OPTIMIZED QUASIPARTICLE DENSITY FUNCTIONAL APPROACH FOR MULTIELECTRON ATOMIC SYSTEMS
DOI:
https://doi.org/10.18524/0235-2435.2020.29.225482Ключові слова:
квазічастинкова теорія функціоналу густини, обміннокореляційні поправкиАнотація
Представлена оптимізована версія квазічастинкової теорії функціонала густини (ТФГ), побудованої на принципах теорії фермі-рідини Ландау-Мігдала і введенні оптимального одноквазічастинкового уявлення в теорії багатоелектронних систем. Основні рівняння теорії можуть бути природно отримані на основі варіаційного принципу, виходячи з лагранжіану атомної системи, представленого у вигляді функціоналу трьох квазічастинкових густин. Останні аналогічні стандартним електронній густині Хартрі-Фока (ХФ) і густині кінетичної енергії; однак, третя густина не має аналога в теорії ХФ або стандартній ТФГ і з'являється як результат урахування енергетичної залежності масового оператора квазічастинок. Розроблений підхід до побудови базису власних функцій видається більш ефективним у порівнянні з аналогічними базисами інших одночасткових уявлень, зокрема, в наближеннях ХФ або стандартному наближенні Кона-Шема і ін.
Посилання
Glushkov A.V., New approach to theoretical definition of ionization potentials for molecules on the basis of Green’s function method. Journ.of Phys.Chem.-1992, 66, 2671-2677.
Glushkov A.V., An universal quasiparticle energy functional in a density functional theory for relativistic atom. Optics and Spectr. 1989, 66, 31-36.
Glushkov A.V., Quasiparticle approach in the density functional theory under finte temperatures and dynamics of effective Bose –condensate. Ukr. Phys. Journ., 1993, 38(8), 152-157.
Glushkov, A.V. Relativistic Quantum theory. Quantum mechanics of atomic systems. Astroprint: Odessa, 2008
Glushkov, A.V. Relativistic and correlation effects in spectra of atomic systems. Astroprint: Odessa, 2006.
Glushkov A.V., The Green's functions and density functional approach to vibrational structure in the photoelectron spectra of molecules: Review of method// Photoelectronics.-2014, 23, 54-72.
Glushkov A.., Koltzova N., Effective account of polarization effects in calculation of oscillator strengths and energies for atoms and molecules by method of equations of motion. Opt. Spectr. 1994, 76(6), 885-890.
Khetselius, O.Yu. Quantum structure of electroweak interaction in heavy finite Fermi-systems. Astroprint: Odessa, 2011.
Khetselius, O.. Relativistic perturbation theory calculation of the hyperfine structure parameters for some heavy-element isotopes. Int. Journ. Quant.Chem. 2009, 109, 3330-3335.
Khetselius, O. Relativistic calculation of the hyperfine structure parameters for heavy elements and laser detection of the heavy isotopes. Phys.Scr. 2009, T135, 014023.
Khetselius, O.Yu. Hyperfine structure of atomic spectra. Astroprint: Odessa, 2008.
Kohn, J.W.; Sham, L.J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. A 1964, 140, 1133.
Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. B 1964, 136, 864.
Feller, D.; Davidson, E.R. An approximation to frozen natural orbitals through the use of the Hartree–Fock exchange potential. J. Chem. Phys. 1981, 74, 3977-3989.
Davidson E.R., Natural Orbitals. Adv. Quant. Chem. 1972, 6, 235-266
Suaud N.; Malrieu, J.-P. Natural molecular orbitals: limits of a Lowdin's conjecture, Mol. Phys. 2017, 115(21-22), 2684-2695.
Gross E.; Dreizler R. Density Functional Theory; Springer: New York, 1995.
Glushkov, A.V. Correction for exchange and correlation effects in multielectron system theory. Journ. of Struct. Chem. 1990, 31(4), 529-532.
Köppel H., Domcke W., Cederbaum L.S., Green’s function method in quantum chemistry. Adv. Chem. Phys. 1984, 57, 59.
Glushkov A.V., Atom in electromagnetic field.-Kiev: KNT, 2005.-450P.
Glushkov A.V., Kondratenko P.A., Buyadzhi V., Kvasikova A.S., Shakhman A., Sakun T., Spectroscopy of cooperative laser electron-γ-nuclear processes in polyatomic molecules. J. of Phys.: Conf. Ser. 2014, 548, 012025.
Khetselius, O.Yu. Relativistic Energy Approach to Cooperative Electron-γ-Nuclear Processes: NEET Effect In Quantum Systems in Chemistry and Physics, Series: Progress in Theoretical Chemistry and Physics; Nishikawa, K., Maruani, J., Brändas, E., Delgado-Barrio, G., Piecuch, P., Eds.; Springer: Dordrecht, 2012; Vol. 26, pp 217-229.
