THEORETICAL STUDYING EXCITED STATES SPECTRUM OF THE YTTERBIUM WITHIN THE OPTIMIZED RELATIVISTIC MANY-BODY PERTURBATION THEORY

Автор(и)

  • V. Ternovsky
  • A. Svinarenko
  • Yu. Dubrovskaya

DOI:

https://doi.org/10.18524/0235-2435.2020.29.225622

Ключові слова:

Relativistic perturbation theory, optimized zeroth approximation, ytterbium atom, spectrum of excited states

Анотація

В рамках релятивістської багаточастинкової  теорії збурень і узагальненого релятивістського енергетичного підходу проведено теоретичне дослідження спектра збуджених станів атома ітербію. В якості нульового наближення релятивістської теорії збурень обрано оптимізоване наближення Дірака-Кона-Шема. Оптимізація виконана шляхом введення параметра в обмінний потенціал Кона-Шема і подальшої мінімізації калібрувально-неінваріантних вкладів в радіаційні ширини атомних рівнів з використанням релятивістського базису орбіталей, згенерованого відповідним гамільтоніаном нульового наближення. Отримані теоретичні дані про енергії E і завширшки W збуджених станів ітербію порівнюються з альтернативними теоретичними результатами (теорії Дірака-Фока, релятивістського Хартрі-Фока, теорії збурень) і наявними експериментальними даними. Аналіз показує, що теоретичні і експериментальні значення енергій добре узгоджуються між собою, однак значення ширини істотно розрізняються. На наш погляд, це пояснюється недостатньо точними оцінками радіальних інтегралів, використанням неоптимізованих базисів і деякими іншими наближеннями розрахунків.

Посилання

Gubanova, E., Glushkov, A., Khetselius, O., Bunyakova, Y., Buyadzhi, V., Pavlenko, E. New methods in analysis and project management of environmental activity: Electronic and radioactive waste. FOP: Kharkiv, 2017.

Svinarenko A.A., Mischenko E.V., Loboda A.V., Dubrovskaya Yu.V. Quantum measure of frequency and sensing the collisional shift of the ytterbium hyperfine lines in medium of helium gas. Sensors Electronics and Microsystems Technologies. 2009, N1, 25-29.

Chernenko A., Beterov I.M., Permyakova O.I. Modeling of amplification without inversion near transitions from Autoionization levels of ytterbium atom. Laser Phys. 2000, 10, 133-138.

Karaçoban B., Özdem L. Energies, Landé Factors, and Lifetimes for Some Excited Levels of Neutral Ytterbium (Z = 70)/ Acta Phys.Polonica.A. 2011, 119, 342-353.

Jong-hoon Yi, Lee J., Kong H.J. Autoionizing states of the ytterbium atom by three-photon polarization spectroscopy. Phys. Rev. A. 1995. 51. 3053–3057.

Jong-hoon Yi, Park H., Lee J. Investigation of even parity autoionizing states of ytterbium atom by two-photon ionization spectroscopy. J. Korean Phys. Soc. 2001. 39, 916-920.

Bekov GI, Vidolova-Angelova E., Ivanov LN, Letokhov VS, Mishin VI, Laser spectroscopy of narrow doubly excited autoionization states of the ytterbium atom. JETP. 1981. 80 (3), 866-878.

Khetselius, O.. Relativistic perturbation theory calculation of the hyperfine structure parameters for some heavy-element isotopes. Int. Journ. Quant.Chem. 2009, 109, 3330-3335.

Khetselius, O. Relativistic calculation of the hyperfine structure parameters for heavy elements and laser detection of the heavy isotopes. Phys.Scr. 2009, T135, 014023.

Khetselius, O.Yu. Hyperfine structure of atomic spectra. Astroprint: Odessa, 2008.

Khetselius, O.Yu. Optimized relativistic many-body perturbation theory calculation of wavelengths and oscillator strengths for Li-like multicharged ions. Adv. Quant. Chem. 2019, 78, 223-251.

Glushkov, A.V. Relativistic Quantum theory. Quantum mechanics of atomic systems. Astroprint: Odessa, 2008.

Glushkov, A.V., Khetselius, O.Yu., Svinarenko, A.A., Buyadzhi, V.V. Spectroscopy of autoionization states of heavy atoms and multiply charged ions. TEC: Odessa, 2015.

Dubrovskaya, Yu., Khetselius, O.Yu., Vitavetskaya, L., Ternovsky, V., Serga, I. Quantum chemistry and spectroscopy of pionic atomic systems with accounting for relativistic, radiative, and strong interaction effects. Adv. in Quantum Chem. 2019, Vol.78, pp 193-222.

