ТЕОРЕТИЧНІ ЗНАЧЕННЯ КОМПЛЕКСНИХ ЕНЕРГІЙ ШТАРКІВСЬКИХ РЕЗОНАНСІВ В АТОМІ ЛІТІЮ В РАМКАХ ОПЕРАТОРНОЇ ТЕОРІЇ ЗБУРЕНЬ
DOI:
https://doi.org/10.18524/0235-2435.2020.29.225506Ключові слова:
багатоелектронний атом, електричне поле, релятивістська операторна теорія збурень оператора, збуджені станиАнотація
Обчислені значення комплексних енергій штарківських резонансів в атомі літію (багатоелектронних атомна система) в постійному електричному полі на основі модифікованої операторної теорії збурень для багатоелектронних атомних систем. Теоретичний підхід включає фізично обґрунтоване наближення перекручених хвиль в рамках формально точної квантово-механічної процедури. Енергії і ширини штарківських резонансів в спектрі атома літію обчислюються і порівнюються з результатами розрахунків в рамках методу комплексного оптичного потенціалу, узагальненого методу обертання координат з використанням В-сплайнового алгоритму і даними прямого обчислення власних значень комплексного рівняння Шредінгера.
Посилання
Meng, H.-Y.; Zhang, Y.-X.; Kang, S.; Shi, T.-Y.; Zhan, M.-S. Theoretical complex Stark energies of lithium by a complex scaling plus the B-spline approach. J. Phys. B: At. Mol. Opt. Phys. 2008, 41, 155003.
Themelis S I and Nicolaides C. A. , Complex energies and the polyelectronic Stark problem. J. Phys. B: At. Mol. Opt. Phys. 2000, 33, 5561
Themelis S I and Nicolaides C A Complex energies and the polyelectronic Stark problem: II. The Li n = 4 levels for weak and strong fields. J. Phys. B: At. Mol. Opt. Phys. 2001, 34, 2905
Mercouris T and Nikolaides C A Solution of the many-electron many-photon problem for strong fields: Application to Li− in one- and two-color laser fields 2003 Phys. Rev. A. 2003, 67, 063403
Glushkov, A.V. Relativistic Quantum theory. Quantum mechanics of atomic systems. Astroprint: Odessa, 2008.
Khetselius, O.Yu. Quantum structure of electroweak interaction in heavy finite Fermi-systems. Astroprint: Odessa, 2011.
Sahoo S and Ho Y K Stark effect on the low-lying excited states of the hydrogen and the lithium atoms. J. Phys. B: At. Mol. Opt. Phys. 2000, 33, 5151
Glushkov, A., Buyadzhi, V., Kvasikova, A., Ignatenko, A., Kuznetsova, A., Prepelitsa, G., Ternovsky, V. Non-Linear chaotic dynamics of quantum systems: Molecules in an electromagnetic field and laser systems. In: Quantum Systems in Physics, Chemistry, and Biology. Springer, Cham. 2017, 30, 169-180.
Harmin, D.A. Theory of the Stark effect. Phys. Rev. A 1982, 26, 2656.
Popov, V.; Mur, V.; Sergeev A.; Weinberg, V. Strong-field Stark effect: perturbation theory and 1/n expansion. Phys. Lett. A 1990, 149(9), 418-424.
Glushkov, A.V.; Ambrosov, S.V.; Ignatenko, A.V. Non-hydrogenic atoms and Wannier-Mott excitons in a DC electric field: Photoionization, Stark effect, Resonances in ionization continuum and stochasticity. Photoelectr. 2001, 10, 103- 106.
Glushkov, A.V. Spectroscopy of atom and nucleus in a strong laser field: Stark effect and multiphoton resonances. J. Phys.: Conf. Ser. 2014, 548, 012020
Glushkov A. Spectroscopy of cooperative muon- gamma- nuclear processes: Energy and spectral parameters. J. Phys.: Conf. Ser. 2012, 397, 012011
Ignatenko, A.V. Probabilities of the radiative transitions between Stark sublevels in spectrum of atom in an DC electric field: New approach. Photoelectronics, 2007, 16, 71-74.
Glushkov, A.; Ambrosov, S.; Ignatenko, A. Non-hydrogenic atoms and WannierMott excitons in a DC electric field: Photoionization, Stark effect, Resonances in ionization continuum and stochasticity. Photoelectronics, 2001, 10, 103-106.
Glushkov, A.V.; Ternovsky, V.B.; Buyadzhi, V.; Prepelitsa, G.P. Geometry of a Relativistic Quantum Chaos: New approach to dynamics of quantum systems in electromagnetic field and uniformity and charm of a chaos. Proc. Intern. Geom. Center. 2014, 7(4), 60-71.
Glushkov A.V.; Ivanov, L.N. DC strongfield Stark effect: consistent quantummechanical approach. J. Phys. B: At. Mol. Opt. Phys. 1993, 26, L379-386
Glushkov, A.V. Operator Perturbation Theory for Atomic Systems in a Strong DC Electric Field. In: Hotokka M., Brändas E., Maruani J., Delgado-Barrio G. (eds) Advances in Quantum Methods and Applications in Chemistry, Physics, and Biology.Eds.; Springer: Cham. 2013, 27, 161–177.
