THEORETICAL STUDYING SPECTRAL CHARACTERISTICS OF Zn-LIKE IONS ON THE BASIS OF RELATIVISTIC MANY-BODY PERTURBATION THEORY

Автор(и)

  • I. Cherkasova
  • V. Ternovsky
  • A. Nesterenko
  • D. Mironenko

DOI:

https://doi.org/10.18524/0235-2435.2020.29.225638

Ключові слова:

Relativistic perturbation theory, Zn-like multicharged ions

Анотація

Теоретичне вивчення спектроскопічних характеристик Zn - подібних багатозарядних іонів проводиться в рамках релятивістської теорії збурень багатьох тіл. В якості нульового наближення релятивістської теорії збурень обрано оптимізоване наближення Дірака-Кона-Шема. Оптимізація виконана шляхом введення параметра в обмінний потенціал Кона-Шема і подальшої мінімізації калібрувально-неінваріантних вкладів в радіаційні ширини атомних рівнів з використанням релятивістського базису орбіталей, згенерованого відповідним гамільтоніаном нульового наближення.

Посилання

Anderson E.K., Anderson E.M., Calculation of the parameters of some E1, E2, E3, M1, M2 transitions in the isoelectronic sequence of Zn. Opt. Spectr. 1983, 54, 955-960.

Weiss A., Hartree-Fock line strengths for lithium, sodium and copper isoelectronic sequences. J. Quant. Spectr. and Rad. Tr. 1977, 18, 481-491

Ivanova, E., Glushkov, A. Theoretical investigation of spectra of multicharged ions of F-like and Ne-like isoelectronic sequences. J. Quant. Spectr. and Rad. Tr. 1986, 36(2), 127-145.

Ivanova, E.P., Ivanov, L.N., Glushkov, A., Kramida, A. High order corrections in the relativistic perturbation theory with the model zeroth approximation, Mg-Like and Ne-Like Ions. Phys. Scripta 1985, 32, 513-522.

Glushkov A., Khetselius O., Svinarenko, A., Buyadzhi V., Spectroscopy of autoionization states of heavy atoms and multiply charged ions. TEC: Odessa, 2015.

Glushkov, A.V. Relativistic Quantum theory. Quantum mechanics of atomic systems. Astroprint: Odessa, 2008.

Khetselius O. Quantum structure of electroweak interaction in heavy finite Fermi-systems. Astroprint: Odessa, 2011

Khetselius, O.Yu. Hyperfine structure of atomic spectra. Astroprint: 2008.

Svinarenko, A.A., Ternovsky, V.B., Cherkasova I., Mironenko D. Theoretical studying spectra of ytterbium atom on the basis of relativistic many-body perturbation theory: doubly excited states. Photoelectr. 2018, 27, 113-120.

Ivanov, L.N., Ivanova, E.P., Knight, L. Energy approach to consistent QED theory for calculation of electron-collision strengths: Ne-like ions. Phys. Rev. A. 1993, 48, 4365-4374.

Glushkov, A., Ivanov, L. Radiation decay of atomic states: atomic residue polarization and gauge noninvariant contributions. Phys.Lett.A.1992, 170, 33.

Glushkov A.V., Ivanov, L.N. DC strong-field Stark effect: consistent quantum-mechanical approach. J. Phys. B: At. Mol. Opt. Phys. 1993, 26, L379-386.

Glushkov, A.V. Relativistic and Correlation Effects in Spectra of Atomic Systems. Astroprint: 2006.

Glushkov, A.V. Relativistic polarization potential of a many-electron atom. Sov. Phys. Journal. 1990, 33(1), 1-4.

Glushkov, A.V. Advanced relativistic energy approach to radiative decay processes in multielectron atoms and multicharged ions. In Quantum Systems in Chemistry and Physics: Progress in Methods and Applications. Springer: Dordrecht, 2012, 26, 231–252.

Glushkov, A.V. Energy approach to resonance states of compound superheavy nucleus and EPPP in heavy nuclei collisions. In Low Energy Antiproton Physics. AIP: New York, AIP Conf. Proc. 2005, 796, 206-210.

Glushkov, A. Spectroscopy of coope-rative muon-gamma-nuclear processes: Energy and spectral parameters J. Phys.: Conf. Ser. 2012, 397, 012011.

Khetselius O. Spectroscopy of cooperative electron-gamma-nuclear processes in heavy atoms: NEET effect J. Phys.: Conf. Ser. 2012, 397, 012012.

Glushkov, A.V. Spectroscopy of atom and nucleus in a strong laser field: Stark effect and multiphoton resonances. J. Phys.: Conf. Ser. 2014, 548, 012020

Glushkov, A., Svinarenko, A., Ternovsky, V., Smirnov, A., Zaichko, P. Spectroscopy of the complex auto ionization resonances in spectrum of helium. Photoelectr. 2015, 24, 94-102.

Glushkov, A. Multiphoton spectroscopy of atoms and nuclei in a laser field: Relativistic energy approach and radiate-on atomic lines moments method. Adv. in Quantum Chem. 2019, 78, 253-285.

Khetselius, O.Yu. Optimized relativistic many-body perturbation theory calculation of wavelengths and oscillator strengths for Li-like multicharged ions. Adv. Quant. Chem. 2019, 78, 223-251

Svinarenko, A. Study of spectra for lanthanides atoms with relativistic many- body perturbation theory: Rydberg resonances. J. Phys.: Conf. Ser. 2014, 548, 012039.

Khetselius, O.Yu. Relativistic perturbation theory calculation of the hyperfine structure parameters for some heavy-element isotopes. Int. Journ. Quant. Chem. 2009, 109, 3330-3335.

Khetselius, O.Yu. Relativistic calculation of the hyperfine structure parameters for heavy elements and laser detection of the heavy isotopes. Phys.Scripta. 2009, 135, 014023.

Svinarenko, A. A., Glushkov, A. V., Khetselius, O.Yu., Ternovsky, V.B., Dubrovskaya, Yu., Kuznetsova, A., Buyadzhi, V. Theoretical spectroscopy of rare-earth elements: spectra and autoionization resonances. Rare Earth Element (InTech). 2017, pp 83-104.

Glushkov A., Khetselius O., Svinarenko A., Buyadzhi V., Ternovsky, V., Kuznetsova A., Bashkarev P. Relativistic perturbation theory formalism to computing spectra and radiation characteristics: application to heavy element. Recent Studies in Perturbation Theory. InTech. 2017, 131.

Glushkov A., Svinarenko, A., Ignatenko, A.V. Spectroscopy of autoionization resonances in spectra of the lanthanides atoms. Photoelectr. 2011, 20, 90-94.

##submission.downloads##

Опубліковано

2021-02-26

Номер

Розділ

Статті