Bystryantseva, A., Khetselius, O.Yu., Dubrovskaya, Yu., Vitavetskaya, L.A., Berestenko, A.G. Relativistic theory of spectra of heavy pionic atomic systems with account of strong pion-nuclear interaction effects: 93Nb, 173Yb, 181Ta, 197Au. Photoelectronics. 2016, 25, 56-61.

Khetselius, O., Glushkov, A., Gurskaya, M., Kuznetsova, A., Dubrovskaya, Yu., Serga, I., Vitavetskaya, L. Computational modelling parity nonconservation and electroweak interaction effects in heavy atomic systems within the nuclear-relativistic many-body perturbation theory. J. Phys.: Conf. Ser. 2017, 905(1), 012029.

Khetselius, O.Yu., Glushkov, A.V., Dubrovskaya, Yu.V., Chernyakova, Yu., Ignatenko, A.V., Serga, I., Vitavetskaya, L. Relativistic quantum chemistry and spectroscopy of exotic atomic systems with accounting for strong interaction effects. In: Concepts, Methods and Applications of Quantum Systems in Chemistry and Physics. Springer, Cham. 2018, 31, 71-91.

Svinarenko, A., Khetselius, O., Buyadzhi, V.V., Florko, T., Zaichko, P., Ponomarenko, E. Spectroscopy of Rydberg atoms in a Black-body radiation field: Relativistic theory of excitation and ionization. J. Phys.: Conf. Ser. 2014, 548, 012048.

Khetselius, O.Yu. Quantum structure of electroweak interaction in heavy finite Fermi-systems. Astroprint: Odessa, 2011.

Khetselius, O.Y. Hyperfine structure of energy levels for isotopes 73Ge, 75As, 201 Hg. Photoelectronics. 2007, 16, 129-132.

Khetselius, O.Y., Gurnitskaya, E.P., Sensing the electric and magnetic moments of a nucleus in the N-like ion of Bi. Sensor Electr. and Microsyst. Techn. 2006, N3, 35-39.

Khetselius, O.Yu., Lopatkin, Yu.M., Dubrovskaya, Yu.V, Svinarenko, A.A. Sensing hyperfine-structure, electroweak interaction and parity non-conservation effect in heavy atoms and nuclei: New nuclear-QED approach. Sensor Electr. and Microsyst. Techn. 2010, 7(2), 11-19.

Florko, T.A., Tkach, T.B., Ambrosov, S.V., Svinarenko, A.A. Collisional shift of the heavy atoms hyperfine lines in an atmosphere of the inert gas. J. Phys.: Conf. Ser. 2012, 397, 012037.

Glushkov, A., Vitavetskaya, L. Accurate QED perturbation theory calculation of the structure of heavy and superheavy element atoms and multicharged ions with the account of nuclear size effect and QED corrections. Herald of Uzhgorod Univ. Ser. Phys. 2000, 8(2), 321-324.

Buyadzhi, V.V., Chernyakova, Yu.G., Smirnov, A.V., Tkach, T.B. Electron-collisional spectroscopy of atoms and ions in plasma: Be-like ions. Photoelectronics. 2016, 25, 97-101.

Buyadzhi, V.V., Chernyakova, Yu.G., Antoshkina, O., Tkach, T. Spectroscopy of multicharged ions in plasmas: Oscillator strengths of Be-like ion Fe. Photoelectronics. 2017, 26, 94-102

Ternovsky, V., Theoretical studying Rydberg states spectrum of the uranium atom on the basis of relativistic many-body perturbation theory. Photoelectronics. 2019, 28, 39-45

Glushkov, A.V., Khetselius, O.Yu., Svinarenko A.A. Theoretical spectroscopy of autoionization resonances in spectra of lanthanides atoms. Phys. Scripta. 2013, T153, 014029.

Svinarenko, A., Glushkov, A, Khetselius, O., Ternovsky, V., Dubrovskaya Y., Kuznetsova A., Buyadzhi V. Theoretical spectroscopy of rare-earth elements: spectra and autoionization resonances. Rare Earth Element, Ed. J. Orjuela (InTech). 2017, pp 83-104.

Glushkov, A.V., Khetselius, O.Yu., Svinarenko A.A., Buyadzhi, V.V., Ternovsky, V.B, Kuznetsova, A., Bashkarev, P. Relativistic perturbation theory formalism to computing spectra and radiation characteristics: application to heavy element. Recent Studies in Perturbation Theory, ed. D. Uzunov (InTech). 2017, 131-150.

Glushkov, A.V., Svinarenko, A.A., Ternovsky, V.B., Smirnov, A.V., Zaichko, P.A. Spectroscopy of the complex autoionization resonances in spectrum of helium: Test and new spectral data. Photoelectronics. 2015, 24, 94-102.

Glushkov, A.V., Ternovsky, V.B., Buyadzhi, V., Zaichko, P., Nikola, L. Advanced relativistic energy approach to radiation decay processes in atomic systems. Photoelectr. 2015, 24, 11-22.