Glushkov, A. Atom in an electromagnetic field. KNT: Kiev, 2005.
Glushkov, A.V. Relativistic and correlation effects in spectra of atomic systems; Astroprint: Odessa, 2006.
Khetselius, O.Yu. Hyperfine structure of atomic spectra. Astroprint: Odessa, 2008
Kuznetsova, A.A.; Glushkov, A.V.; Ignatenko, A.V.; Svinarenko, A.A.; Ternovsky V.B. Spectroscopy of multielectron atomic systems in a DC electric field. Adv. Quant. Chem. (Elsevier) 2018, 78, 287-306.
Kuznetsova, A.; Buyadzhi, A.; Gurskaya, M.; Makarova, A. Spectroscopy of multi electron atom in a DC electric field: Modified operator perturbation theory approach to Stark resonances. Photoelectronics. 2018, 27, 94-102
Kuznetsova, A.A.; Glushkov, A.V.; Romanenko, E.S.; Plisetskaya, E.K., Spectroscopy of multielectron atom in dc electric field: relativistic operator perturbation theory. Photoelectronics. 2019, 28, 32-38
Froelich, P.; Davidson, E.R.; Brändas, E. Error estimates for complex eigenvalues of dilated Schr6dinger operators. Phys. Rev. A 1983, 28, No. 5, 2641.
Lipkin, N.; Moiseyev, N.; Brändas, E. Resonances by the exterior-scaling method within the framework of the finitebasis-set approximation. Phys. Rev. A 1989, 40, No. 2, 549.
Brändas, E.; Froelich, P.; Obcemea, C.H.,
Elander, N.; Rittby, M. Note on the complex stabilization method. Phys. Rev. A
, 26, No. 6, 3656.
Resonances. The Unifying Route Towards the Formulation of Dynamical Processes - Foundations and Applications in Nuclear, Atomic and Molecular Physics, Series: Lecture Notes in Physics; Brändas, E.; Elander, N. Eds.; Springer: Berlin, 1989, 325, 1-564.
Ostrovsky, V.N.; Elander, N. Scattering resonances and background associated with an asymmetric potential barrier via Siegert pseudostates. Phys. Rev. A 2005, 71, 052707.
Sigal, I. Geometric theory of Stark resonances in multielectron systems. Comm. Math. Phys. 1988, 119, 287-314.
Silverstone, H.J.; Adams, B.G.; Cizek, J.; Otto, P. Stark Effect in Hydrogen: Dispersion Relation, Asymptotic Formulas, and Calculation of the Ioni-zation Rate via High-Order Perturbation Theory. Phys. Rev. Lett. 1979, 43, No. 20, 1498- 1501.
Cerjan, C.; Hedges, R.; Holt, C.; Reinhardt, W.P.; Scheibner, K.; Wendoloski, J.J. Complex coordinates and the Stark effect. Int. J. Quant. Chem. 1978, 14 (4), 393-418.
Luc-Koenig, E.; Bachelier, A. Systematic theoretical study of the Stark spectrum of atomic hydrogen. I. Density of continuum states. J. Phys. B: At. Mol. Phys. 1980, 13, 1743-1756
Damburg, R.J.; Kolosov, V.V. A hydrogen atom in a uniform electric field. J. Phys. B: At. Mol. Phys. 1976, 9, No. 18, 3149.
Maquet, A.; Chu, S.I.; Reinhardt, W.P. Stark ionization in dc and ac fields: An L2 complex-coordinate approach. Phys. Rev. A 1983, 27, No. 6, 2946-2970.
Reinhardt, W.P. Padé summations for the real and imaginary parts of atomic stark eigenvalues. Int. J. Quant. Chem. 1982, 21(1), 133-146.
Franceschini, V.; Grecchi, V.; Silverstone, H. Complex energies from real perturbation series for the LoSurdo-Stark effect in hydrogen by Borel-Padé approximants. J. Phys. Rev. A 1985, 32 (3), 1338.
Telnov, D.A. DC Stark effect in a hydrogen atom via Sturmian expansions. J. Phys. B.: At. Mol. Opt. Phys. 1989, 22, No. 14, L399-403.
Ivanov, I.; Ho, Y.-K. Complex rotation method for the Dirac Hamiltonian. Phys. Rev. A 2004, 69, 023407.
Ivanov, L.N.; Ivanova, E.P. Method of Sturm orbitals in calculation of physical characteristics of radiation from atoms and ions. JETP. 1996, 83, 258-266.
Ivanova, E.P.; Ivanov, L.N.; Glushkov, A.V.; Kramida, A.E. High order corrections in the relativistic perturbation theory with the model zeroth approximation, Mg-Like and Ne-Like Ions. Phys. Scripta 1985, 32, 513-522.
Ivanova, E.P.; Glushkov, A.V. Theoretical investigation of spectra of multicharged ions of F-like and Ne-like isoelectronic sequences. J. Quant. Spectr. Rad. Transfer. 1986, 36, 127-145.
