ПОЛІ ВИПРОМІНЮВАННЯ ЧОРНОГО ТІЛА
DOI:
https://doi.org/10.18524/0235-2435.2020.29.225623Ключові слова:
рідбергівські важкі атоми, релятивістська теорія, теплове випромінюванняАнотація
Представлені результати релятивістського розрахунку ймовірностей радіаційних переходів і часів життя збуджених станів для важкої рідбергівської атомної системи в поле чорнотільного (теплового) випромінювання на прикладі рубідію. В якості теоретичного підходу ми застосовуємо комбінований релятивістський енергетичний підхід і релятивістську багаточастинкову теорію збурень з оптимізованим діраківським нульовим наближенням. Отримано розрахункові дані для ймовірностей радіаційних переходів і часів життя збуджених станів, зокрема атома рубідію в рідбергівських станах з головним квантовим числом n = 10-100. Проведено порівняння отриманих теоретичних даних щодо ефективних часів життя для групи рідбергівських nS станів атома рубідію при температурі T = 300K з експериментальними даними, а також даними альтернативного теоретичного розрахунку на основі удосконаленої квазікласичної моделі. Показано, що точність теоретичних даних забезпечується коректністю обчислення відповідних релятивістських хвильових функцій і повнотою обліку обмінно-кореляційних ефектів.
Посилання
Nascimento V.A., Caliri L.L., de Oliveira A.L., Bagnato V.S. , Marcassa L.G. Measurement of the lifetimes of S and D states below n=31 using cold Rydberg gas. Phys.Rev.A. 2006, 74, 054501.
Beterov, I.I., Ryabtsev, I., Tretyakov D., Entin, V. Quasiclassical calculations of blackbody-radiation-induce depopulation rates and effective lifetimes of Rydberg nS, nP, and nD alkali-metal atoms with n~80. Phys Rev A. 2009, 79, 052504.
Beterov I.I., TretyakovD.V., Ryabtsev I.I., Entin V.M., Ekers A., Bezuglov N.N., Ionization of Rydberg atoms by blackbody radiation. New J. Phys. 2009, 11, 013052
Safronova U., Safronova M. Third-order relativistic many-body calculations of energies, transition rates, hyperfine constants, blackbody radiation shift in 171Yb+. Phys. Rev. A. 2009, 79, 022512.
Angstmann, E., Dzuba, V., Flambaum, V. Frequency shift of hyperfine transitions due to blackbody radiation. Phys. Rev. A. 2006, 74, 023405.
Gallagher T.F., Cooke W.E. Interactions of Blackbody Radiation with atoms. Phys. Rev. Lett. 1979, 42, 835–839.
Lehman G. W. Rate of ionization of H and Na Rydberg atoms by black-body radiation. J. Phys. B: At. Mol. Phys. 1983, 16, 2145-2156.
D'yachkov L., Pankratov P. On the use of the semiclassical approximation for the calculation of oscillator strengths and photoionization cross sections. J. Phys. B: At. Mol. Opt. Phys. 1994, 27, 461-468.
Svinarenko A.A., Khetselius O.Yu., Buyadzhi V.V., Florko T.A., Zaichko P.A., Ponomarenko E.L., Spectroscopy of Rydberg atoms in a Black-body radiation field: Relativistic theory of excitation and ionization. J. Phys.: Conf. Ser. 2014, 548, 012048.
Svinarenko A.A., Khetselius O.Yu., Buyadzhi V., Kvasikova A., Zaichko P. Spectroscopy of Rydberg atoms in a Black-body radiation field: Relativistic theory of excitation and ionization. Photoelectronics. 2014, 23, 147-151.
Glushkov, A.V., Ternovsky, V.B., Buyadzhi, V., Tsudik, A., Zaichko, P. Relativistic approach to calcuation of ionization characteristics for rydberg alkali atom in a black-body radiation field. Sensor Electr. and Мicrosyst. Techn. 2019, 16(3), 69-77.