Ivanov, L.N.; Ivanova, E.P. Method of Sturm orbitals in calculation of physical characteristics of radiation from atoms and ions. JETP. 1996, 83, 258-266.

Glushkov, A.V., Ivanov, L.N., Ivanova, E.P. Autoionization Phenomena in Atoms. Moscow Univ. Press, Moscow, 1986, 58.

Glushkov, A.V., Ivanov, L.N. Radiation decay of atomic states: atomic residue polarization and gauge noninvariant contributions. Phys. Lett. A 1992, 170, 33.

Glushkov, A.V.; Ivanov, L.N. DC strong-field Stark effect: consistent quantum-mechanical approach. J. Phys. B: At. Mol. Opt. Phys. 1993, 26, L379-386.

Ivanova, E., Glushkov, A. Theoretical investigation of spectra of multicharged ions of F-like and Ne-like isoelectronic sequences. J. Quant. Spectr. and Rad. Tr. 1986, 36(2), 127-145.

Ivanova, E.P., Ivanov, L.N., Glushkov, A., Kramida, A. High order corrections in the relativistic perturbation theory with the model zeroth approximation, Mg-Like and Ne-Like Ions. Phys. Scripta 1985, 32, 513-522.

Glushkov, A.V. Relativistic and correlation effects in spectra of atomic systems. Astroprint: Odessa, 2006.

Glushkov, A.V. Multiphoton spectroscopy of atoms and nuclei in a laser field: Relativistic energy approach and radiation atomic lines moments method. Adv. in Quantum Chem. 2019, 78, 253-285.

Glushkov, A., Loboda, A., Gurnitskaya, E., Svinarenko, A. QED theory of radiation emission and absorption lines for atoms in a strong laser field. Phys. Scripta. 2009, T135, 014022.

Glushkov, A. Spectroscopy of cooperative muon-gamma-nuclear processes: Energy and spectral parameters J. Phys.: Conf. Ser. 2012, 397, 012011.

Glushkov, A.V. Spectroscopy of atom and nucleus in a strong laser field: Stark effect and multiphoton resonances. J. Phys.: Conf. Ser. 2014, 548, 012020.

Glushkov, A.V., Ternovsky, V.B., Buyadzhi, V., Prepelitsa, G.P. Geometry of a Relativistic Quantum Chaos: New approach to dynamics of quantum systems in electromagnetic field and uniformity and charm of a chaos. Proc. Int. Geom. Center. 2014, 7(4), 60-71.

Glushkov, A., Buyadzhi, V., Kvasikova, A., Ignatenko, A., Kuznetsova, A., Prepelitsa, G., Ternovsky, V. Non-Linear chaotic dynamics of quantum systems: Molecules in an electromagnetic field and laser systems. In: Quantum Systems in Physics, Chemistry, and Biology. Springer, Cham. 2017, 30, 169-180.

Glushkov, A.V. Relativistic polarization potential of a many-electron atom. Sov. Phys. Journal. 1990, 33(1), 1-4.

Glushkov, A., Svinarenko, A., Ignatenko, A. Spectroscopy of autoionization resonances in spectra of the lanthanides atoms. Photoelectronics. 2011, 20, 90-94.

Glushkov, A., Gurskaya, M., Ignatenko, A., Smirnov, A., Serga, I., Svinarenko, A., Ternovsky, E. Computational code in atomic and nuclear quantum optics: Advanced computing multiphoton resonance parameters for atoms in a strong laser field. J. Phys.: Conf. Ser. 2017, 905, 012004.

Glushkov, A., Khetselius, O., Svinarenko, A., Buyadzhi, V. Methods of computational mathematics and mathematical physics. P.1. TES: Odessa, 2015.

Khetselius, O.Yu. Spectroscopy of cooperative electron-gamma-nuclear processes in heavy atoms: NEET effect. J. Phys.: Conf. Ser. 2012, 397, 012012.

Buyadzhi, V., Zaichko, P., Antoshkina, O., Kulakli, T., Prepelitsa, G., Ternovsky, V.B., Mansarliysky, V. Computing of radiation parameters for atoms and multicharged ions within relativistic energy approach: Advanced Code. J. Phys.: Conf. Ser. 2017, 905(1), 012003.

Glushkov A.V., Khetselius O.Yu., Loboda A.V., Ignatenko A., Svinarenko A., Korchevsky D., Lovett L., QED Approach to Modeling Spectra of the Multicharged Ions in a Plasma: Oscillator and Electron‐ion Collision Strengths.. AIP Conference Proceedings. 2008. 1058. 175-177

Ternovsky V. Theoretical study of the Yb spectrum. Preprint OSENU, 2019, AM-2.

##submission.downloads##

Опубліковано

2021-02-26

Номер

Розділ

Статті