Khetselius, O.Yu. Relativistic perturbation theory calculation of the hyperfine structure parameters for some heavy-element isotopes. Int. Journ.Quant.Chem. 2009, 109, 3330-3335.
Khetselius, O.Yu. Relativistic calculation of the hyperfine structure parameters for heavy elements and laser detection of the heavy isotopes. Phys.Scripta. 2009, 135, 014023.
Khetselius, O.Yu. Optimized Perturbation Theory for Calculating the Hyperfine Line Shift and Broadening of Heavy Atoms in a Buffer Gas. In Frontiers in Quantum Methods and Applications in Chemistry and Physics, Series: Progress in Theoretical Chemistry and Physics; Nascimento, M., Maruani, J., Brändas, E., Delgado-Barrio, G., Eds.; Springer: Cham, 2015; Vol. 29, pp. 55-76.
Khetselius, O.Yu. Relativistic calculating the spectral lines hyperfine structure parameters for heavy ions.AIP Conf. Proc. 2008, 1058, 363-365.
Khetselius, O.Yu. Hyperfine structure of energy levels for isotopes 73Ge, 75As, 201Hg. Photoelectr. 2007, 16, 129-132
Ivanov, L.N.; Ivanova, E.P. Method of Sturm orbitals in calculation of physical characteristics of radiation from atoms and ions. JETP. 1996, 83, 258-266.
Glushkov, A.V., Ivanov, L.N. Radiation decay of atomic states: atomic residue polarization and gauge noninvariant contributions. Phys. Lett. A 1992, 170, 33.
Glushkov, A.V.; Ivanov, L.N. DC strong-field Stark effect: consistent quantum-mechanical approach. J. Phys. B: At. Mol. Opt. Phys. 1993, 26, L379-386.
Ivanova, E.P., Ivanov, L.N., Glushkov, A., Kramida, A. High order corrections in the relativistic perturbation theory with the model zeroth approximation, Mg-Like and Ne-Like Ions. Phys. Scripta 1985, 32, 513-522.
Glushkov, A.V. Multiphoton spectroscopy of atoms and nuclei in a laser field: Relativistic energy approach and radiation atomic lines moments method. Adv. in Quantum Chem. 2019, 78, 253-285.
Khetselius, O.Yu. Optimized relativistic many-body perturbation theory calculation of wavelengths and oscillator strengths for Li-like multicharged ions. Adv. Quant. Chem. 2019, 78, 223-251.
Svinarenko, A., Glushkov, A, Khetselius, O., Ternovsky, V., Dubrovskaya Y., Kuznetsova A., Buyadzhi V. Theoretical spectroscopy of rare-earth elements: spectra and autoionization resonances. Rare Earth Element, Ed. J. Orjuela (InTech). 2017, pp 83-104.
Glushkov, A., Khetselius, O., Svinarenko A., Buyadzhi, V., Ternovsky, V. Kuznetsova, A., Bashkarev, P. Relativistic perturbation theory formalism to computing spectra and radiation characteristics: application to heavy element. Recent Studies in Perturbation Theory, ed. D. Uzunov (InTech). 2017, 131-150.
Glushkov, A. Spectroscopy of cooperative muon-gamma-nuclear processes: Energy and spectral parameters J. Phys.: Conf. Ser. 2012, 397, 012011.
Glushkov, A.V. Spectroscopy of atom and nucleus in a strong laser field: Stark effect and multiphoton resonances. J. Phys.: Conf. Ser. 2014, 548, 012020.
Glushkov, A.V., Khetselius, O.Yu., Svinarenko A.A. Theoretical spectroscopy of autoionization resonances in spectra of lanthanides atoms. Phys. Scripta. 2013, T153, 014029.
Glushkov, A.V., Svinarenko, A.A., Ternovsky, V.B., Smirnov, A.V., Zaichko, P.A. Spectroscopy of the complex autoionization resonances in spectrum of helium: Test and new spectral data. Photoelectronics. 2015, 24, 94-102.
Glushkov, A.V., Ternovsky, V.B., Buyadzhi, V., Zaichko, P., Nikola, L. Advanced relativistic energy approach to radiation decay processes in atomic systems. Photoelectr. 2015, 24, 11-22.
Glushkov A., Khetselius O., Kruglyak Yu., Ternovsky V. Calculational Methods in Quantum Geometry and Chaos theory. P.3. Odessa , 2014.
Glushkov A., Khetselius O., Svinarenko A, Buyadzhi V. Methods of computatio-nal mathematics and mathematical phys. P.1.TES, Odessa, 2015.
##submission.downloads##
Опубліковано
Номер
Розділ
Ліцензія
Ця робота ліцензується відповідно до Creative Commons Attribution-NonCommercial 4.0 International License.
авторське право переходить до видання.