Glushkov, A.V. Advanced relativistic energy approach to radiative decay processes in multielectron atoms and multicharged ions. In Quantum Systems in Chemistry and Physics: Progress in Methods and Applications. Springer: Dordrecht, 2012; Vol. 26, pp 231–252.
Svinarenko A., Glushkov, A., Khetselius, O., Ternovsky,V., Dubrovskaya, Yu., Kuznetsova, A., Buyadzhi, V. Theoretical spectroscopy of rare-earth elements: spectra and autoionization resonances. Rare Earth Element. InTech, 2017, pp 83-104.
Glushkov, A.V., Khetselius, O.Yu., Svinarenko, A.A., Buyadzhi, V.V., Spectroscopy of autoionization states of heavy atoms and multiply charged ions. TEC: Odessa, 2015.
Glushkov, A.V., Khetselius, O.Yu., Svinarenko, A., Buyadzhi, V. Methods of computational mathematics and mathematical physics. P.1. Odessa: 2015.
Khetselius, O., Glushkov, A., Dubrovskaya, Yu., Chernyakova, Yu., Ignatenko, A.V., Serga, I., Vitavetskaya, L. Relativistic quantum chemistry and spectroscopy of exotic atomic systems with accounting for strong interaction effects. In: Concepts, Methods and Applications of Quantum Systems in Chem. and Phys. Springer, Cham, 2018, 31, 71-91.
Glushkov, A.V., Khetselius, O.Yu., Svinarenko A.A., Buyadzhi, V.V., Ternovsky, V.B, Kuznetsova, A., Bashkarev, P Relativistic perturbation theory formalism to computing spectra and radiation characteristics: application to heavy element. Recent Studies in Perturbation Theory, ed. D. Uzunov (InTech) 2017, 131-150.
Khetselius, O. Relativistic perturbation theory calculation of the hyperfine structure parameters for some heavy-element isotopes. Int. Journ. Quant. Chem. 2009, 109, 3330-3335.
Khetselius, O. Relativistic calculation of the hyperfine structure parameters for heavy elements and laser detection of the heavy isotopes. Phys. Scr. 2009, 135, 014023
Khetselius, O.Yu., Spectroscopy of cooperative electron-gamma-nuclear processes in heavy atoms: NEET effect. J. Phys.: Conf. Ser. 2012, 397, 012012.
Svinarenko, A. Study of spectra for lanthanides atoms with relativistic manybody perturbation theory: Rydberg resonances. J. Phys.: Conf. Ser. 2014, 548, 012039.
Buyadzhi, V., Zaichko, P., Antoshkina, O., Kulakli, T., Prepelitsa, G., Ternovsky, V., Mansarliysky, V. Computing of radiation parameters for atoms and multicharged ions within relativistic energy approach: Advanced Code. J. Phys.: Conf. Ser. 2017, 905(1), 012003.
Buyadzhi, V.V., Glushkov, A.V., Mansarliysky, V.F., Ignatenko, A.V., Svinarenko, A.A. Spectroscopy of atoms in a strong laser field: new method to sensing ac stark effect, multiphoton resonances parameters and ionization cross-sections. Sensor Electr. and Microsyst. Techn. 2015, 12(4), 27-36.
Ambrosov, S., Khetselius, O., Ignatenko, A. Wannier-Mott exciton and H, Rb atom in a DC electric field: Stark effect. Photoelectronics. 2008, 17, 84-87.
Ambrosov S., Ignatenko V., Korchevsky D., Kozlovskaya V. Sensing stochasticity of atomic systems in crossed electric and magnetic fields by analysis of level statistics for continuous energy spectra. Sensor Electr. and Microsyst. Techn. 2005, Issue 2, 19-23.
Buyadzhi, V.V. Laser multiphoton spectroscopy of atom embedded in Debye plasmas: multiphoton resonances and transitions. Photoelectrs. 2015, 24, 128.
Buyadzhi, V.V.; Chernyakova, Yu.G.; Smirnov, A.V.; Tkach, T.B. Electroncollisional spectroscopy of atoms and ions in plasma: Be-like ions. Photoelectronics. 2016, 25, 97-101.
Buyadzhi, V.; Chernyakova, Yu.; Antoshkina, O.; Tkach, T. Spectroscopy of multicharged ions in plasmas: Oscillator strengths of Be-like ion Fe. Photoelectronics. 2017, 26, 94-102.
Chernyakova, Y.G., Ignatenko A.V., Vitavetskaya L.A. Sensing the tokamak plasma parameters by means high resolution x-ray theoretical spectroscopy method: new scheme. Sensor Electr. and Microsyst. Techn. 2004, 1, 20-24
Khetselius, O.Yu., Gurnitskaya, E.P., Loboda, A.V., Vitavetskaya, L.A. Consistent quantum approach to quarkony energy spectrum and semiconductor superatom and in external electric field. Photoelectronics. 2008, 17, 127-130.
##submission.downloads##
Опубліковано
Номер
Розділ
Ліцензія
Ця робота ліцензується відповідно до Creative Commons Attribution-NonCommercial 4.0 International License.
авторське право переходить до видання.