Glushkov, A.V. Relativistic Quantum theory. Quantum mechanics of atomic systems. Astroprint: Odessa, 2008.
Glushkov, A.V., Khetselius, O.Yu., Svinarenko, A.A., Buyadzhi, V.V., Spectroscopy of autoionization states of heavy atoms and multiply charged ions. TEC: Odessa, 2015.
Glushkov, A., Svinarenko, A., Ternovsky, V., Smirnov, A., Zaichko, P., Spectroscopy of the complex autoionization resonances in spectrum of helium: Test and new spectral data. Photoelectronics. 2015, 24, 94-102.
Glushkov A.V., Ternovsky V.B., Buyadzhi V., Zaichko P., Nikola L. Advanced relativistic energy approach to radiation decay processes in atomic systems. Photoelectr. 2015, 24, 11-22.
Ivanov, L.N.; Ivanova, E.P. Method of Sturm orbitals in calculation of physical characteristics of radiation from atoms and ions. JETP. 1996, 83, 258-266.
Glushkov, A.; Ivanov, L.; Ivanova, E.P. Autoionization Phenomena in Atoms. Moscow Univ. Press, Moscow, 1986, 58.
Glushkov, A.V., Ivanov, L.N. Radiation decay of atomic states: atomic residue polarization and gauge noninvariant contributions. Phys. Lett. A 1992, 170, 33.
Glushkov, A.V.; Ivanov, L.N. DC strong-field Stark effect: consistent quantum-mechanical approach. J. Phys. B: At. Mol. Opt. Phys. 1993, 26, L379-386.
Ivanova, E., Glushkov, A. Theoretical investigation of spectra of multicharged ions of F-like and Ne-like isoelectronic sequences. J. Quant. Spectr. and Rad. Tr. 1986, 36(2), 127-145.
Ivanova, E.P., Ivanov, L.N., Glushkov, A., Kramida, A. High order corrections in the relativistic perturbation theory with the model zeroth approximation, Mg-Like and Ne-Like Ions. Phys. Scripta 1985, 32, 513-522.
Glushkov A., Multiphoton spectroscopy of atoms and nuclei in a laser field: Relativistic energy approach and radiation atomic lines moments method. Adv. in Quantum Chem. 2019, 78, 253-285.
Glushkov, A.V.; Khetselius, O.Yu.; Svinarenko A. Theoretical spectroscopy of autoionization resonances in spectra of lanthanides atoms. Phys. Scripta. 2013, T153, 014029.
Glushkov, A.V. Relativistic and correlation effects in spectra of atomic systems. Astroprint: Odessa, 2006.
Khetselius, O.Yu. Hyperfine structure of atomic spectra. Astroprint: Odessa, 2008.
Khetselius, O.Yu. Relativistic perturbation theory calculation of the hyperfine structure parameters for some heavy-element isotopes. Int. Journ. Quant.Chem. 2009, 109, 3330-3335.
Khetselius, O. Relativistic calculation of the hyperfine structure parameters for heavy elements and laser detection of the heavy isotopes. Phys.Scr. 2009, T135, 014023
Khetselius, O.Yu. Optimized relativistic many-body perturbation theory calculation of wavelengths and oscillator strengths for Li-like multicharged ions. Adv. Quant. Chem. 2019, 78, 223-251.
Khetselius, O.Yu., Glushkov, A.V., Dubrovskaya, Yu.V., Chernyakova, Yu., Ignatenko, A.V., Serga, I., Vitavetskaya, L. Relativistic quantum chemistry and spectroscopy of exotic atomic systems with accounting for strong interaction effects. In: Concepts, Methods and Applications of Quantum Systems in Chemistry and Physics. Springer, Cham, 2018, 31, 71-91.
Khetselius, O.Yu. Quantum structure of electroweak interaction in heavy finite Fermi-systems. Astroprint: Odessa, 2011.
Glushkov, A., Vitavetskaya, L. Accurate QED perturbation theory calculation of the structure of heavy and superheavy element atoms and multicharged ions with the account of nuclear size effect and QED corrections. Herald of Uzhgorod Univ. 2000, 8(2), 321-324.
Svinarenko, A., Glushkov, A, Khetselius, O., Ternovsky, V., Dubrovskaya Y., Kuznetsova A., Buyadzhi V. Theoretical spectroscopy of rare-earth elements: spectra and autoionization resonances. Rare Earth Element, Ed. J. Orjuela (InTech) 2017, pp 83-104.
Glushkov, A.V., Khetselius, O.Yu., Svinarenko A.A., Buyadzhi, V.V., Ternovsky, V.B, Kuznetsova, A., Bashkarev, P Relativistic perturbation theory formalism to computing spectra and radiation characteristics: application to heavy element. Recent Studies in Perturbation Theory, ed. D. Uzunov (InTech) 2017, 131-150.
Glushkov A., Khetselius O., Svinarenko A., Buyadzhi V., Spectroscopy of auto-ionization states of heavy atoms and multiply charged ions. TEC: Odessa, 2015.
Glushkov A.V., Khetselius O.Yu., Svinarenko A.A., Buyadzhi V.V., Methods of computational mathematics and mathematical physics. P.1. TES: Odessa, 2015.
Dubrovskaya, Yu., Khetselius, O.Yu., Vitavetskaya, L., Ternovsky, V., Serga, I. Quantum chemistry and spectroscopy of pionic atomic systems with accounting for relativistic, radiative, and strong interaction effects. Adv. in Quantum Chem. 2019, Vol.78, pp 193-222.
Bystryantseva A., Khetselius O.Yu., Dubrovskaya Yu., Vitavetskaya L.A., Berestenko A.G. Relativistic theory of spectra of heavy pionic atomic systems with account of strong pion-nuclear interaction effects: 93Nb, 173Yb, 181Ta , 197Au. Photoelectronics. 2016, 25, 56-61.
Khetselius, O., Glushkov, A., Gurskaya, M., Kuznetsova, A., Dubrovskaya Yu., Serga I., Vitavetskaya L. Computational modelling parity nonconservation and electroweak interaction effects in heavy atomic systems within the nuclear-relativistic many-body perturbation theory. J. Phys.: Conf. Ser. 2017, 905(1), 012029.
Khetselius O., Gurnitskaya E. Sensing the electric and magnetic moments of a nucleus in the N-like ion of Bi. Sensor Electr. and Microsyst. Tech. 2006, N3, 35
Khetselius, O.Yu., Lopatkin Yu.M., Dubrovskaya, Yu.V, Svinarenko A.A. Sensing hyperfine-structure, electroweak interaction and parity non-conservation effect in heavy atoms and nuclei: New nuclear-QED approach. Sensor Electr. and Microsyst. Techn. 2010, 7(2), 11-19.
Glushkov A.V., Malinovskaya S.V., Dubrovskaya Yu.V., Sensing the atomic chemical composition effect on the beta decay probabilities. Sensor Electr. and Microsyst. Techn. 2005, 2(1), 16-20.
Florko, T.A.; Tkach, T.B.; Ambrosov, S.V.; Svinarenko, A.A. Collisional shift of the heavy atoms hyperfine lines in an atmosphere of the inert gas. J. Phys.: Conf. Ser. 2012, 397, 012037.
Buyadzhi V.; Chernyakova Yu.; Smirnov A; Tkach T. Electron-collisional spectroscopy of atoms and ions in plasma: Be-like ions. Photoelectronics. 2016, 25, 97-101
Buyadzhi, V.V.; Chernyakova, Yu.G.; Antoshkina, O.; Tkach, T. Spectroscopy of multicharged ions in plasmas: Oscillator strengths of Be-like ion Fe. Photoelectronics. 2017, 26, 94-102
##submission.downloads##
Опубліковано
Номер
Розділ
Ліцензія
Ця робота ліцензується відповідно до Creative Commons Attribution-NonCommercial 4.0 International License.
авторське право переходить до видання.